
Agility, Refinement,
& Integration

CMPT 373
Software Development Methods

Nick Sumner
wsumner@sfu.ca

mailto:wsumner@sfu.ca

We Have Learned & Forgotten Much

● Early on, we knew that development was about
increments & refinement

We Have Learned & Forgotten Much

● Early on, we knew that development was about
increments & refinement
– 1950s & 1960s at NASA, driven by approaches from the 1940s

We Have Learned & Forgotten Much

● Early on, we knew that development was about
increments & refinement
– 1950s & 1960s at NASA, driven by approaches from the 1940s
– “Program development by stepwise refinement” - Wirth 1971

We Have Learned & Forgotten Much

● Early on, we knew that development was about
increments & refinement
– 1950s & 1960s at NASA, driven by approaches from the 1940s
– “Program development by stepwise refinement” - Wirth 1971

● The focus of the increments was a little different than today

We Have Learned & Forgotten Much

● Early on, we knew that development was about
increments & refinement
– 1950s & 1960s at NASA, driven by approaches from the 1940s
– “Program development by stepwise refinement” - Wirth 1971

● The focus of the increments was a little different than today
● And then software development as an industry boomed

We Have Learned & Forgotten Much

● Early on, we knew that development was about
increments & refinement
– 1950s & 1960s at NASA, driven by approaches from the 1940s
– “Program development by stepwise refinement” - Wirth 1971

● The focus of the increments was a little different than today
● And then software development as an industry boomed

– Companies focused on long term commitments

We Have Learned & Forgotten Much

● Early on, we knew that development was about
increments & refinement
– 1950s & 1960s at NASA, driven by approaches from the 1940s
– “Program development by stepwise refinement” - Wirth 1971

● The focus of the increments was a little different than today
● And then software development as an industry boomed

– Companies focused on long term commitments
– Managers wanted predictability & cookie cutter processes

We Have Learned & Forgotten Much

● Early on, we knew that development was about
increments & refinement
– 1950s & 1960s at NASA, driven by approaches from the 1940s
– “Program development by stepwise refinement” - Wirth 1971

● The focus of the increments was a little different than today
● And then software development as an industry boomed

– Companies focused on long term commitments
– Managers wanted predictability & cookie cutter processes
– Outsider perspectives drove industry approaches

We Have Learned & Forgotten Much

● Early on, we knew that development was about
increments & refinement
– 1950s & 1960s at NASA, driven by approaches from the 1940s
– “Program development by stepwise refinement” - Wirth 1971

● The focus of the increments was a little different than today
● And then software development as an industry boomed

– Companies focused on long term commitments
– Managers wanted predictability & cookie cutter processes
– Outsider perspectives drove industry approaches

● Royce’s 1970s paper against monolithic (waterfall) methods was used
in support of waterfall....

We Have Learned & Forgotten Much

● Agile methods in the 1990s reintroduced incremental & refinement
based approaches, catching on in the 2000s

We Have Learned & Forgotten Much

● Agile methods in the 1990s reintroduced incremental & refinement
based approaches, catching on in the 2000s
– Evolved from the Spiral model in the 1980s

We Have Learned & Forgotten Much

● Agile methods in the 1990s reintroduced incremental & refinement
based approaches, catching on in the 2000s
– Evolved from the Spiral model in the 1980s
– Varying degrees of planning as necessary for a project

We Have Learned & Forgotten Much

● Agile methods in the 1990s reintroduced incremental & refinement
based approaches, catching on in the 2000s
– Evolved from the Spiral model in the 1980s
– Varying degrees of planning as necessary for a project

● Contractors were required to be agile in order to win contracts

We Have Learned & Forgotten Much

● Agile methods in the 1990s reintroduced incremental & refinement
based approaches, catching on in the 2000s
– Evolved from the Spiral model in the 1980s
– Varying degrees of planning as necessary for a project

● Contractors were required to be agile in order to win contracts
● Industry still enjoys predictability & long term commitments

We Have Learned & Forgotten Much

● Agile methods in the 1990s reintroduced incremental & refinement
based approaches, catching on in the 2000s
– Evolved from the Spiral model in the 1980s
– Varying degrees of planning as necessary for a project

● Contractors were required to be agile in order to win contracts
● Industry still enjoys predictability & long term commitments

– Break projects into sprints, but plan months out with uncertain
requirements

We Have Learned & Forgotten Much

● Agile methods in the 1990s reintroduced incremental & refinement
based approaches, catching on in the 2000s
– Evolved from the Spiral model in the 1980s
– Varying degrees of planning as necessary for a project

● Contractors were required to be agile in order to win contracts
● Industry still enjoys predictability & long term commitments

– Break projects into sprints, but plan months out with uncertain
requirements

– Forecasting is viewed as committed schedule

We Have Learned & Forgotten Much

● Agile methods in the 1990s reintroduced incremental & refinement
based approaches, catching on in the 2000s
– Evolved from the Spiral model in the 1980s
– Varying degrees of planning as necessary for a project

● Contractors were required to be agile in order to win contracts
● Industry still enjoys predictability & long term commitments

– Break projects into sprints, but plan months out with uncertain
requirements

– Forecasting is viewed as committed schedule

● This is not a secret
● Good developers & clients are not fooled

What really characterizes agile?

● Key characteristics

What really characterizes agile?

● Key characteristics
– continuous feedback

tests, customer guidance, bug reports, prototypes

What really characterizes agile?

● Key characteristics
– continuous feedback

tests, customer guidance, bug reports, prototypes
– adaptation

adjust short & long term approaches given a problem

What really characterizes agile?

● Key characteristics
– continuous feedback

tests, customer guidance, bug reports, prototypes
– adaptation

adjust short & long term approaches given a problem

● Process can be good(!), but when it impedes these, it is a problem.

What really characterizes agile?

● Key characteristics
– continuous feedback

tests, customer guidance, bug reports, prototypes
– adaptation

adjust short & long term approaches given a problem

● Process can be good(!), but when it impedes these, it is a problem.
– This is why prototyping trumps planning

What really characterizes agile?

● Key characteristics
– continuous feedback

tests, customer guidance, bug reports, prototypes
– adaptation

adjust short & long term approaches given a problem

● Process can be good(!), but when it impedes these, it is a problem.
– This is why prototyping trumps planning

● It is problematic enough that the DoD released guidelines on
detective “Agile BS”

Some DoD points on agility

● Key good indicators for developers
– Automated: testing (unit & regression), security scanning, deployment
– Full CI/CD pipeline and infrastructure as code
– Direct feedback from users & client visible issue tracking
– Issue triage & assignment policies
– Clear release cycle planning

Some DoD points on agility

● Key good indicators for developers
– Automated: testing (unit & regression), security scanning, deployment
– Full CI/CD pipeline and infrastructure as code
– Direct feedback from users & client visible issue tracking
– Issue triage & assignment policies
– Clear release cycle planning

● Red flags
– Users are not continuously able to try the product & provide feedback
– Meeting a requirement has priority over getting feedback
– Absence of DevSecOps

Some DoD points on agility

● Key good indicators for developers
– Automated: testing (unit & regression), security scanning, deployment
– Full CI/CD pipeline and infrastructure as code
– Direct feedback from users & client visible issue tracking
– Issue triage & assignment policies
– Clear release cycle planning

● Red flags
– Users are not continuously able to try the product & provide feedback
– Meeting a requirement has priority over getting feedback
– Absence of DevSecOps Beware!

Additional buzzwords!

Agility at the development level

● Feedback & adaptation also guide “code construction”

Agility at the development level

● Feedback & adaptation also guide “code construction”
– Don’t overcommit to a detailed design (different than feature)

Agility at the development level

● Feedback & adaptation also guide “code construction”
– Don’t overcommit to a detailed design (different than feature)
– Use designs that tolerate & support change

Agility at the development level

● Feedback & adaptation also guide “code construction”
– Don’t overcommit to a detailed design (different than feature)
– Use designs that tolerate & support change
– Focus on the known behaviors & refine the details as they become

apparent

Agility at the development level

● Feedback & adaptation also guide “code construction”
– Don’t overcommit to a detailed design (different than feature)
– Use designs that tolerate & support change
– Focus on the known behaviors & refine the details as they become

apparent
● These are very related to the integration strategies from

Code Complete & Pragmatic Programmer! [Ch.7, Tip 68]

Agility at the development level

● Feedback & adaptation also guide “code construction”
– Don’t overcommit to a detailed design (different than feature)
– Use designs that tolerate & support change
– Focus on the known behaviors & refine the details as they become

apparent
● These are very related to the integration strategies from

Code Complete & Pragmatic Programmer! [Ch.7, Tip 68]
– Top Down
– Bottom Up
– Sandwich
– Risk Based

Agility at the development level

● Feedback & adaptation also guide “code construction”
– Don’t overcommit to a detailed design (different than feature)
– Use designs that tolerate & support change
– Focus on the known behaviors & refine the details as they become

apparent
● These are very related to the integration strategies from

Code Complete & Pragmatic Programmer! [Ch.7, Tip 68]
– Top Down
– Bottom Up
– Sandwich
– Risk Based

What are the risks & benefits of these?

Dealing with incomplete modules

● All of these approaches may integrate components that
do not yet exist!

Dealing with incomplete modules

● All of these approaches may integrate components that
do not yet exist!

What strategies do you use
to work around this?

Dealing with incomplete modules

● All of these approaches may integrate components that
do not yet exist!

● Partial, fake, & prototype implementations are common approaches
to ensure progress.
– Just take care that the fake does not become production

Dealing with incomplete modules

● All of these approaches may integrate components that
do not yet exist!

● Partial, fake, & prototype implementations are common approaches
to ensure progress.
– Just take care that the fake does not become production

● Stub or fake implementations also aid in partitioning and team
development!

Dealing with incomplete modules

● All of these approaches may integrate components that
do not yet exist!

● Partial, fake, & prototype implementations are common approaches
to ensure progress.
– Just take care that the fake does not become production

● Stub or fake implementations also aid in partitioning and team
development!
– First design core API

Dealing with incomplete modules

● All of these approaches may integrate components that
do not yet exist!

● Partial, fake, & prototype implementations are common approaches
to ensure progress.
– Just take care that the fake does not become production

● Stub or fake implementations also aid in partitioning and team
development!
– First design core API
– Independent work happens on different “physical” files

Let’s try it out (quickly)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

