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But What is Testing?

Reasoning about behavior is hard/subtle.

Running a program is easy (easier)….

Simple idea, but...

● More than half of development cost
● Still cheaper than not testing
● Testing well is hard

Testing (informally):

Running the program to see if it behaves as expected
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Ideas?

Run a program on all inputs:
for test in allPossibleInputs:
    run_program(test)
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Ideas?

Run a program on all inputs:

Why not?

Maybe select a few tests:

Why not? A primitive example of fuzz testing.

for test in allPossibleInputs:
    run_program(test)

import random.sample
for test in sample(allPossibleInputs, 100):
    run_program(test)
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Need A Bit More Care

Testing:
● Dynamically examines (runs) a program
● Considers specific software under test
● Run test cases from a test suite that targets specific quality goals
● Identifies differences between

observed behavior and expected behavior

Input Program Observed
Behavior Oracle Outcome
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Need A Bit More Care

Testing:
● Dynamically examines (runs) a program
● Considers specific software under test
● Run test cases from a test suite that targets specific quality goals
● Identifies differences between

observed behavior and expected behavior

We can use this framework to refine how we test
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Targeting Quality Objectives

● Functional
– Does the program provide expected output for a given input?

e.g. Correct Output. All features present. Interface design.
● Nonfunctional

– Are output independent goals met?
e.g. Performance, Scalability, Security, Documentation

We'll start this semester by looking at functional goals.
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Subtle Terminology

● Fault / Defect
– Flaws in static software (e.g. incorrect code)

● Failure
– An observable, incorrect behavior as compared to expected results

● Error / Infection
– Incorrect internal state (not yet observed)

● Latent Defect
– Unobserved defects in delivered software that testing did not expose

The later a defect is found,
the more it costs to fix. Why?
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A Simple Example
void toUppercase(char *str) {
  for (int i = 0, e = strlen(str) - 1; i < e; ++i) {
    if (isletter(str[i]) && islower(str[i])) {
      str[i] = str[i] - 32;
    }
  }
  printf(“%s\n”, str);
}
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A Simple Example

● What is a fault in this program?
● What is a test case that has a failure?
● What is a test case that does not have a failure?

What exactly do we mean by test case?

void toUppercase(char *str) {
  for (int i = 0, e = strlen(str) - 1; i < e; ++i) {
    if (isletter(str[i]) && islower(str[i])) {
      str[i] = str[i] - 32;
    }
  }
  printf(“%s\n”, str);
}
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Test Cases

Test cases need
● Input to provide the program
● Expected output or behavior to check for correctness
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Test Cases

Test cases need
● Input to provide the program
● Expected output or behavior to check for correctness

Input Program Observed
Behavior Oracle Outcome

Scenario Expectations
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Test Cases

Test cases need
● Input to provide the program
● Expected output or behavior to check for correctness

But where does the expected behavior come from?
● An oracle
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Test Oracles

● In general, a means of deciding whether a test passes or fails (was the 
behavior expected or not)
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Test Oracles

● In general, a means of deciding whether a test passes or fails (was the 
behavior expected or not)

● Sometimes very simple
– How are unit tests evaluated? (Test Drivers!)

● Sometimes tricky
– Is result strictly specified? (content,order, timing,...)
– Is the program deterministic?

● Sometimes requires a person
– Expensive and undesirable
– “Does this software meet my needs?”
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Recall: can't look at all possible inputs.
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Coverage / Adequacy

Recall: can't look at all possible inputs.
Need to determine if a test suite covers / is adequate for our quality 
objectives.

● Sufficiently addresses criteria
● Lack of failures provides enough confidence that the software is 

acceptable
Key Idea:

● Find a finite test suite that is representative of our goals
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Approaches

● Test until you run out of time
● Test until you run out of money
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Approaches

● Test until you run out of time
● Test until you run out of money

● Identify redundant inputs based on the specification

● Identify redundant inputs based on program structure

● Identify poorly tested areas by measuring how well your tests identify 
potential bugs

No approach covers everything you want!
Need to combine them for a balanced
 approach toward the desired goals.
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Where we will go with testing

In the future, we will look at:
● Different types of testing (Unit, UI, Performance, …)
● How to measure testing
● How to create new tests automatically
● How to test challenging scenarios (ML? Simulations?)
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Next Up...

Revisit the basics of unit testing.
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