
Intro to Testing

CMPT 473
Software Testing, Reliability and Security

Nick Sumner

Why Do We Test?

● Recall: What role did testing play in the process we saw last time?

Why Do We Test?

● Recall: What role did testing play in the process we saw last time?
– Measurement – Testing provides a metric of software quality

Why Do We Test?

● Recall: What role did testing play in the process we saw last time?
– Measurement – Testing provides a metric of software quality
– It gives us empirical confidence that software is acceptable

Why Do We Test?

● Recall: What role did testing play in the process we saw last time?
– Measurement – Testing provides a metric of software quality

e.g. for requirements / criteria R1, R2, R3, R4
Each test T can check a requirement

Why Do We Test?

● Recall: What role did testing play in the process we saw last time?
– Measurement – Testing provides a metric of software quality

e.g. for requirements / criteria R1, R2, R3, R4
Each test T can check a requirement

T1 → R1, R2

Why Do We Test?

● Recall: What role did testing play in the process we saw last time?
– Measurement – Testing provides a metric of software quality

e.g. for requirements / criteria R1, R2, R3, R4
Each test T can check a requirement

T1 → R1, R2

T2 → R3

Why Do We Test?

● Recall: What role did testing play in the process we saw last time?
– Measurement – Testing provides a metric of software quality

e.g. for requirements / criteria R1, R2, R3, R4
Each test T can check a requirement

T1 → R1, R2

T2 → R3
T3 → R4

9

But What is Testing?

Reasoning about behavior is hard/subtle.

10

But What is Testing?

Reasoning about behavior is hard/subtle.

Running a program is easy (easier)….

11

But What is Testing?

Reasoning about behavior is hard/subtle.

Running a program is easy (easier)….

Testing (informally):

Running the program to see if it behaves as expected

12

But What is Testing?

Reasoning about behavior is hard/subtle.

Running a program is easy (easier)….

Simple idea, but...

● More than half of development cost
● Still cheaper than not testing
● Testing well is hard

Testing (informally):

Running the program to see if it behaves as expected

13

Ideas?

Run a program on all inputs:
for test in allPossibleInputs:
 run_program(test)

14

Ideas?

Run a program on all inputs:

Why not?

for test in allPossibleInputs:
 run_program(test)

15

Ideas?

Run a program on all inputs:

Why not?

Maybe select a few tests:
import random.sample
for test in sample(allPossibleInputs, 100):
 run_program(test)

for test in allPossibleInputs:
 run_program(test)

16

Ideas?

Run a program on all inputs:

Why not?

Maybe select a few tests:

Why not?

for test in allPossibleInputs:
 run_program(test)

import random.sample
for test in sample(allPossibleInputs, 100):
 run_program(test)

17

Ideas?

Run a program on all inputs:

Why not?

Maybe select a few tests:

Why not? A primitive example of fuzz testing.

for test in allPossibleInputs:
 run_program(test)

import random.sample
for test in sample(allPossibleInputs, 100):
 run_program(test)

18

Need A Bit More Care

Testing:
● Dynamically examines (runs) a program

Input Program Observed
Behavior

19

Need A Bit More Care

Testing:
● Dynamically examines (runs) a program
● Considers specific software under test

Input Program Observed
Behavior

20

Need A Bit More Care

Testing:
● Dynamically examines (runs) a program
● Considers specific software under test
● Run test cases from a test suite that targets specific quality goals

Input Program Observed
Behavior

Input Program Observed
Behavior

Input Program Observed
Behavior

21

Need A Bit More Care

Testing:
● Dynamically examines (runs) a program
● Considers specific software under test
● Run test cases from a test suite that targets specific quality goals
● Identifies differences between

observed behavior and expected behavior

Input Program Observed
Behavior Oracle Outcome

22

Need A Bit More Care

Testing:
● Dynamically examines (runs) a program
● Considers specific software under test
● Run test cases from a test suite that targets specific quality goals
● Identifies differences between

observed behavior and expected behavior

We can use this framework to refine how we test

23

Targeting Quality Objectives

● Functional
– Does the program provide expected output for a given input?

e.g. …

24

Targeting Quality Objectives

● Functional
– Does the program provide expected output for a given input?

e.g. Correct Output. All features present. Interface design.

25

Targeting Quality Objectives

● Functional
– Does the program provide expected output for a given input?

e.g. Correct Output. All features present. Interface design.
● Nonfunctional

– Are output independent goals met?
e.g. …

26

Targeting Quality Objectives

● Functional
– Does the program provide expected output for a given input?

e.g. Correct Output. All features present. Interface design.
● Nonfunctional

– Are output independent goals met?
e.g. Performance, Scalability, Security, Documentation

27

Targeting Quality Objectives

● Functional
– Does the program provide expected output for a given input?

e.g. Correct Output. All features present. Interface design.
● Nonfunctional

– Are output independent goals met?
e.g. Performance, Scalability, Security, Documentation

We'll start this semester by looking at functional goals.

28

Subtle Terminology

● Fault / Defect
– Flaws in static software (e.g. incorrect code)

29

Subtle Terminology

● Fault / Defect
– Flaws in static software (e.g. incorrect code)

● Failure
– An observable, incorrect behavior as compared to expected results

cra
sh!

30

Subtle Terminology

● Fault / Defect
– Flaws in static software (e.g. incorrect code)

● Failure
– An observable, incorrect behavior as compared to expected results

● Error / Infection
– Incorrect internal state (not yet observed)

x=1 vs x=2

31

Subtle Terminology

● Fault / Defect
– Flaws in static software (e.g. incorrect code)

● Failure
– An observable, incorrect behavior as compared to expected results

● Error / Infection
– Incorrect internal state (not yet observed)

● Latent Defect
– Unobserved defects in delivered software that testing did not expose

32

Subtle Terminology

● Fault / Defect
– Flaws in static software (e.g. incorrect code)

● Failure
– An observable, incorrect behavior as compared to expected results

● Error / Infection
– Incorrect internal state (not yet observed)

● Latent Defect
– Unobserved defects in delivered software that testing did not expose

The later a defect is found,
the more it costs to fix. Why?

33

A Simple Example
void toUppercase(char *str) {
 for (int i = 0, e = strlen(str) - 1; i < e; ++i) {
 if (isletter(str[i]) && islower(str[i])) {
 str[i] = str[i] - 32;
 }
 }
 printf(“%s\n”, str);
}

34

A Simple Example

● What is a fault in this program?

void toUppercase(char *str) {
 for (int i = 0, e = strlen(str) - 1; i < e; ++i) {
 if (isletter(str[i]) && islower(str[i])) {
 str[i] = str[i] - 32;
 }
 }
 printf(“%s\n”, str);
}

35

A Simple Example

● What is a fault in this program?
● What is a test case that has a failure?

void toUppercase(char *str) {
 for (int i = 0, e = strlen(str) - 1; i < e; ++i) {
 if (isletter(str[i]) && islower(str[i])) {
 str[i] = str[i] - 32;
 }
 }
 printf(“%s\n”, str);
}

36

A Simple Example

● What is a fault in this program?
● What is a test case that has a failure?
● What is a test case that does not have a failure?

void toUppercase(char *str) {
 for (int i = 0, e = strlen(str) - 1; i < e; ++i) {
 if (isletter(str[i]) && islower(str[i])) {
 str[i] = str[i] - 32;
 }
 }
 printf(“%s\n”, str);
}

37

A Simple Example

● What is a fault in this program?
● What is a test case that has a failure?
● What is a test case that does not have a failure?

What exactly do we mean by test case?

void toUppercase(char *str) {
 for (int i = 0, e = strlen(str) - 1; i < e; ++i) {
 if (isletter(str[i]) && islower(str[i])) {
 str[i] = str[i] - 32;
 }
 }
 printf(“%s\n”, str);
}

38

Test Cases

Test cases need
● Input to provide the program
● Expected output or behavior to check for correctness

39

Test Cases

Test cases need
● Input to provide the program
● Expected output or behavior to check for correctness

Input Program Observed
Behavior Oracle Outcome

Scenario Expectations

40

Test Cases

Test cases need
● Input to provide the program
● Expected output or behavior to check for correctness

But where does the expected behavior come from?
● An oracle

41

Test Oracles

● In general, a means of deciding whether a test passes or fails (was the
behavior expected or not)

42

Test Oracles

● In general, a means of deciding whether a test passes or fails (was the
behavior expected or not)

● Sometimes very simple
– How are unit tests evaluated?

43

Test Oracles

● In general, a means of deciding whether a test passes or fails (was the
behavior expected or not)

● Sometimes very simple
– How are unit tests evaluated? (Test Drivers!)

44

Test Oracles

● In general, a means of deciding whether a test passes or fails (was the
behavior expected or not)

● Sometimes very simple
– How are unit tests evaluated? (Test Drivers!)

● Sometimes tricky
– Is result strictly specified? (content,order, timing,...)
– Is the program deterministic?

45

Test Oracles

● In general, a means of deciding whether a test passes or fails (was the
behavior expected or not)

● Sometimes very simple
– How are unit tests evaluated? (Test Drivers!)

● Sometimes tricky
– Is result strictly specified? (content,order, timing,...)
– Is the program deterministic?

● Sometimes requires a person
– Expensive and undesirable
– “Does this software meet my needs?”

46

Coverage / Adequacy

Recall: can't look at all possible inputs.

47

Coverage / Adequacy

Recall: can't look at all possible inputs.
Need to determine if a test suite covers / is adequate for our quality
objectives.

48

Coverage / Adequacy

Recall: can't look at all possible inputs.
Need to determine if a test suite covers / is adequate for our quality
objectives.

● Sufficiently addresses criteria
● Lack of failures provides enough confidence that the software is

acceptable

49

Coverage / Adequacy

Recall: can't look at all possible inputs.
Need to determine if a test suite covers / is adequate for our quality
objectives.

● Sufficiently addresses criteria
● Lack of failures provides enough confidence that the software is

acceptable
Key Idea:

● Find a finite test suite that is representative of our goals

50

Approaches

● Test until you run out of time
● Test until you run out of money

51

Approaches

● Test until you run out of time
● Test until you run out of money

● Identify redundant inputs based on the specification

52

Approaches

● Test until you run out of time
● Test until you run out of money

● Identify redundant inputs based on the specification

● Identify redundant inputs based on program structure

53

Approaches

● Test until you run out of time
● Test until you run out of money

● Identify redundant inputs based on the specification

● Identify redundant inputs based on program structure

● Identify poorly tested areas by measuring how well your tests identify
potential bugs

54

Approaches

● Test until you run out of time
● Test until you run out of money

● Identify redundant inputs based on the specification

● Identify redundant inputs based on program structure

● Identify poorly tested areas by measuring how well your tests identify
potential bugs

No approach covers everything you want!
Need to combine them for a balanced
 approach toward the desired goals.

55

Where we will go with testing

In the future, we will look at:
● Different types of testing (Unit, UI, Performance, …)
● How to measure testing
● How to create new tests automatically
● How to test challenging scenarios (ML? Simulations?)

56

Next Up...

Revisit the basics of unit testing.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

