#### CMPT 373 Software Development Methods

#### Introduction

Nick Sumner wsumner@sfu.ca

- Who am I?
  - Nick Sumner (wsumner@sfu.ca)
  - Research Faculty

- Who am I?
  - Nick Sumner (wsumner@sfu.ca)
  - Research Faculty
- Who is your TA?
  - Surprise! No TA.

- Who am I?
  - Nick Sumner (wsumner@sfu.ca)
  - Research Faculty
- Who is your TA?
  - Surprise! No TA.
- What is the course website?
  - http://www.cs.sfu.ca/~wsumner/teaching/373/
  - OR: just search for "CMPT 373 sumner"

- Who am I?
  - Nick Sumner (wsumner@sfu.ca)
  - Research Faculty
- Who is your TA?
  - Surprise! No TA.
- What is the course website?
  - http://www.cs.sfu.ca/~wsumner/teaching/373/
  - OR: just search for "CMPT 373 sumner"
- Where can you discuss course issues?
  - CourSys(https://coursys.sfu.ca/2018sp-cmpt-373-d1/discussion/)

## What is this course?

What have you heard?

#### What is this course?

- What have you heard?
- My perspective... hands on experience
  - workflows
  - tools
  - project management
  - writing better code
  - dealing with a (possibly troublesome) customer
  - dealing with (and avoiding) problems

#### What is this course?

- What have you heard?
- My perspective... hands on experience
  - workflows
  - tools
  - project management
  - writing better code
  - dealing with a (possibly troublesome) customer
  - dealing with (and avoiding) problems
- Slightly different than many courses
  - Less emphasis on "getting the right answer"
  - More emphasis on being aware & using the right skills

- Most software projects fail(!)
  - Up to 85% depending on definition of "failure"

- Most software projects fail(!)
  - Up to 85% depending on definition of "failure"



Ideal

- Most software projects fail(!)
  - Up to 85% depending on definition of "failure"



Ideal

- Most software projects fail(!)
  - Up to 85% depending on definition of "failure"



Ideal

- Most software projects fail(!)
  - Up to 85% depending on definition of "failure"



Bad

- Most software projects fail(!)
  - Up to 85% depending on definition of "failure"



Bad

- Most software projects fail(!)
  - Up to 85% depending on definition of "failure"



Bad

- Most software projects fail(!)
  - Up to 85% depending on definition of "failure"



Goal

- Most software projects fail(!)
  - Up to 85% depending on definition of "failure"



Goal

- Most software projects fail(!)
  - Up to 85% depending on definition of "failure"

Corrective Measures and Process



Progress







Goal

- Most software projects fail(!)
  - Up to 85% depending on definition of "failure"
- Most graduates with a CS degree are not ready
  - Software engineering is about process and awareness
  - Software development is a craft that requires practice

- Most software projects fail(!)
  - Up to 85% depending on definition of "failure"
- Most graduates with a CS degree are not ready
  - Software engineering is about process and awareness
  - Software development is a craft that requires practice
- Hands on experience yields an advantage
  - You can better understand how to create a product that has value both now and in the future.

## What will we be doing?

- On your own
  - Reading (From 2 books)
  - Exercises with tools

## What will we be doing?

- On your own
  - Reading (From 2 books)
  - Exercises with tools
- In groups / tutorials
  - One development project with unclear requirements

## What will we be doing?

- On your own
  - Reading (From 2 books)
  - Exercises with tools
- In groups / tutorials
  - One development project with unclear requirements
- In class
  - Introduction to tools and techniques
  - Discussions about the reading
  - Discussions about the tools
  - Discussions about code

#### Grading

- Subject to change as necessary
- Breakdown:
  - (10%) Responses to reading
  - (15%) Quizzes
  - (15%) Class discussions & code reviews
  - (40%) Useful contribution to semester project
  - (20%) Exercises

#### Reading

- Assigned chunks of reading
  - Often ~200 pages per 1-2 weeks
  - Both books are available as e-books in library

### Reading

- Assigned chunks of reading
  - Often ~200 pages per 1-2 weeks
  - Both books are available as e-books in library

#### Responses

- A 2 page critical reaction to the reading
- Single spaced
- Must include 3 units of:
  - A quote, with citation
  - 1-2 paragraphs discussing the quote
- Relate the material to your own experiences
- Form an opinion about it, and justify it

#### Reading

- Assigned chunks of reading
  - Often ~200 pages per 1-2 weeks
  - Both books are available as e-books in library
- Responses
  - A 2 page critical reaction to the reading
  - Single spaced
  - Must include 3 units of:
    - A quote, with citation
    - 1-2 paragraphs discussing the quote
  - Relate the material to your own experiences
  - Form an opinion about it, and justify it
- First assignment posted after class

#### Quizzes

- Pop quizzes will be given throughout the class
- Cover material from:
  - Reading
  - Videos
  - Exercises
  - Lectures
  - Discussion

Code Review Wednesdays:

- Code Review Wednesdays:
  - Each group will submit ~100 lines of code each week by Friday, 10pm

- Code Review Wednesdays:
  - Each group will submit ~100 lines of code each week by Friday, 10pm
  - I'll review & select 1 or 2 to send to the class (I may choose some other code entirely)

#### Code Review Wednesdays:

- Each group will submit ~100 lines of code each week by Friday, 10pm
- I'll review & select 1 or 2 to send to the class (I may choose some other code entirely)
- Individual reviews due by 10pm Tuesdays

#### Code Review Wednesdays:

- Each group will submit ~100 lines of code each week by Friday, 10pm
- I'll review & select 1 or 2 to send to the class (I may choose some other code entirely)
- Individual reviews due by 10pm Tuesdays
- We will review the code together in class on Wednesday.

- Code Review Wednesdays:
  - Each group will submit ~100 lines of code each week by Friday, 10pm
  - I'll review & select 1 or 2 to send to the class (I may choose some other code entirely)
  - Individual reviews due by 10pm Tuesdays
  - We will review the code together in class on Wednesday.
- In class discussions of both code & readings focus thematically on one core issue:

# Complexity

### Semester project

You will interact with me as a customer in tutorials

## Semester project

- You will interact with me as a customer in tutorials
- The requirements of the project will change

# Semester project

- You will interact with me as a customer in tutorials
- The requirements of the project will change
- You will use (and be evaluated in part on) skills from the exercises in the project

# Semester project

- You will interact with me as a customer in tutorials
- The requirements of the project will change
- You will use (and be evaluated in part on) skills from the exercises in the project
- Different teams may receive different requirements

# Semester project

- You will interact with me as a customer in tutorials
- The requirements of the project will change
- You will use (and be evaluated in part on) skills from the exercises in the project
- Different teams may receive different requirements
- You should expect to personally contribute >= 1K quality SLOC in order to receive a good grade

# Project code policy\_

All code pushed to a project repository may be viewed, analyzed, and critiqued by all students *in class* (even in future semesters).

# Project teams

• Assigned teams of up to 8

### Project teams

- Assigned teams of up to 8
- Following an informal scrum-like process
  - Each tutorial meeting will involve:
    - Discussion of what you did since the last meeting
    - What the present obstacles are to meeting goals
    - A plan for the next meeting

### Project teams

- Assigned teams of up to 8
- Following an informal scrum-like process
  - Each tutorial meeting will involve:
    - Discussion of what you did since the last meeting
    - What the present obstacles are to meeting goals
    - A plan for the next meeting
- I will act as both customer & coach

- Writing good code as a team
  - Some teammates will write well from the beginning.
  - Some will need help from teammates.

- Writing good code as a team
  - Some teammates will write well from the beginning.
  - Some will need help from teammates.
  - Working together is the only real way.

- Writing good code as a team
  - Some teammates will write well from the beginning.
  - Some will need help from teammates.
  - Working together is the only real way.
  - This is just as true in industry.

- Writing good code as a team
  - Some teammates will write well from the beginning.
  - Some will need help from teammates.
  - Working together is the only real way.
  - This is just as true in industry.
- Manage complexity & change
  - Requirements will change in practice.
  - I will try to change requirements that force design changes.

- Writing good code as a team
  - Some teammates will write well from the beginning.
  - Some will need help from teammates.
  - Working together is the only real way.
  - This is just as true in industry.
- Manage complexity & change
  - Requirements will change in practice.
  - I will try to change requirements that force design changes.
  - Better designs & process will make the transitions easier.

# And we're off...