
Unit Testing & Testability

CMPT 473
Software Testing, Reliability and Security

Nick Sumner
with material from the GoogleTest documentation

Test Suite Design

● Objectives
– Functional correctness
– Nonfunctional attributes (performance, ...)

Test Suite Design

● Objectives
– Functional correctness
– Nonfunctional attributes (performance, ...)

● Components – The Automated Testing Pyramid

Unit

API/
Integration/
Component/

System UI

Test Suite Design

● Objectives
– Functional correctness
– Nonfunctional attributes (performance, ...)

● Components – The Automated Testing Pyramid

Unit

API/
Integration/
Component/

System UI

Test Suite Design

● Objectives
– Functional correctness
– Nonfunctional attributes (performance, ...)

● Components – The Automated Testing Pyramid

Unit

API/
Integration/
Component/

System UI

Test Suite Design

● Objectives
– Functional correctness
– Nonfunctional attributes (performance, ...)

● Components – The Automated Testing Pyramid

Unit

API/
Integration/
Component/

System UI

Test Suite Design

● Objectives
– Functional correctness
– Nonfunctional attributes (performance, ...)

● Components – The Automated Testing Pyramid

Unit

API/
Integration/
Component/

System UI
Integrated

Isolated

Test Suite Design

● Objectives
– Functional correctness
– Nonfunctional attributes (performance, ...)

● Components – The Automated Testing Pyramid

Unit

API/
Integration/
Component/

System UI
Integrated

Isolated

Slow

Fast

Test Suite Design

● Objectives
– Functional correctness
– Nonfunctional attributes (performance, ...)

● Components – The Automated Testing Pyramid

Unit

API/
Integration/
Component/

System UI
Integrated

Isolated

Slow

Fast

10

Levels of Testing

● Many different levels of testing can be considered:
– Unit Tests
– Integration Tests
– System Tests
– Acceptance Tests
– …

11

Levels of Testing

● Many different levels of testing can be considered:
– Unit Tests
– Integration Tests
– System Tests
– Acceptance Tests
– …

● The simplest of these is Unit Testing
– Testing the smallest possible fragments of a program

12

Unit Testing

● Try to ensure that the functionality of each component works in
isolation

13

Unit Testing

● Try to ensure that the functionality of each component works in
isolation
– Unit Test a car:

Wheels work. Steering wheel works....

14

Unit Testing

● Try to ensure that the functionality of each component works in
isolation
– Unit Test a car:

Wheels work. Steering wheel works....
– Integration Test a car:

Steering wheel turns the wheels....

15

Unit Testing

● Try to ensure that the functionality of each component works in
isolation
– Unit Test a car:

Wheels work. Steering wheel works....
– Integration Test a car:

Steering wheel turns the wheels....
– System Test a car:

 Driving down the highway with the air conditioning on works...

16

Unit Testing

● Try to ensure that the functionality of each component works in
isolation
– Unit Test a car:

Wheels work. Steering wheel works....
– Integration Test a car:

Steering wheel turns the wheels....
– System Test a car:

 Driving down the highway with the air conditioning on works....
● Not testing how well things are glued together.

17

Unit Testing

● Try to ensure that the functionality of each component works in
isolation
– Unit Test a car:

Wheels work. Steering wheel works....
– Integration Test a car:

Steering wheel turns the wheels....
– System Test a car:

 Driving down the highway with the air conditioning on works....
● Not testing how well things are glued together.
● In practice, there is a lot more debate on this than you might expect

18

Unit Testing

● Try to ensure that the functionality of each component works in
isolation
– Unit Test a car:

Wheels work. Steering wheel works....
– Integration Test a car:

Steering wheel turns the wheels....
– System Test a car:

 Driving down the highway with the air conditioning on works....
● Not testing how well things are glued together.
● In practice, there is a lot more debate on this than you might expect

– Degrees of isolation

19

Unit Testing

● Try to ensure that the functionality of each component works in
isolation
– Unit Test a car:

Wheels work. Steering wheel works....
– Integration Test a car:

Steering wheel turns the wheels....
– System Test a car:

 Driving down the highway with the air conditioning on works....
● Not testing how well things are glued together.
● In practice, there is a lot more debate on this than you might expect

– Degrees of isolation
– Big & Small vs Unit & Integration

20

Unit Testing

● Try to ensure that the functionality of each component works in
isolation
– Unit Test a car:

Wheels work. Steering wheel works....
– Integration Test a car:

Steering wheel turns the wheels....
– System Test a car:

 Driving down the highway with the air conditioning on works....
● Not testing how well things are glued together.
● In practice, there is a lot more debate on this than you might expect

– Degrees of isolation
– Big & Small vs Unit & Integration
– ...

The rapid feedback advantage
of unit tests persists for refactoring,

but there are judgement calls.

21

Unit Tests

● A dual view:
– They specify the expected behavior of individual components

22

Unit Tests

● A dual view:
– They specify the expected behavior of individual components
– An executable specification

23

Unit Tests

● A dual view:
– They specify the expected behavior of individual components
– An executable specification

● Can even be built first & used to guide development
– Usually called Test Driven Development

24

Unit Tests

● A dual view:
– They specify the expected behavior of individual components
– An executable specification

● Can even be built first & used to guide development
– Usually called Test Driven Development

In practice, the empirical evidence
is against it.

25

Unit Tests

● Some guiding principles:
– Focus on one component in isolation
– Be simple to set up & run
– Be easy to understand

26

Unit Tests

● Some guiding principles:
– Focus on one component in isolation
– Be simple to set up & run
– Be easy to understand

● Usually managed by some automating framework

27

GoogleTest

● Increasingly used framework for C++
– Not dissimilar from JUnit, which you have already seen.

28

GoogleTest

● Increasingly used framework for C++
– Not dissimilar from JUnit, which you have already seen.

● Test cases are written as functions:

TEST(TriangleTest, isEquilateral) {
 Triangle tri{2,2,2};
 EXPECT_TRUE(tri.isEquilateral());
}

29

TEST(TriangleTest, isEquilateral) {
 Triangle tri{2,2,2};
 EXPECT_TRUE(tri.isEquilateral());
}

GoogleTest

● Increasingly used framework for C++
– Not dissimilar from JUnit, which you have already seen.

● Test cases are written as functions:

The TEST macro defines
individual test cases.

30

TEST(TriangleTest, isEquilateral) {
 Triangle tri{2,2,2};
 EXPECT_TRUE(tri.isEquilateral());
}

GoogleTest

● Increasingly used framework for C++
– Not dissimilar from JUnit, which you have already seen.

● Test cases are written as functions:
The first argument

names related tests.

31

TEST(TriangleTest, isEquilateral) {
 Triangle tri{2,2,2};
 EXPECT_TRUE(tri.isEquilateral());
}

GoogleTest

● Increasingly used framework for C++
– Not dissimilar from JUnit, which you have already seen.

● Test cases are written as functions:
The second argument

names individual test cases.

32

TEST(TriangleTest, isEquilateral) {
 Triangle tri{2,2,2};
 EXPECT_TRUE(tri.isEquilateral());
}

GoogleTest

● Increasingly used framework for C++
– Not dissimilar from JUnit, which you have already seen.

● Test cases are written as functions:

EXPECT and ASSERT macros
provide correctness oracles.

33

GoogleTest

● Increasingly used framework for C++
– Not dissimilar from JUnit, which you have already seen.

● Test cases are written as functions:

ASSERT oracles terminate the program when they fail.
EXPECT oracles allow the program to continue running.

TEST(TriangleTest, isEquilateral) {
 Triangle tri{2,2,2};
 EXPECT_TRUE(tri.isEquilateral());
}

34

GoogleTest

● Increasingly used framework for C++
– Not dissimilar from JUnit, which you have already seen.

● Test cases are written as functions.
● TEST() cases are automatically registered with GoogleTest and are

executed by the test driver.

35

GoogleTest

● Increasingly used framework for C++
– Not dissimilar from JUnit, which you have already seen.

● Test cases are written as functions.
● TEST() cases are automatically registered with GoogleTest and are

executed by the test driver.
● Some tests require common setUp & tearDown

– Group them into test fixtures
– A fresh fixture is created for each test

36

GoogleTest

● Increasingly used framework for C++
– Not dissimilar from JUnit, which you have already seen.

● Test cases are written as functions.
● TEST() cases are automatically registered with GoogleTest and are

executed by the test driver.
● Some tests require common setUp & tearDown

– Group them into test fixtures
– A fresh fixture is created for each test
– Fixtures enable using the same configuration for multiple tests

37

GoogleTest - Fixtures

class StackTest : public ::testing::Test {
 protected:
 void SetUp() override {
 s1.push(1);
 s2.push(2);
 s2.push(3);
 }

 void TearDown() override { }

 Stack<int> s1;
 Stack<int> s2;
};

Derive from the fixture base class

38

class StackTest : public ::testing::Test {
 protected:
 void SetUp() override {
 s1.push(1);
 s2.push(2);
 s2.push(3);
 }

 void TearDown() override { }

 Stack<int> s1;
 Stack<int> s2;
};

GoogleTest - Fixtures

SetUp() will be called before
all tests using the fixture

39

class StackTest : public ::testing::Test {
 protected:
 void SetUp() override {
 s1.push(1);
 s2.push(2);
 s2.push(3);
 }

 void TearDown() override { }

 Stack<int> s1;
 Stack<int> s2;
};

GoogleTest - Fixtures

TearDown() will be called after
all tests using the fixture

40

GoogleTest - Fixtures

Use the fixture in test cases defined with TEST_F:

TEST_F(StackTest, popOfOneIsEmpty) {
 s1.pop();
 EXPECT_EQ(0, s1.size());
}

41

TEST_F(StackTest, popOfOneIsEmpty) {
 s1.pop();
 EXPECT_EQ(0, s1.size());
}

GoogleTest - Fixtures

Use the fixture in test cases defined with TEST_F:

42

GoogleTest - Fixtures

Use the fixture in test cases defined with TEST_F:

Behaves like

TEST_F(StackTest, popOfOneIsEmpty) {
 s1.pop();
 EXPECT_EQ(0, s1.size());
} {

 StackTest t;
 t.SetUp();
 t.popOfOneIsEmpty();
 t.TearDown();
}

43

TEST_F(StackTest, popOfOneIsEmpty) {
 s1.pop();
 EXPECT_EQ(0, s1.size());
}

GoogleTest - Fixtures

Use the fixture in test cases defined with TEST_F:

A different expectation than before!

44

TEST_F(StackTest, popOfOneIsEmpty) {
 s1.pop();
 EXPECT_EQ(0, s1.size());
}

GoogleTest - Fixtures

Use the fixture in test cases defined with TEST_F:

expected
value

45

TEST_F(StackTest, popOfOneIsEmpty) {
 s1.pop();
 EXPECT_EQ(0, s1.size());
}

GoogleTest - Fixtures

Use the fixture in test cases defined with TEST_F:

expected
value

observed
value

46

GoogleTest

● Increasingly used framework for C++
– Not dissimilar from JUnit, which you have already seen.

● Test cases are written as functions.
● TEST() cases are automatically registered with GoogleTest and are

executed by the test driver.
● Some tests require common setUp & tearDown
● Many different assertions and expectations available

ASSERT_TRUE(condition);
ASSERT_FALSE(condition);
ASSERT_EQ(expected,actual);
ASSERT_NE(val1,val2);
ASSERT_LT(val1,val2);
ASSERT_LE(val1,val2);
ASSERT_GT(val1,val2);
ASSERT_GE(val1,val2);

EXPECT_TRUE(condition);
EXPECT_FALSE(condition);
EXPECT_EQ(expected,actual);
EXPECT_NE(val1,val2);
EXPECT_LT(val1,val2);
EXPECT_LE(val1,val2);
EXPECT_GT(val1,val2);
EXPECT_GE(val1,val2);

…

47

GoogleTest

● Increasingly used framework for C++
– Not dissimilar from JUnit, which you have already seen.

● Test cases are written as functions.
● TEST() cases are automatically registered with GoogleTest and are

executed by the test driver.
● Some tests require common setUp & tearDown
● Many different assertions and expectations available
● More information available online

– github.com/google/googletest/blob/master/googletest/docs/Primer.md
– github.com/google/googletest/blob/master/googletest/docs/AdvancedGuide.md

https://github.com/google/googletest/blob/master/googletest/docs/Primer.md
https://github.com/google/googletest/blob/master/googletest/docs/AdvancedGuide.md

Designing a Unit Test

● Common structure

Designing a Unit Test

● Common structure
TEST_CASE("empty") {
 Environment env;
 ExprTree tree;

 auto result = evaluate(tree, env);

 CHECK(!result.has_value());
}

Designing a Unit Test

● Common structure
TEST_CASE("empty") {
 Environment env;
 ExprTree tree;

 auto result = evaluate(tree, env);

 CHECK(!result.has_value());
}

This specific test uses
another framework

called Doctest

Designing a Unit Test

● Common structure
TEST_CASE("empty") {
 Environment env;
 ExprTree tree;

 auto result = evaluate(tree, env);

 CHECK(!result.has_value());
}

Set up a scenario

Designing a Unit Test

● Common structure
TEST_CASE("empty") {
 Environment env;
 ExprTree tree;

 auto result = evaluate(tree, env);

 CHECK(!result.has_value());
}

Run the scenario

Designing a Unit Test

● Common structure
TEST_CASE("empty") {
 Environment env;
 ExprTree tree;

 auto result = evaluate(tree, env);

 CHECK(!result.has_value());
} Check the outcome

Designing a Unit Test

● Common structure
TEST_CASE("empty") {
 Environment env;
 ExprTree tree;

 auto result = evaluate(tree, env);

 CHECK(!result.has_value());
}

This is sometimes known as AAA:
Arrange
Act
Assert

Designing a Unit Test

● Common structure
● Tests should run in isolation
struct Frob {
 Frob()
 : conn{getDB().connect()}
 { }
 DBConnection conn;
};

Designing a Unit Test

● Common structure
● Tests should run in isolation
struct Frob {
 Frob()
 : conn{getDB().connect()}
 { }
 DBConnection conn;
};

TEST_CASE("bad test 1") {
 Frob frob;
 ...
}

TEST_CASE("bad test 2") {
 Frob frob;
 ...
}

Designing a Unit Test

● Common structure
● Tests should run in isolation
struct Frob {
 Frob()
 : conn{getDB().connect()}
 { }
 DBConnection conn;
};

TEST_CASE("bad test 1") {
 Frob frob;
 ...
}

TEST_CASE("bad test 2") {
 Frob frob;
 ...
}

Designing a Unit Test

● Common structure
● Tests should run in isolation
struct Frob {
 Frob()
 : conn{getDB().connect()}
 { }
 DBConnection conn;
};

TEST_CASE("bad test 1") {
 Frob frob;
 ...
}

TEST_CASE("bad test 2") {
 Frob frob;
 ...
}

The order of the test can affect the results!

Designing a Unit Test

● Common structure
● Tests should run in isolation
struct Frob {
 Frob()
 : conn{getDB().connect()}
 { }
 DBConnection conn;
};

TEST_CASE("bad test 1") {
 Frob frob;
 ...
}

TEST_CASE("bad test 2") {
 Frob frob;
 ...
}

The order of the test can affect the results!

A flaky DB can affect results!

Designing a Unit Test

● Common structure
● Tests should run in isolation!

Designing a Unit Test

● Common structure
● Tests should run in isolation
struct Frob {
 Frob(Connection& inConn)
 : conn{inConn}
 { }
 Connection& conn;
};

Designing a Unit Test

● Common structure
● Tests should run in isolation
struct Frob {
 Frob(Connection& inConn)
 : conn{inConn}
 { }
 Connection& conn;
};

Dependency injection allows
the user of a class to
control its behavior

Designing a Unit Test

● Common structure
● Tests should run in isolation
struct Frob {
 Frob(Connection& inConn)
 : conn{inConn}
 { }
 Connection& conn;
};

Connection

Dependency injection allows
the user of a class to
control its behavior

Designing a Unit Test

● Common structure
● Tests should run in isolation
struct Frob {
 Frob(Connection& inConn)
 : conn{inConn}
 { }
 Connection& conn;
};

Connection

DBConnection

Dependency injection allows
the user of a class to
control its behavior

Designing a Unit Test

● Common structure
● Tests should run in isolation
struct Frob {
 Frob(Connection& inConn)
 : conn{inConn}
 { }
 Connection& conn;
};

Connection

DBConnection FakeConnection

Dependency injection allows
the user of a class to
control its behavior

Designing a Unit Test

● Common structure
● Tests should run in isolation
struct Frob {
 Frob(Connection& inConn)
 : conn{inConn}
 { }
 Connection& conn;
};

TEST_CASE("better test 1") {
 FakeDB db;
 FakeConnection conn = db.connect();
 Frob frob{conn};
 ...
}

Connection

DBConnection FakeConnection

Designing a Unit Test

● Common structure
● Tests should run in isolation
struct Frob {
 Frob(Connection& inConn)
 : conn{inConn}
 { }
 Connection& conn;
};

TEST_CASE("better test 1") {
 FakeDB db;
 FakeConnection conn = db.connect();
 Frob frob{conn};
 ...
}

Connection

DBConnection

More on this later!
FakeConnection

68

Common Patterns (Ammonn & Offutt)

● Checking State
– Final State

● Prepare initial state
● Run test
● Check final state

69

Common Patterns (Ammonn & Offutt)

● Checking State
– Final State

● Prepare initial state
● Run test
● Check final state

– Pre and Post conditions
● Check initial state as well as final state

70

Common Patterns (Ammonn & Offutt)

● Checking State
– Final State

● Prepare initial state
● Run test
● Check final state

– Pre and Post conditions
● Check initial state as well as final state

– Relative effects
● Check final state relative to some initial state

71

Common Patterns (Ammonn & Offutt)

● Checking State
– Final State

● Prepare initial state
● Run test
● Check final state

– Pre and Post conditions
● Check initial state as well as final state

– Relative effects
● Check final state relative to some initial state

– Round trips
● Check behavior on transform/inverse transform pairs

72

Common Patterns (Ammonn & Offutt)

● Checking State
– Final State

● Prepare initial state
● Run test
● Check final state

– Pre and Post conditions
● Check initial state as well as final state

– Relative effects
● Check final state relative to some initial state

– Round trips
● Check behavior on transform/inverse transform pairs

These have become
fundamental for

testing hard software

73

Common Patterns (Ammonn & Offutt)

● Checking Interactions/Behavior
– Use mocks

74

Common Patterns (Ammonn & Offutt)

● Checking Interactions/Behavior
– Use mocks

● Testing 'fakes' that verify expected interactions
● http://martinfowler.com/articles/mocksArentStubs.html
● http://googletesting.blogspot.ca/2013/03/testing-on-toilet-testing-state-vs.html

http://martinfowler.com/articles/mocksArentStubs.html
http://googletesting.blogspot.ca/2013/03/testing-on-toilet-testing-state-vs.html

75

Common Patterns (Ammonn & Offutt)

● Checking Interactions/Behavior
– Use mocks

● Testing 'fakes' that verify expected interactions
● http://martinfowler.com/articles/mocksArentStubs.html
● http://googletesting.blogspot.ca/2013/03/testing-on-toilet-testing-state-vs.html

TEST_CASE("better test 1") {
 FakeDB db;
 FakeConnection conn = db.connect();
 Frob frob{conn};
 ...
}

The FakeConnection could check
that DB interactions are correct.

http://martinfowler.com/articles/mocksArentStubs.html
http://googletesting.blogspot.ca/2013/03/testing-on-toilet-testing-state-vs.html

76

Common Patterns (Ammonn & Offutt)

● Checking Interactions/Behavior
– Use mocks

● Testing 'fakes' that verify expected interactions
● http://martinfowler.com/articles/mocksArentStubs.html
● http://googletesting.blogspot.ca/2013/03/testing-on-toilet-testing-state-vs.html

TEST_CASE("better test 1") {
 FakeDB db;
 FakeConnection conn = db.connect();
 Frob frob{conn};
 ...
}

The FakeConnection could check
that DB interactions are correct.
The FakeConnection could check
that DB interactions are correct.

NOTE: Test doubles for isolation are good,
but mocks should be used sparingly.

http://martinfowler.com/articles/mocksArentStubs.html
http://googletesting.blogspot.ca/2013/03/testing-on-toilet-testing-state-vs.html

77

Testability

● What makes testing hard?
– Not just difficult to get adequacy
– What makes it difficult to write tests?

78

Testability

● What makes testing hard?
– Not just difficult to get adequacy
– What makes it difficult to write tests?

● Dependencies
– Connections between classes

79

Testability

● What makes testing hard?
– Not just difficult to get adequacy
– What makes it difficult to write tests?

● Dependencies
– Connections between classes
– Singletons

80

Testability

● What makes testing hard?
– Not just difficult to get adequacy
– What makes it difficult to write tests?

● Dependencies
– Connections between classes
– Singletons
– Nondeterminism

81

Testability

● What makes testing hard?
– Not just difficult to get adequacy
– What makes it difficult to write tests?

● Dependencies
– Connections between classes
– Singletons
– Nondeterminism
– Static binding (mitigated by parametric polymorphism)

82

Testability

● What makes testing hard?
– Not just difficult to get adequacy
– What makes it difficult to write tests?

● Dependencies
– Connections between classes
– Singletons
– Nondeterminism
– Static binding
– Mixing construction & application logic
– ...

83

Testability

● What makes testing hard?
– Not just difficult to get adequacy
– What makes it difficult to write tests?

● Dependencies
– Connections between classes
– Singletons
– Nondeterminism
– Static binding
– Mixing construction & application logic
– ...

But solutions exist!
You can design code to be testable!

84

Testability (by example)

● Next week (?) we will work together to improve some difficult to test
code....

85

Testability

● Keys things to notice:
– Mocks & stubs allow us to isolate components under test

86

Testability

● Keys things to notice:
– Mocks & stubs allow us to isolate components under test
– Dependency Injection allows us to use mocks and stubs as necessary

87

Testability

● Keys things to notice:
– Mocks & stubs allow us to isolate components under test
– Dependency Injection allows us to use mocks and stubs as necessary
– But doing this can lead to a lot more work and boilerplate code when

written by hand

88

Testability

● Keys things to notice:
– Mocks & stubs allow us to isolate components under test
– Dependency Injection allows us to use mocks and stubs as necessary
– But doing this can lead to a lot more work and boilerplate code when

written by hand

Given dependency injection,
what happens to the way we create objects?

89

Testability

● Keys things to notice:
– Mocks & stubs allow us to isolate components under test
– Dependency Injection allows us to use mocks and stubs as necessary
– But doing this can lead to a lot more work and boilerplate code when

written by hand

Given dependency injection,
what happens to the way we create objects?

How might we mitigate
boilerplate issues?

90

Mocking Framework Example

● Frameworks exist that can automate the boilerplate behind:

91

Mocking Framework Example

● Frameworks exist that can automate the boilerplate behind:
– Mocking

e.g. GoogleMock, Mockito, etc.

92

Mocking Framework Example

● Frameworks exist that can automate the boilerplate behind:
– Mocking

● e.g. GoogleMock, Mockito, etc.
– Dependency Injection

e.g. Google Guice, Pico Container, etc.

93

Using GoogleMock

● Steps:
1) Derive a mock class from the class you wish to fake

94

Using GoogleMock

● Steps:
1) Derive a mock class from the class you wish to fake

class Thing {
 public:
 virtual int foo(int x);
 virtual void bar(int y);
};

95

Using GoogleMock

● Steps:
1) Derive a mock class from the class you wish to fake

class Thing {
 public:
 virtual int foo(int x);
 virtual void bar(int y);
};

class MockThing : public Thing {
 public:
 ...
 MOCK_METHOD(int, foo, (int x), (override));
 MOCK_METHOD(void, bar, (int y), (override));
};

96

Using GoogleMock

● Steps:
1) Derive a mock class from the class you wish to fake

2) Replace virtual calls with uses of MOCK_METHOD().

class MockThing : public Thing {
 public:
 ...
 MOCK_METHOD(int, foo, (int x), (override));
 MOCK_METHOD(void, bar, (int y), (override));
};

class Thing {
 public:
 virtual int foo(int x);
 virtual void bar(int y);
};

97

Using GoogleMock

● Steps:
1) Derive a mock class from the class you wish to fake

2) Replace virtual calls with uses of MOCK_METHOD().
3) Use the mock class in your tests.

98

Using GoogleMock

● Steps:
1) Derive a mock class from the class you wish to fake

2) Replace virtual calls with uses of MOCK_METHOD().
3) Use the mock class in your tests.

4) Specify expectations before use via EXPECT_CALL().
● What arguments? How many times? In what order?

InSequence dummy;
EXPECT_CALL(mockThing, foo(Ge(20)))
 .Times(2)
 .WillOnce(Return(100))
 .WillOnce(Return(200));
EXPECT_CALL(mockThing, bar(Lt(5)));

99

Using GoogleMock

● Steps:
1) Derive a mock class from the class you wish to fake

2) Replace virtual calls with uses of MOCK_METHOD().
3) Use the mock class in your tests.

4) Specify expectations before use via EXPECT_CALL().
● What arguments? How many times? In what order?

InSequence dummy;
EXPECT_CALL(mockThing, foo(Ge(20)))
 .Times(2)
 .WillOnce(Return(100))
 .WillOnce(Return(200));
EXPECT_CALL(mockThing, bar(Lt(5)));

This is part of the Arrange in AAA.

100

Using GoogleMock

● Steps:
1) Derive a mock class from the class you wish to fake

2) Replace virtual calls with uses of MOCK_METHOD().
3) Use the mock class in your tests.

4) Specify expectations before use via EXPECT_CALL().
● What arguments? How many times? In what order?

5) Expectations are automatically checked in the destructor of the mock.

101

Using GoogleMock

● Precisely specifying mock behavior

InSequence dummy;
EXPECT_CALL(mockThing, foo(Ge(20)))
 .Times(2) // Can be omitted here
 .WillOnce(Return(100))
 .WillOnce(Return(200));
EXPECT_CALL(mockThing, bar(Lt(5)));

102

Using GoogleMock

● Precisely specifying mock behavior

InSequence dummy;
EXPECT_CALL(mockThing, foo(Ge(20)))
 .Times(2) // Can be omitted here
 .WillOnce(Return(100))
 .WillOnce(Return(200));
EXPECT_CALL(mockThing, bar(Lt(5)));

103

Using GoogleMock

● Precisely specifying mock behavior

InSequence dummy;
EXPECT_CALL(mockThing, foo(Ge(20)))
 .Times(2) // Can be omitted here
 .WillOnce(Return(100))
 .WillOnce(Return(200));
EXPECT_CALL(mockThing, bar(Lt(5)));

104

Using GoogleMock

● Precisely specifying mock behavior

InSequence dummy;
EXPECT_CALL(mockThing, foo(Ge(20)))
 .Times(2) // Can be omitted here
 .WillOnce(Return(100))
 .WillOnce(Return(200));
EXPECT_CALL(mockThing, bar(Lt(5)));

105

Using GoogleMock

● Precisely specifying mock behavior

InSequence dummy;
EXPECT_CALL(mockThing, foo(Ge(20)))
 .Times(2) // Can be omitted here
 .WillOnce(Return(100))
 .WillOnce(Return(200));
EXPECT_CALL(mockThing, bar(Lt(5)));

106

Using GoogleMock

● Precisely specifying mock behavior

InSequence dummy;
EXPECT_CALL(mockThing, foo(Ge(20)))
 .Times(2) // Can be omitted here
 .WillOnce(Return(100))
 .WillOnce(Return(200));
EXPECT_CALL(mockThing, bar(Lt(5)));Complex behaviors can be checked

using these basic pieces.

107

Using GoogleMock

● Note, GoogleMock can use the same process for creating
both stubs and mocks as well as test fakes in the middle.

108

Using GoogleMock

● Note, GoogleMock can use the same process for creating
both stubs and mocks as well as test fakes in the middle.

● A mock will check that a function is called in the right ways.

109

Using GoogleMock

● Note, GoogleMock can use the same process for creating
both stubs and mocks as well as test fakes in the middle.

● A mock will check that a function is called in the right ways.
● A stub will prevent interaction with external resources and possibly

return fake data.

110

Using GoogleMock

● Note, GoogleMock can use the same process for creating
both stubs and mocks as well as test fakes in the middle.

● A mock will check that a function is called in the right ways.
● A stub will prevent interaction with external resources and possibly

return fake data.

What might this imply about
where you use mocks vs

where you use stubs?

111

Using GoogleMock

● How would I stub out a database connection?

112

Using GoogleMock

● How would I stub out a database connection?

struct Frob {
 Frob(Connection& inConn)
 : conn{inConn}
 { }
 Connection& conn;

 int doThing() {
 …
 x = conn.readValue();
 …
 }
};

113

Using GoogleMock

● How would I stub out a database connection?

struct Frob {
 Frob(Connection& inConn)
 : conn{inConn}
 { }
 Connection& conn;

 int doThing() {
 …
 x = conn.readValue();
 …
 }
};

TEST(FrobTests, doesThing) {
 FakeDBConnection conn;
 EXPECT_CALL(conn, readValue())
 .WillOnce(Return(5));

 Frob frob{conn};
 auto result = frob.doThing();

 ASSERT(42, result);
}

114

Using GoogleMock

● How would I stub out a database connection?

struct Frob {
 Frob(Connection& inConn)
 : conn{inConn}
 { }
 Connection& conn;

 int doThing() {
 …
 x = conn.readValue();
 …
 }
};

TEST(FrobTests, doesThing) {
 FakeDBConnection conn;
 EXPECT_CALL(conn, readValue())
 .WillOnce(Return(5));

 Frob frob{conn};
 auto result = frob.doThing();

 ASSERT(42, result);
}

Arrange

Act

Assert

115

Using GoogleMock

● How would I check (mock) writing to a database connection?

116

Using GoogleMock

● How would I check (mock) writing to a database connection?

struct Frob {
 Frob(Connection& inConn)
 : conn{inConn}
 { }
 Connection& conn;

 int doThing() {
 …
 conn.writeValue(x);
 …
 }
};

117

Using GoogleMock

● How would I check (mock) writing to a database connection?

struct Frob {
 Frob(Connection& inConn)
 : conn{inConn}
 { }
 Connection& conn;

 int doThing() {
 …
 conn.writeValue(x);
 …
 }
};

TEST(FrobTests, doesThing) {
 FakeDBConnection conn;
 EXPECT_CALL(conn, writeValue(Eq(42)));

 Frob frob{conn};
 auto result = frob.doThing();
}

118

Using GoogleMock

● How would I check (mock) writing to a database connection?

struct Frob {
 Frob(Connection& inConn)
 : conn{inConn}
 { }
 Connection& conn;

 int doThing() {
 …
 conn.writeValue(x);
 …
 }
};

TEST(FrobTests, doesThing) {
 FakeDBConnection conn;
 EXPECT_CALL(conn, writeValue(Eq(42)));

 Frob frob{conn};
 auto result = frob.doThing();
}

Arrange

Act

119

Using GoogleMock

● How would I check (mock) writing to a database connection?

struct Frob {
 Frob(Connection& inConn)
 : conn{inConn}
 { }
 Connection& conn;

 int doThing() {
 …
 conn.writeValue(x);
 …
 }
};

TEST(FrobTests, doesThing) {
 FakeDBConnection conn;
 EXPECT_CALL(conn, writeValue(Eq(42)));

 Frob frob{conn};
 auto result = frob.doThing();
}

Arrange

Act

Assert

120

Summary

● Unit testing provides a way to automate much of the testing process.

121

Summary

● Unit testing provides a way to automate much of the testing process.
● Testing small components bootstraps confidence in the system on

confidence in its constituents.

122

Summary

● Unit testing provides a way to automate much of the testing process.
● Testing small components bootstraps confidence in the system on

confidence in its constituents.
● Tests can verify state or behaviors.

123

Summary

● Unit testing provides a way to automate much of the testing process.
● Testing small components bootstraps confidence in the system on

confidence in its constituents.
● Tests can verify state or behaviors.
● Software must be designed for testing (or designed by testing)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123

