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● Early on, we knew that development was about
increments & refinement
– 1950s & 1960s at NASA, driven by approaches from the 1940s
– “Program development by stepwise refinement” - Wirth 1971

● The focus of the increments was a little different than today
● And then software development as an industry boomed

– Companies focused on long term commitments
– Managers wanted predictability & cookie cutter processes
– Outsider perspectives drove industry approaches

● Royce’s 1970s paper against monolithic (waterfall) methods was used 
in support of waterfall....
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We Have Learned & Forgotten Much

● Agile methods in the 1990s reintroduced incremental & refinement 
based approaches, catching on in the 2000s
– Evolved from the Spiral model in the 1980s
– Varying degrees of planning as necessary for a project

● Contractors were required to be agile in order to win contracts
● Industry still enjoys predictability & long term commitments

– Break projects into sprints, but plan months out with uncertain 
requirements

– Forecasting is viewed as committed schedule

● This is not a secret
● Good developers & clients are not fooled
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What really characterizes agile?

● Key characteristics
– continuous feedback

tests, customer guidance, bug reports, prototypes
– adaptation

adjust short & long term approaches given a problem

● Process can be good(!), but when it impedes these, it is a problem.
– This is why prototyping trumps planning

● It is problematic enough that the DoD released guidelines on 
detective “Agile BS”
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● Key good indicators for developers
– Automated: testing (unit & regression), security scanning, deployment
– Full CI/CD pipeline and infrastructure as code
– Direct feedback from users & client visible issue tracking
– Issue triage & assignment policies
– Clear release cycle planning

● Red flags
– Users are not continuously able to try the product & provide feedback
– Meeting a requirement has priority over getting feedback
– Absence of DevSecOps Beware!

Additional buzzwords!
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Agility at the development level

● Feedback & adaptation also guide “code construction”
– Don’t overcommit to a detailed design (different than feature)
– Use designs that tolerate & support change
– Focus on the known behaviors & refine the details as they become 

apparent
● These are very related to the integration strategies from

Code Complete & Pragmatic Programmer! [Ch.7, Tip 68]
– Top Down
– Bottom Up
– Sandwich
– Risk Based

What are the risks & benefits of these?
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Dealing with incomplete modules 

● All of these approaches may integrate components that
do not yet exist!

● Partial, fake, & prototype implementations are common approaches 
to ensure progress.
– Just take care that the fake does not become production

● Stub or fake implementations also aid in partitioning and team 
development!
– First design core API
– Independent work happens on different “physical” files



  

Let’s try it out (quickly)
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