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Levels of Testing

● Many different levels of testing can be considered:
– Unit Tests
– Integration Tests
– System Tests
– Acceptance Tests
– …

● The simplest of these is Unit Testing
– Testing the smallest possible fragments of a program
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Unit Testing

● Try to ensure that the functionality of each component works in 
isolation
– Unit Test a car:

Wheels work. Steering wheel works....
– Integration Test a car:

Steering wheel turns the wheels....
– System Test a car:

 Driving down the highway with the air conditioning on works....
● Not testing how well things are glued together.
● In practice, there is a lot more debate on this than you might expect

– Degrees of isolation
– Big & Small    vs    Unit & Integration
– ...

The rapid feedback advantage
of unit tests persists for refactoring,

but there are judgement calls.
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Unit Tests

● A dual view:
– They specify the expected behavior of individual components
– An executable specification

● Can even be built first & used to guide development
– Usually called Test Driven Development

In practice, the empirical evidence
is against it.
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Unit Tests

● Some guiding principles:
– Focus on one component in isolation
– Be simple to set up & run
– Be easy to understand

● Usually managed by some automating framework ....
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GoogleTest

● Increasingly used framework for C++
– Not dissimilar from JUnit, which you have already seen.

● Test cases are written as functions:

The TEST macro defines
individual test cases.
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TEST(TriangleTest, isEquilateral) {
  Triangle tri{2,2,2};
  EXPECT_TRUE(tri.isEquilateral());
}

GoogleTest

● Increasingly used framework for C++
– Not dissimilar from JUnit, which you have already seen.

● Test cases are written as functions:
The first argument

names related tests.
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TEST(TriangleTest, isEquilateral) {
  Triangle tri{2,2,2};
  EXPECT_TRUE(tri.isEquilateral());
}

GoogleTest

● Increasingly used framework for C++
– Not dissimilar from JUnit, which you have already seen.

● Test cases are written as functions:
The second argument

names individual test cases.
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TEST(TriangleTest, isEquilateral) {
  Triangle tri{2,2,2};
  EXPECT_TRUE(tri.isEquilateral());
}

GoogleTest

● Increasingly used framework for C++
– Not dissimilar from JUnit, which you have already seen.

● Test cases are written as functions:

EXPECT and ASSERT macros
provide correctness oracles.
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GoogleTest

● Increasingly used framework for C++
– Not dissimilar from JUnit, which you have already seen.

● Test cases are written as functions:

ASSERT oracles terminate the program when they fail.
EXPECT oracles allow the program to continue running.

TEST(TriangleTest, isEquilateral) {
  Triangle tri{2,2,2};
  EXPECT_TRUE(tri.isEquilateral());
}
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GoogleTest

● Increasingly used framework for C++
– Not dissimilar from JUnit, which you have already seen.

● Test cases are written as functions.
● TEST() cases are automatically registered with GoogleTest and are 

executed by the test driver.
● Some tests require common setUp & tearDown

– Group them into test fixtures
– A fresh fixture is created for each test
– Fixtures enable using the same configuration for multiple tests
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GoogleTest - Fixtures

class StackTest : public ::testing::Test {
 protected:
  void SetUp() override {
    s1.push(1);
    s2.push(2);
    s2.push(3);
  }

  void TearDown() override { }

  Stack<int> s1;
  Stack<int> s2;
};

Derive from the fixture base class
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class StackTest : public ::testing::Test {
 protected:
  void SetUp() override {
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  void TearDown() override { }
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  Stack<int> s2;
};

GoogleTest - Fixtures

SetUp() will be called before
all tests using the fixture
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class StackTest : public ::testing::Test {
 protected:
  void SetUp() override {
    s1.push(1);
    s2.push(2);
    s2.push(3);
  }

  void TearDown() override { }

  Stack<int> s1;
  Stack<int> s2;
};

GoogleTest - Fixtures

TearDown() will be called after
all tests using the fixture
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GoogleTest - Fixtures

Use the fixture in test cases defined with TEST_F:

TEST_F(StackTest, popOfOneIsEmpty) {
  s1.pop();
  EXPECT_EQ(0, s1.size());
}
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TEST_F(StackTest, popOfOneIsEmpty) {
  s1.pop();
  EXPECT_EQ(0, s1.size());
}

GoogleTest - Fixtures

Use the fixture in test cases defined with TEST_F:
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GoogleTest - Fixtures

Use the fixture in test cases defined with TEST_F:

Behaves like

TEST_F(StackTest, popOfOneIsEmpty) {
  s1.pop();
  EXPECT_EQ(0, s1.size());
} {

  StackTest t;
  t.SetUp();
  t.popOfOneIsEmpty();
  t.TearDown();
}
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TEST_F(StackTest, popOfOneIsEmpty) {
  s1.pop();
  EXPECT_EQ(0, s1.size());
}

GoogleTest - Fixtures

Use the fixture in test cases defined with TEST_F:

A different expectation than before!
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TEST_F(StackTest, popOfOneIsEmpty) {
  s1.pop();
  EXPECT_EQ(0, s1.size());
}

GoogleTest - Fixtures

Use the fixture in test cases defined with TEST_F:

expected
value
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TEST_F(StackTest, popOfOneIsEmpty) {
  s1.pop();
  EXPECT_EQ(0, s1.size());
}

GoogleTest - Fixtures

Use the fixture in test cases defined with TEST_F:

expected
value

observed
value
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GoogleTest

● Increasingly used framework for C++
– Not dissimilar from JUnit, which you have already seen.

● Test cases are written as functions.
● TEST() cases are automatically registered with GoogleTest and are 

executed by the test driver.
● Some tests require common setUp & tearDown
● Many different assertions and expectations available

ASSERT_TRUE(condition);
ASSERT_FALSE(condition);
ASSERT_EQ(expected,actual);
ASSERT_NE(val1,val2);
ASSERT_LT(val1,val2);
ASSERT_LE(val1,val2);
ASSERT_GT(val1,val2);
ASSERT_GE(val1,val2);

EXPECT_TRUE(condition);
EXPECT_FALSE(condition);
EXPECT_EQ(expected,actual);
EXPECT_NE(val1,val2);
EXPECT_LT(val1,val2);
EXPECT_LE(val1,val2);
EXPECT_GT(val1,val2);
EXPECT_GE(val1,val2);

…
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GoogleTest

● Increasingly used framework for C++
– Not dissimilar from JUnit, which you have already seen.

● Test cases are written as functions.
● TEST() cases are automatically registered with GoogleTest and are 

executed by the test driver.
● Some tests require common setUp & tearDown
● Many different assertions and expectations available
● More information available online

– github.com/google/googletest/blob/master/googletest/docs/Primer.md
– github.com/google/googletest/blob/master/googletest/docs/AdvancedGuide.md

https://github.com/google/googletest/blob/master/googletest/docs/Primer.md
https://github.com/google/googletest/blob/master/googletest/docs/AdvancedGuide.md
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  Environment env;
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  auto result = evaluate(tree, env);
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}

This specific test uses
another framework

called Doctest



  

Designing a Unit Test

● Common structure
TEST_CASE("empty") {
  Environment env;
  ExprTree tree;

  auto result = evaluate(tree, env);

  CHECK(!result.has_value());
}

Set up a scenario



  

Designing a Unit Test

● Common structure
TEST_CASE("empty") {
  Environment env;
  ExprTree tree;

  auto result = evaluate(tree, env);

  CHECK(!result.has_value());
}

Run the scenario



  

Designing a Unit Test

● Common structure
TEST_CASE("empty") {
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Designing a Unit Test

● Common structure
TEST_CASE("empty") {
  Environment env;
  ExprTree tree;

  auto result = evaluate(tree, env);

  CHECK(!result.has_value());
}

This is sometimes known as AAA:
Arrange
Act
Assert
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Designing a Unit Test

● Common structure
● Tests should run in isolation
struct Frob {
  Frob()
    : conn{getDB().connect()}
      { }
  DBConnection conn;
};

TEST_CASE("bad test 1") {
  Frob frob;
  ...
}

TEST_CASE("bad test 2") {
  Frob frob;
  ...
}

The order of the test can affect the results!

A flaky DB can affect results!
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Designing a Unit Test

● Common structure
● Tests should run in isolation
struct Frob {
  Frob(Connection& inConn)
    : conn{inConn}
      { }
  Connection& conn;
};

Connection

DBConnection FakeConnection

Dependency injection allows
the user of a class to
control its behavior
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● Common structure
● Tests should run in isolation
struct Frob {
  Frob(Connection& inConn)
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      { }
  Connection& conn;
};

TEST_CASE("better test 1") {
  FakeDB db;
  FakeConnection conn = db.connect();
  Frob frob{conn};
  ...
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Connection

DBConnection FakeConnection



  

Designing a Unit Test

● Common structure
● Tests should run in isolation
struct Frob {
  Frob(Connection& inConn)
    : conn{inConn}
      { }
  Connection& conn;
};

TEST_CASE("better test 1") {
  FakeDB db;
  FakeConnection conn = db.connect();
  Frob frob{conn};
  ...
}

Connection

DBConnection

More on this later!
FakeConnection
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Common Patterns (Ammonn & Offutt)

● Checking State
– Final State

● Prepare initial state
● Run test
● Check final state

– Pre and Post conditions
● Check initial state as well as final state

– Relative effects
● Check final state relative to some initial state

– Round trips
● Check behavior on transform/inverse transform pairs

These have become
fundamental for

testing hard software
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Common Patterns (Ammonn & Offutt)

● Checking Interactions/Behavior
– Use mocks

● Testing 'fakes' that verify expected interactions
● http://martinfowler.com/articles/mocksArentStubs.html
● http://googletesting.blogspot.ca/2013/03/testing-on-toilet-testing-state-vs.html

http://martinfowler.com/articles/mocksArentStubs.html
http://googletesting.blogspot.ca/2013/03/testing-on-toilet-testing-state-vs.html
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Common Patterns (Ammonn & Offutt)

● Checking Interactions/Behavior
– Use mocks

● Testing 'fakes' that verify expected interactions
● http://martinfowler.com/articles/mocksArentStubs.html
● http://googletesting.blogspot.ca/2013/03/testing-on-toilet-testing-state-vs.html

TEST_CASE("better test 1") {
  FakeDB db;
  FakeConnection conn = db.connect();
  Frob frob{conn};
  ...
}

The FakeConnection could check
that DB interactions are correct.

http://martinfowler.com/articles/mocksArentStubs.html
http://googletesting.blogspot.ca/2013/03/testing-on-toilet-testing-state-vs.html
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Common Patterns (Ammonn & Offutt)

● Checking Interactions/Behavior
– Use mocks

● Testing 'fakes' that verify expected interactions
● http://martinfowler.com/articles/mocksArentStubs.html
● http://googletesting.blogspot.ca/2013/03/testing-on-toilet-testing-state-vs.html

TEST_CASE("better test 1") {
  FakeDB db;
  FakeConnection conn = db.connect();
  Frob frob{conn};
  ...
}

The FakeConnection could check
that DB interactions are correct.
The FakeConnection could check
that DB interactions are correct.

NOTE: Test doubles for isolation are good,
but mocks should be used sparingly.

http://martinfowler.com/articles/mocksArentStubs.html
http://googletesting.blogspot.ca/2013/03/testing-on-toilet-testing-state-vs.html
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Testability

● What makes testing hard?
– Not just difficult to get adequacy
– What makes it difficult to write tests?

● Dependencies
– Connections between classes
– Singletons
– Nondeterminism
– Static binding
– Mixing construction & application logic
– ...

But solutions exist!
You can design code to be testable!
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Testability (by example)

● Next week (?) we will work together to improve some difficult to test 
code....
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● Keys things to notice:
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Testability

● Keys things to notice:
– Mocks & stubs allow us to isolate components under test
– Dependency Injection allows us to use mocks and stubs as necessary
– But doing this can lead to a lot more work and boilerplate code when 

written by hand

Given dependency injection,
what happens to the way we create objects?

How might we mitigate
boilerplate issues?
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● Frameworks exist that can automate the boilerplate behind:
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Mocking Framework Example

● Frameworks exist that can automate the boilerplate behind:
– Mocking

● e.g. GoogleMock, Mockito, etc.
– Dependency Injection

e.g. Google Guice, Pico Container, etc.
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Using GoogleMock

● Steps:
1) Derive a mock class from the class you wish to fake

class Thing {
 public:
  virtual int foo(int x);
  virtual void bar(int y);
};

class MockThing : public Thing {
 public:
  ...
  MOCK_METHOD(int, foo, (int x), (override));
  MOCK_METHOD(void, bar, (int y), (override));
};
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Using GoogleMock

● Steps:
1) Derive a mock class from the class you wish to fake

2) Replace virtual calls with uses of MOCK_METHOD().

class MockThing : public Thing {
 public:
  ...
  MOCK_METHOD(int, foo, (int x), (override));
  MOCK_METHOD(void, bar, (int y), (override));
};

class Thing {
 public:
  virtual int foo(int x);
  virtual void bar(int y);
};
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Using GoogleMock

● Steps:
1) Derive a mock class from the class you wish to fake

2) Replace virtual calls with uses of MOCK_METHOD().
3) Use the mock class in your tests.
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Using GoogleMock

● Steps:
1) Derive a mock class from the class you wish to fake

2) Replace virtual calls with uses of MOCK_METHOD().
3) Use the mock class in your tests.

4) Specify expectations before use via EXPECT_CALL().
● What arguments? How many times? In what order?

InSequence dummy;
EXPECT_CALL(mockThing, foo(Ge(20)))
    .Times(2)
    .WillOnce(Return(100))
    .WillOnce(Return(200));
EXPECT_CALL(mockThing, bar(Lt(5)));
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Using GoogleMock

● Steps:
1) Derive a mock class from the class you wish to fake

2) Replace virtual calls with uses of MOCK_METHOD().
3) Use the mock class in your tests.

4) Specify expectations before use via EXPECT_CALL().
● What arguments? How many times? In what order?

InSequence dummy;
EXPECT_CALL(mockThing, foo(Ge(20)))
    .Times(2)
    .WillOnce(Return(100))
    .WillOnce(Return(200));
EXPECT_CALL(mockThing, bar(Lt(5)));

This is part of the Arrange in AAA.
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Using GoogleMock

● Steps:
1) Derive a mock class from the class you wish to fake

2) Replace virtual calls with uses of MOCK_METHOD().
3) Use the mock class in your tests.

4) Specify expectations before use via EXPECT_CALL().
● What arguments? How many times? In what order?

5) Expectations are automatically checked in the destructor of the mock.
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Using GoogleMock

● Precisely specifying mock behavior

InSequence dummy;
EXPECT_CALL(mockThing, foo(Ge(20)))
    .Times(2) // Can be omitted here
    .WillOnce(Return(100))
    .WillOnce(Return(200));
EXPECT_CALL(mockThing, bar(Lt(5)));
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Using GoogleMock

● Precisely specifying mock behavior

InSequence dummy;
EXPECT_CALL(mockThing, foo(Ge(20)))
    .Times(2) // Can be omitted here
    .WillOnce(Return(100))
    .WillOnce(Return(200));
EXPECT_CALL(mockThing, bar(Lt(5)));Complex behaviors can be checked

using these basic pieces.
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Using GoogleMock

● Note, GoogleMock can use the same process for creating
both stubs and mocks as well as test fakes in the middle.

● A mock will check that a function is called in the right ways.
● A stub will prevent interaction with external resources and possibly 

return fake data.

What might this imply about
where you use mocks vs

where you use stubs?
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● How would I stub out a database connection?

struct Frob {
  Frob(Connection& inConn)
    : conn{inConn}
      { }
  Connection& conn;

  int doThing() {
    …
    x = conn.readValue();
    …
  }
};

TEST(FrobTests, doesThing) {
  FakeDBConnection conn;
  EXPECT_CALL(conn, readValue())
    .WillOnce(Return(5));

  Frob frob{conn};
  auto result = frob.doThing();

  ASSERT(42, result);
}
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Using GoogleMock

● How would I stub out a database connection?

struct Frob {
  Frob(Connection& inConn)
    : conn{inConn}
      { }
  Connection& conn;

  int doThing() {
    …
    x = conn.readValue();
    …
  }
};

TEST(FrobTests, doesThing) {
  FakeDBConnection conn;
  EXPECT_CALL(conn, readValue())
    .WillOnce(Return(5));

  Frob frob{conn};
  auto result = frob.doThing();

  ASSERT(42, result);
}

Arrange

Act

Assert
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● How would I check (mock) writing to a database connection?

struct Frob {
  Frob(Connection& inConn)
    : conn{inConn}
      { }
  Connection& conn;

  int doThing() {
    …
    conn.writeValue(x);
    …
  }
};

TEST(FrobTests, doesThing) {
  FakeDBConnection conn;
  EXPECT_CALL(conn, writeValue(Eq(42)));

  Frob frob{conn};
  auto result = frob.doThing();
}

Arrange

Act
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● How would I check (mock) writing to a database connection?

struct Frob {
  Frob(Connection& inConn)
    : conn{inConn}
      { }
  Connection& conn;

  int doThing() {
    …
    conn.writeValue(x);
    …
  }
};

TEST(FrobTests, doesThing) {
  FakeDBConnection conn;
  EXPECT_CALL(conn, writeValue(Eq(42)));

  Frob frob{conn};
  auto result = frob.doThing();
}

Arrange

Act

Assert
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Summary

● Unit testing provides a way to automate much of the testing process.
● Testing small components bootstraps confidence in the system on 

confidence in its constituents.
● Tests can verify state or behaviors.
● Software must be designed for testing (or designed by testing)
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