CMPT 473 Software Quality Assurance

Scale & Combinatorial Testing

Nick Sumner

- Consider our triangle classifier
 - Takes 3 integers for sides 1, 2, & 3

Characteristic	b1	b2	b3
Side 1 0	Side 1 > 0	Side 1 = 0	Side 1 < 0
Side 2 0	Side 2 > 0	Side 2 = 0	Side 2 < 0
Side 3 0	Side 3 > 0	Side 3 = 0	Side 3 < 0

3 guiding questions...

- Consider our triangle classifier
 - Takes 3 integers for sides 1, 2, & 3

Characteristic	b1	b2	b3
Side 1 0	Side 1 > 0	Side 1 = 0	Side 1 < 0
Side 2 0	Side 2 > 0	Side 2 = 0	Side 2 < 0
Side 3 0	Side 3 > 0	Side 3 = 0	Side 3 < 0

How many tests does this create?

- Consider our triangle classifier
 - Takes 3 integers for sides 1, 2, & 3

Characteristic	b1	b2	b3
Side 1 0	Side 1 > 0	Side 1 = 0	Side 1 < 0
Side 2 0	Side 2 > 0	Side 2 = 0	Side 2 < 0
Side 3 0	Side 3 > 0	Side 3 = 0	Side 3 < 0

How many tests does this create?

What will this test well? What won't this test well?

- Consider our triangle classifier
 - Takes 3 integers for sides 1, 2, & 3

Characteristic	b1	b2	b3
Side 1 0	Side 1 > 0	Side 1 = 0	Side 1 < 0
Side 2 0	Side 2 > 0	Side 2 = 0	Side 2 < 0
Side 3 0	Side 3 > 0	Side 3 = 0	Side 3 < 0

How many tests does this create?

What will this test well? What won't this test well?

Recall from Last Time (part 2)

We can subdivide partitions to cover more behavior

Characteristic	b1	b2	b3	b4
Value of side 1	Side 1 > 1	Side 1 = 1	Side 1 = 0	Side 1 < 0
Value of side 2	Side 2 > 1	Side 2 = 1	Side 2 = 0	Side 2 < 0
Value of side 3	Side 3 > 1	Side 3 = 1	Side 3 = 0	Side 3 < 0

How many tests now?

Suppose inputs or characteristics I_1 , I_2 , I_3 , ..., I_n

• How does the number of tests change?

Suppose inputs or characteristics I_1 , I_2 , I_3 , ..., I_n

- How does the number of tests change?
- $|D_1| * |D_2| * |D_3| * ... * |D_n| = k^n$
- This is combinatorial explosion

Suppose inputs or characteristics I_1 , I_2 , I_3 , ..., I_n

- How does the number of tests change?
- $|D_1| * |D_2| * |D_3| * ... * |D_n| = k^n$
- This is combinatorial explosion

What does it mean in practice?

• Find command: 4x3x3x3x3x3x2 = 1944 tests

Suppose inputs or characteristics I_1 , I_2 , I_3 , ..., I_n

- How does the number of tests change?
- $|D_1| * |D_2| * |D_3| * ... * |D_n| = k^n$
- This is combinatorial explosion

What does it mean in practice?

- Find command: 4x3x3x3x3x3x2 = 1944 tests
- Website generator: $> 30 \rightarrow > 1$ billion tests

Suppose inputs or characteristics I_1 , I_2 , I_3 , ..., I_n

- How does the number of tests change?
- $|D_1| * |D_2| * |D_3| * ... * |D_n| = k^n$
- This is combinatorial explosion

What does it mean in practice?

- Find command: 4x3x3x3x3x3x2 = 1944 tests
- Website generator: > 30 → > 1 billion tests

Too many to maintain!

Suppose inputs or characteristics I_1 , I_2 , I_3 , ..., I_n

- How does the number of tests change?
- $|D_1| * |D_2| * |D_3| * ... * |D_n| = k^n$
- This is combinatorial explosion

What does it mean in practice?

- Find command: 4x3x3x3x3x3x2 = 1944 tests
- Website generator: $> 30 \rightarrow > 1$ billion tests

Too many to maintain!

Too many to reasonably even create!

What did the input partitioning do?

- What did the input partitioning do?
 - Constraints

```
Pattern Size:

Empty
Single character
Many characters
Longer than any line in the file

[Property Empty]
[Property NonEmpty]
[Property NonEmpty]
```

```
Quoting:
Pattern is quoted
Pattern is not quoted
Pattern is improperly quoted

[If NonEmpty]
[If NonEmpty]
```

- What did the input partitioning do?
 - Constraints
 - [property] to identify rules for useful tests
 - [error] to identify when 1 test for a block is sufficient

```
Pattern Size:
Empty
Single character
Many characters
Longer than any line in the file

[Property MonEmpty]
[Property NonEmpty]
[Property NonEmpty]
```

```
Quoting:
Pattern is quoted
Pattern is not quoted
[If NonEmpty]
Pattern is improperly quoted
[If NonEmpty]
```

- What did the input partitioning do?
 - Constraints
 - [property] to identify rules for useful tests
 - [error] to identify when 1 test for a block is sufficient
- What else might we do?

- What did the input partitioning do?
 - Constraints
 - [property] to identify rules for useful tests
 - [error] to identify when 1 test for a block is sufficient
- What else might we do?
 - Not test as thoroughly (sampling)

Why might this be okay?

- What did the input partitioning do?
 - Constraints
 - [property] to identify rules for useful tests
 - [error] to identify when 1 test for a block is sufficient
- What else might we do?
 - Not test as thoroughly (sampling)
 - Identify related variables/domains & test together

Why would this lead to fewer tests?

Choosing Combinations

Several possible strategies:

All Combinations

Choosing Combinations

Several possible strategies:

- All Combinations
 - Every combination of every block is tried
 - Leaps headfirst into combinatorial explosion

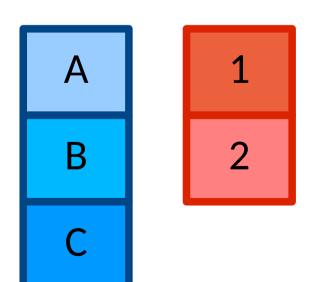
Choosing Combinations

Several possible strategies:

- All Combinations
 - Every combination of every block is tried
 - Leaps headfirst into combinatorial explosion

But is it inherently bad?

 How can we minimize #tests and still test each block?


- How can we minimize #tests and still test each block?
- Each Choice
 - 1 value from each block used in at least one test

- How can we minimize #tests and still test each block?
- Each Choice
 - 1 value from each block used in at least one test

Adequate Tests:

- How can we minimize #tests and still test each block?
- Each Choice
 - 1 value from each block used in at least one test

Adequate Tests: (A,1), (B,2), (C,1)

- How can we minimize #tests and still test each block?
- Each Choice
 - 1 value from each block used in at least one test

What does this look like for the triangle classifier?

- How can we minimize #tests and still test each block?
- Each Choice
 - 1 value from each block used in at least one test

What does this look like for the triangle classifier?

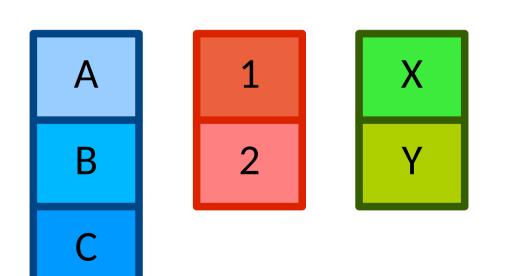
Are these tests good? Why?

- How can we minimize #tests and still test each block?
- Each Choice
 - 1 value from each block used in at least one test

How many tests?

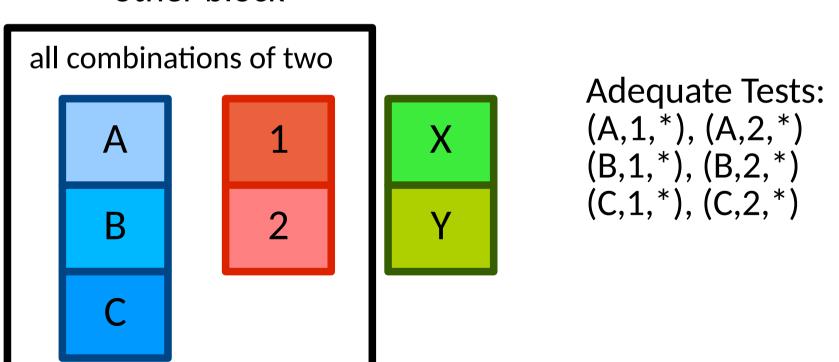
- How can we minimize #tests and still test each block?
- Each Choice
 - 1 value from each block used in at least one test
 - # tests = maximum number of blocks

How many tests?

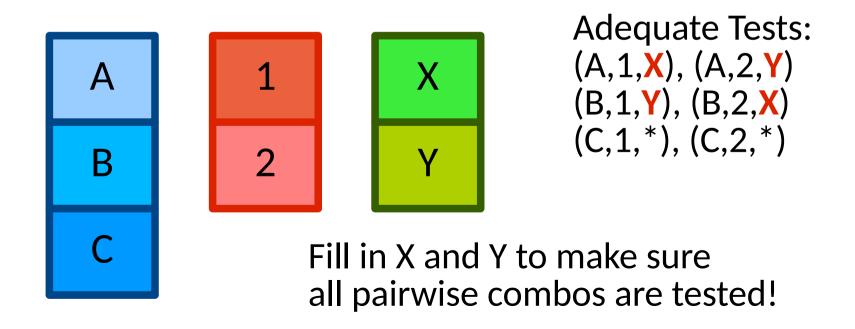

Why?

Combinations - ???

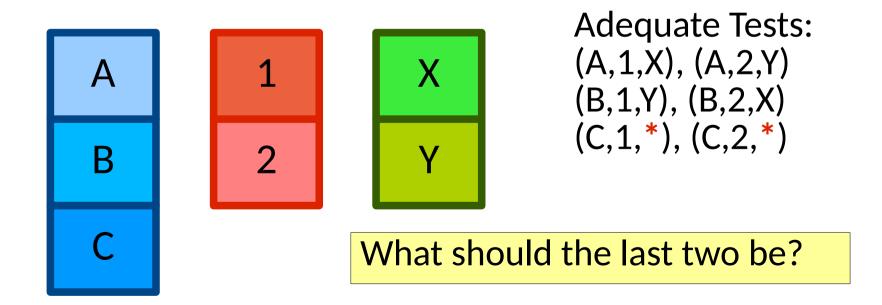
• Can we come up with a compromise?


- Can we come up with a compromise?
- Pair Wise
 - 1 value for each block combined with 1 value for each other block

- Can we come up with a compromise?
- Pair Wise
 - 1 value for each block combined with 1 value for each other block



Adequate Tests:


- Can we come up with a compromise?
- Pair Wise
 - 1 value for each block combined with 1 value for each other block

- Can we come up with a compromise?
- Pair Wise
 - 1 value for each block combined with 1 value for each other block

- Can we come up with a compromise?
- Pair Wise
 - 1 value for each block combined with 1 value for each other block

- Can we come up with a compromise?
- Pair Wise
 - 1 value for each block combined with 1 value for each other block

What does this look like for the triangle classifier?

- Can we come up with a compromise?
- Pair Wise
 - 1 value for each block combined with 1 value for each other block

What does this look like for the triangle classifier?

Are these tests good? Why?

- Can we come up with a compromise?
- Pair Wise
 - 1 value for each block combined with 1 value for each other block

- Can we come up with a compromise?
- Pair Wise
 - 1 value for each block combined with 1 value for each other block
 - #tests ≥ product of 2 largest domain partitionings

- Can we come up with a compromise?
- Pair Wise
 - 1 value for each block combined with 1 value for each other block
 - #tests ≥ product of 2 largest domain partitionings

- Can we come up with a compromise?
- Pair Wise
 - 1 value for each block combined with 1 value for each other block
 - #tests ≥ product of 2 largest domain partitionings

How many tests?

Expected on the order of $|D_1| * |D_2| * \log(n)$

Combinations - ???

• Can we extend this further?

- Can we extend this further?
- T-wise
 - 1 value from each block for each group of T characteristics

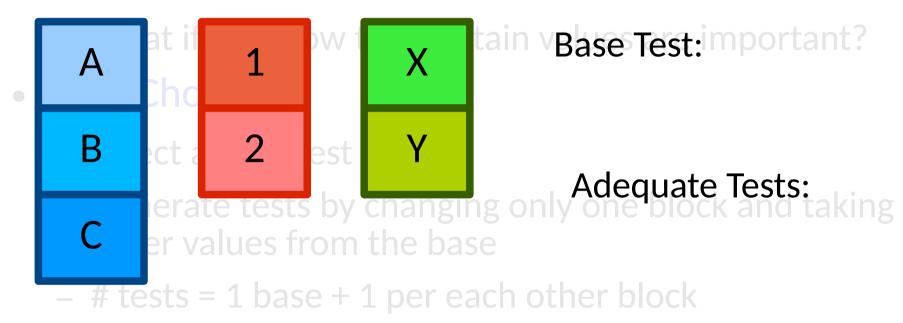
- Can we extend this further?
- T-wise
 - 1 value from each block for each group of T characteristics

- Can we extend this further?
- T-wise
 - 1 value from each block for each group of T characteristics
 - #tests ≥ product of T largest domain partitionings

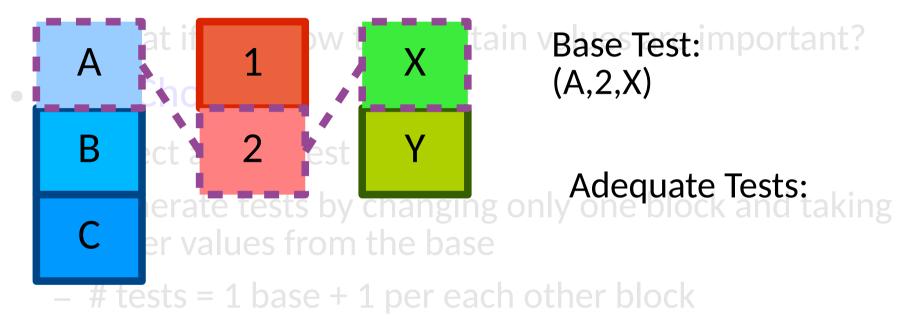
- Can we extend this further?
- T-wise
 - 1 value from each block for each group of T characteristics
 - #tests ≥ product of T largest domain partitionings

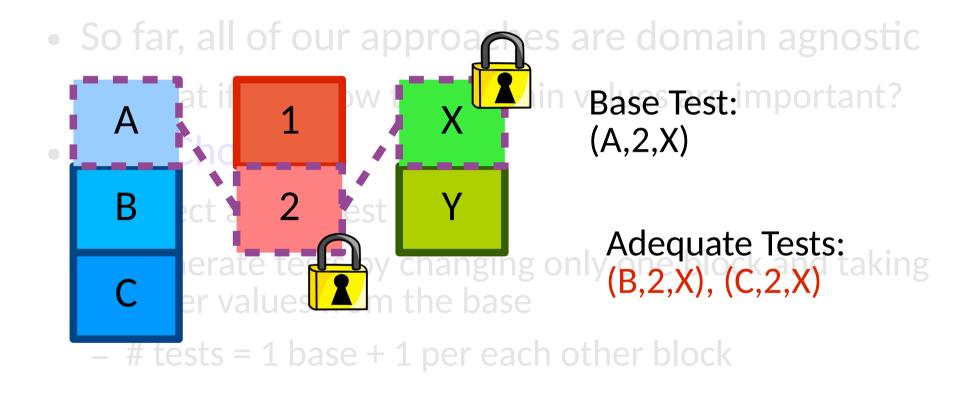
What happens as T increases?

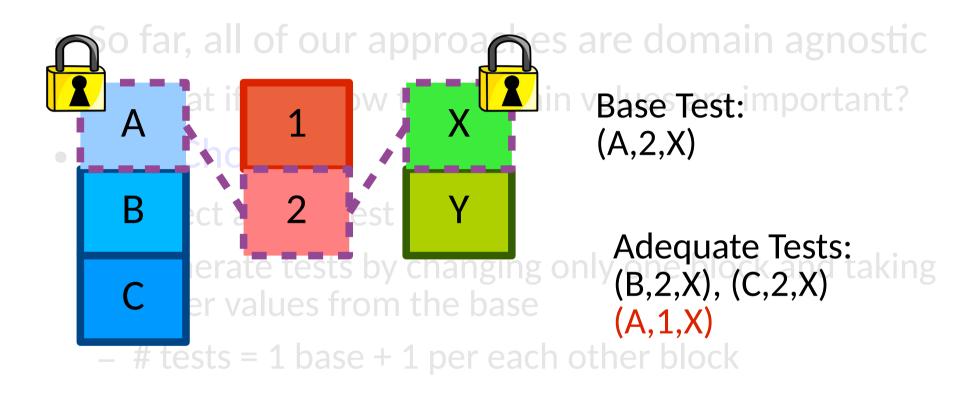
- Can we extend this further?
- T-wise
 - 1 value from each block for each group of T characteristics
 - #tests ≥ product of T largest domain partitionings
 - Bounded by (max number of blocks)^T
 - More expensive than pairs & uncertain gains

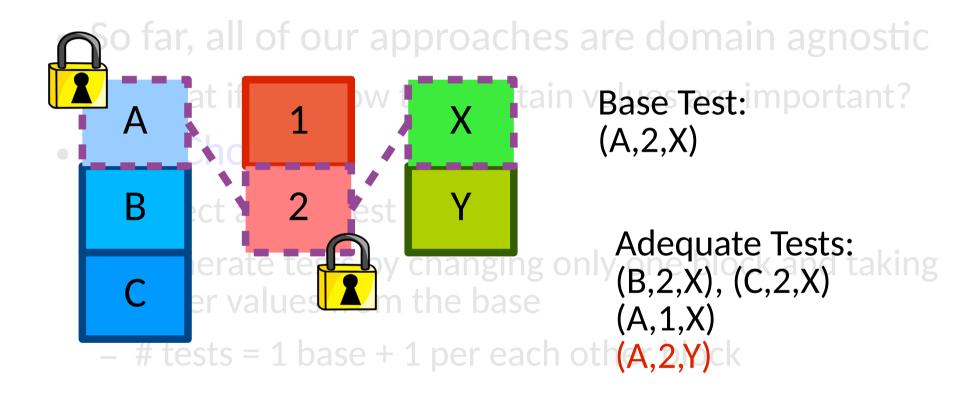

- Can we extend this further?
- T-wise
 - 1 value from each block for each group of T characteristics
 - #tests ≥ product of T largest domain partitionings
 - Bounded by (max number of blocks)^T
 - More expensive than pairs & uncertain gains

T is often called the test strength

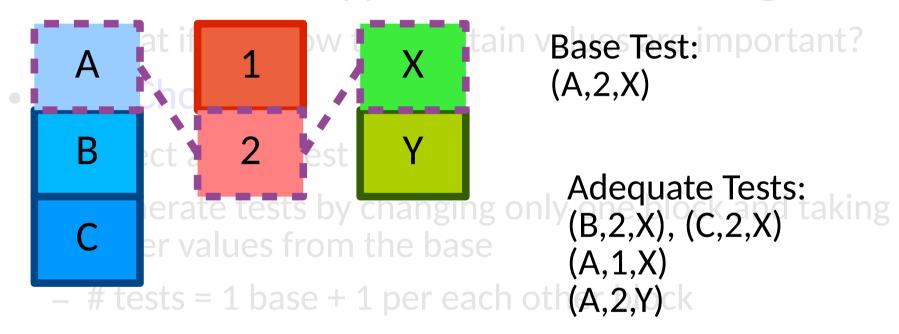

- So far, all of our approaches are domain agnostic
 - What if we know that certain values are important?


- So far, all of our approaches are domain agnostic
 - What if we know that certain values are important?
- Base Choice
 - Select a base test
 - Generate tests by changing only one block and taking other values from the base


• So far, all of our approaches are domain agnostic



• So far, all of our approaches are domain agnostic



• So far, all of our approaches are domain agnostic

- So far, all of our approaches are domain agnostic
 - What if we know that certain values are important?
- Base Choice
 - Select a base test
 - Generate tests by changing only one block and taking other values from the base
 - # tests = 1 base + 1 per each other block

What does this look like for the triangle classifier?

- So far, all of our approaches are domain agnostic
 - What if we know that certain values are important?
- Base Choice
 - Select a base test
 - Generate tests by changing only one block and taking other values from the base
 - # tests = 1 base + 1 per each other block

What does this look like for the triangle classifier?

- So far, all of our approaches are domain agnostic
 - What if we know that certain values are important?
- Base Choice
 - Select a base test
 - Generate tests by changing only one block and taking other values from the base
 - # tests = 1 base + 1 per each other block

What does this look like for the triangle classifier?

$$1 + \sum |D_i-1|$$

Which test to use as a base is crucial

Why? What if we choose poorly?

Which test to use as a base is crucial

- Must at least be feasible
 - Do the combined values create a valid run?

Which test to use as a base is crucial

- Must at least be feasible
 - Do the combined values create a valid run?

How might we select a base test?

Which test to use as a base is crucial

- Must at least be feasible
 - Do the combined values create a valid run?
- Guided by:
 - Most likely?
 - Simplest?
 - Smallest?
 - Etc.

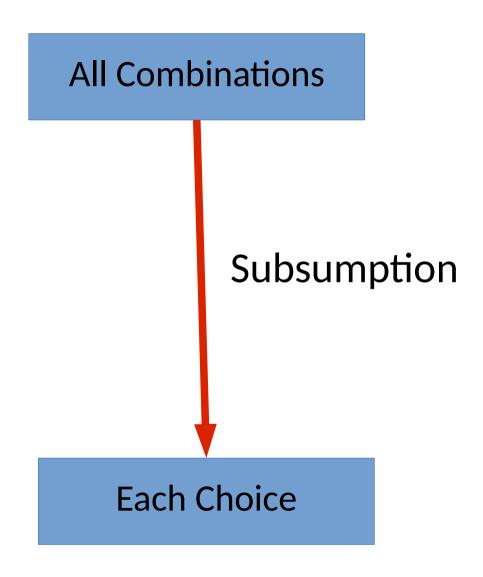
Which test to use as a base is crucial

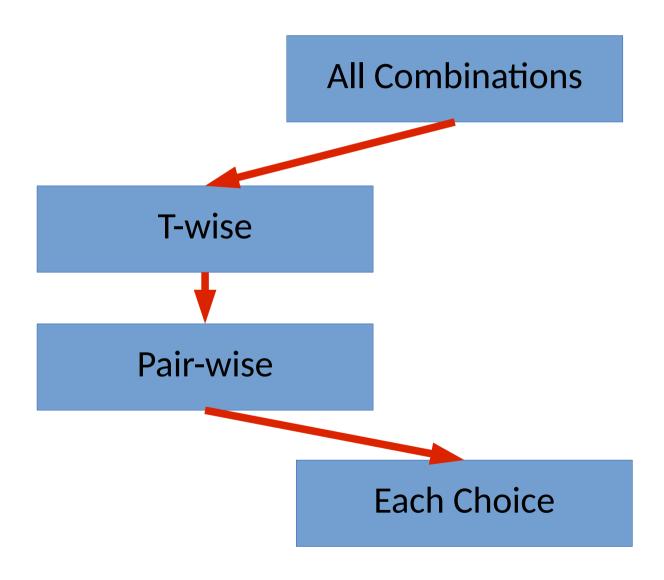
- Must at least be feasible
 - Do the combined values create a valid run?
- Guided by:
 - Most likely?
 - Simplest?
 - Smallest?
 - Etc.
- Decision must be well understood & well maintained

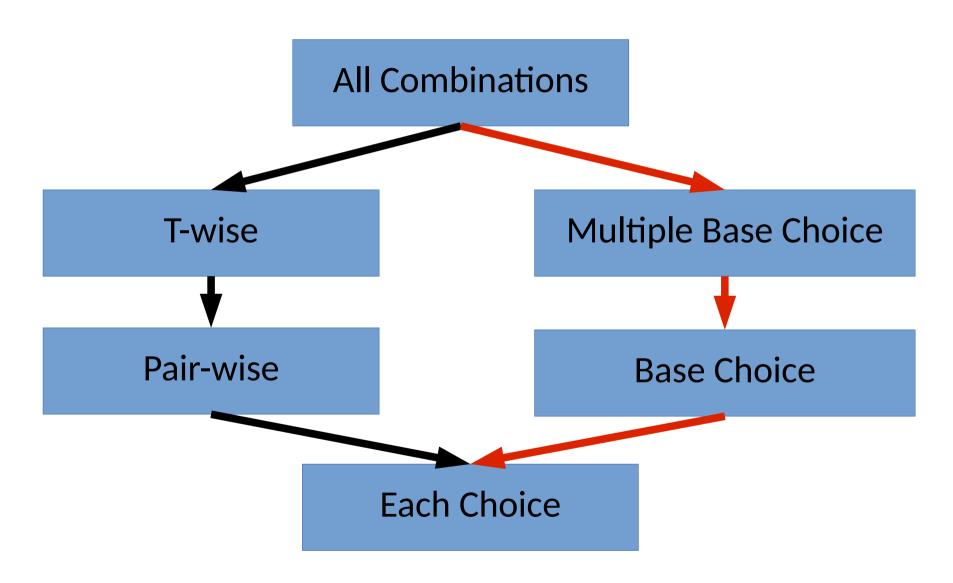
Combinations - ???

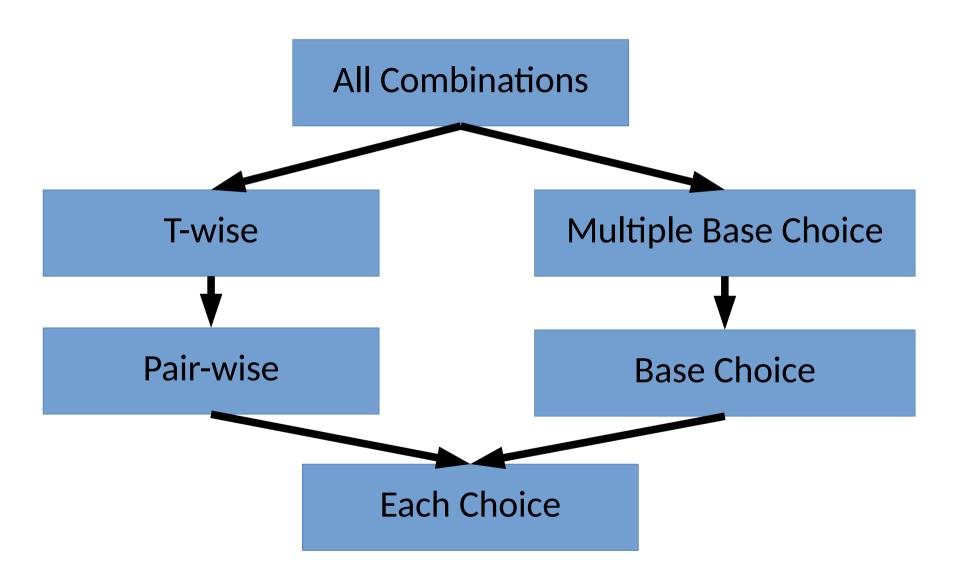
- Notice the pattern.
 - Can base choices be extended?

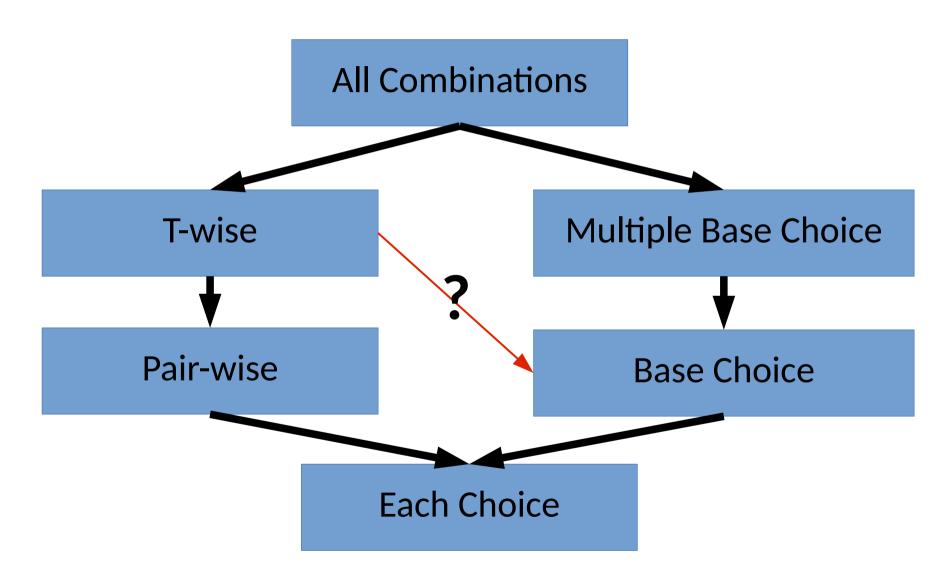
Combinations - Multiple Base Choice

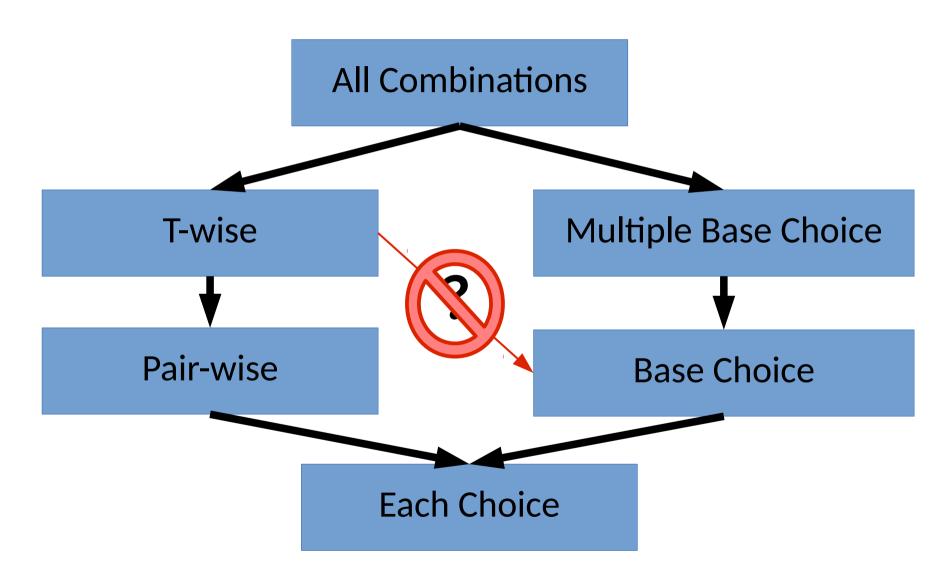

- Notice the pattern.
 - Can base choices be extended?
- Multiple Base Choice
 - Select 1 or more base characteristics
 - Generate base tests by using each at least once
 - Change 1 block at a time to an unselected one just as before


M base tests:


$$M * (1 + \sum |D_i-1|)$$


All Combinations


Each Choice



Remember the Constraints

- Constraints, and [error]s can reduce the # of tests further
 - No need to test invalid constraints
 - No need to test more than one [error]