
CMPT 373
Software Development Methods

Nick Sumner
wsumner@sfu.ca

Thinking About Correctness

We prefer correct software

● Software bugs make life painful

We prefer correct software

● Software bugs make life painful
– By now you have first hand experience
– Tracking down causes can be challenging (RCA/Root Cause Analysis)
– Even just agreeing on what a bug is can be challenging

We prefer correct software

● Software bugs make life painful
– By now you have first hand experience
– Tracking down causes can be challenging (RCA/Root Cause Analysis)
– Even just agreeing on what a bug is can be challenging

● Think back to a familiar example. Where is the bug?

Position
getNewPosition(Position old,
 double speedInMPH) {
 ...
 return newPosition;
}
...
 ... = getNewPosition(old, speedInMPS);

We prefer correct software

● Software bugs make life painful
– By now you have first hand experience
– Tracking down causes can be challenging (RCA/Root Cause Analysis)
– Even just agreeing on what a bug is can be challenging

● Think back to a familiar example. Where is the bug?
– Is it in getNewPosition?
– It it in the calling code?
– Is it in the design requirements?!

Position
getNewPosition(Position old,
 double speedInMPH) {
 ...
 return newPosition;
}
...
 ... = getNewPosition(old, speedInMPS);

We prefer correct software

● Software bugs make life painful
– By now you have first hand experience
– Tracking down causes can be challenging (RCA/Root Cause Analysis)
– Even just agreeing on what a bug is can be challenging

● Think back to a familiar example. Where is the bug?
– Is it in getNewPosition?
– It it in the calling code?
– Is it in the design requirements?!

● In reality, even agreeing on where a bug resides can be fraught
– Many bugs do not even have a root cause in code!

We prefer correct software

● Software bugs make life painful
– By now you have first hand experience
– Tracking down causes can be challenging (RCA/Root Cause Analysis)
– Even just agreeing on what a bug is can be challenging

● Think back to a familiar example. Where is the bug?
– Is it in getNewPosition?
– It it in the calling code?
– Is it in the design requirements?!

● In reality, even agreeing on where a bug resides can be fraught
– Many bugs do not even have a root cause in code!

● We need extra leverage to make the problem manageable

Specifications

● Thinking about correctness can be guided by specifications

Specifications

● Thinking about correctness can be guided by specifications

● Specifications explain what a component is intended to do
– What are the requirements necessary for successful completion?
– What are the guarantees provided during execution & upon completion?

Specifications

● Thinking about correctness can be guided by specifications

● Specifications explain what a component is intended to do
– What are the requirements necessary for successful completion?
– What are the guarantees provided during execution & upon completion?

● For clients, these
– separate the intentions/interface from implementation details

Specifications

● Thinking about correctness can be guided by specifications

● Specifications explain what a component is intended to do
– What are the requirements necessary for successful completion?
– What are the guarantees provided during execution & upon completion?

● For clients, these
– separate the intentions/interface from implementation details
– clarify the correct use

Specifications

● Thinking about correctness can be guided by specifications

● Specifications explain what a component is intended to do
– What are the requirements necessary for successful completion?
– What are the guarantees provided during execution & upon completion?

● For clients, these
– separate the intentions/interface from implementation details
– clarify the correct use
– (maybe) provide safety guarantees to ensure correct use

Specifications

● Thinking about correctness can be guided by specifications

● Specifications explain what a component is intended to do
– What are the requirements necessary for successful completion?
– What are the guarantees provided during execution & upon completion?

● For clients, these
– separate the intentions/interface from implementation details
– clarify the correct use
– (maybe) provide safety guarantees to ensure correct use

● For implementers, these
– guide the design requirements & details (smaller design space)

Specifications

● Thinking about correctness can be guided by specifications

● Specifications explain what a component is intended to do
– What are the requirements necessary for successful completion?
– What are the guarantees provided during execution & upon completion?

● For clients, these
– separate the intentions/interface from implementation details
– clarify the correct use
– (maybe) provide safety guarantees to ensure correct use

● For implementers, these
– guide the design requirements & details (smaller design space)
– Enable changing the implementation as long as the spec is met!

Specifications

● Thinking about correctness can be guided by specifications

● Specifications explain what a component is intended to do
– What are the requirements necessary for successful completion?
– What are the guarantees provided during execution & upon completion?

● For clients, these
– separate the intentions/interface from implementation details
– clarify the correct use
– (maybe) provide safety guarantees to ensure correct use

● For implementers, these
– guide the design requirements & details (smaller design space)
– Enable changing the implementation as long as the spec is met!

● The specification is a contract for usage

Specifications

● Thinking about correctness can be guided by specifications

● Specifications explain what a component is intended to do
– What are the requirements necessary for successful completion?
– What are the guarantees provided during execution & upon completion?

● For clients, these
– separate the intentions/interface from implementation details
– clarify the correct use
– (maybe) provide safety guarantees to ensure correct use

● For implementers, these
– guide the design requirements & details (smaller design space)
– Enable changing the implementation as long as the spec is met!

● The specification is a contract for usage

Specifications also help establish root causes
and guide fixing / maintenance.

Specifications (hopefully review)

● A specification usually includes

Specifications (hopefully review)

● A specification usually includes
– Preconditions:

guarantees a client must make upon usage

Specifications (hopefully review)

● A specification usually includes
– Preconditions:

guarantees a client must make upon usage

– Postconditions:
guarantees a provider must make if the client help up their end

Specifications (hopefully review)

● A specification usually includes
– Preconditions:

guarantees a client must make upon usage

– Postconditions:
guarantees a provider must make if the client help up their end

– Additional nonfunctional requirements can be specified, as well

Specifications (hopefully review)

● A specification usually includes
– Preconditions:

guarantees a client must make upon usage

– Postconditions:
guarantees a provider must make if the client help up their end

– Additional nonfunctional requirements can be specified, as well

● Note, if the preconditions do not hold, no guarantees are made

Specifications (hopefully review)

● A specification usually includes
– Preconditions:

guarantees a client must make upon usage

– Postconditions:
guarantees a provider must make if the client help up their end

– Additional nonfunctional requirements can be specified, as well

● Note, if the preconditions do not hold, no guarantees are made

● For example:
template<class Range, class Value>
size_t find(const Range& r, const Value& v);

PRECONDITION: r contains the value v
POSTCONDITION: returns an index of v in r

Specifications (hopefully review)

● A specification usually includes
– Preconditions:

guarantees a client must make upon usage

– Postconditions:
guarantees a provider must make if the client help up their end

– Additional nonfunctional requirements can be specified, as well

● Note, if the preconditions do not hold, no guarantees are made

● For example:
template<class Range, class Value>
size_t find(const Range& r, const Value& v);

PRECONDITION: r contains the value v
POSTCONDITION: returns an index of v in r

Specifications (hopefully review)

● A specification usually includes
– Preconditions:

guarantees a client must make upon usage

– Postconditions:
guarantees a provider must make if the client help up their end

– Additional nonfunctional requirements can be specified, as well

● Note, if the preconditions do not hold, no guarantees are made

● For example:
template<class Range, class Value>
size_t find(const Range& r, const Value& v);

PRECONDITION: r contains the value v
POSTCONDITION: returns an index of v in r

Specifications (hopefully review)

● A specification usually includes
– Preconditions:

guarantees a client must make upon usage

– Postconditions:
guarantees a provider must make if the client help up their end

– Additional nonfunctional requirements can be specified, as well

● Note, if the preconditions do not hold, no guarantees are made

● For example:
template<class Range, class Value>
size_t find(const Range& r, const Value& v);

PRECONDITION: r contains the value v
POSTCONDITION: returns an index of v in r

How does this spec decouple the
interface from implementation?

Specifications (hopefully review)

● A specification usually includes
– Preconditions:

guarantees a client must make upon usage

– Postconditions:
guarantees a provider must make if the client help up their end

– Additional nonfunctional requirements can be specified, as well

● Note, if the preconditions do not hold, no guarantees are made

● For example:
template<class Range, class Value>
size_t find(const Range& r, const Value& v);

PRECONDITION: r contains the value v
POSTCONDITION: returns the lowest index of v in r

Specifications (hopefully review)

● A specification usually includes
– Preconditions:

guarantees a client must make upon usage

– Postconditions:
guarantees a provider must make if the client help up their end

– Additional nonfunctional requirements can be specified, as well

● Note, if the preconditions do not hold, no guarantees are made

● For example:template<class Collection, class Predicate>
Range partition(const Range& r, const Predicate& p);

PRECONDITION: None
POSTCONDITION:

Reorders r s.t. x,y r, p(x)&!p(y) ∀ ∈ → index(x) < index(y).
Returns the range s at the front of r s.t. x r, p(x)∀ ∈ ↔ x s.∈

Specifications (hopefully review)

● A specification usually includes
– Preconditions:

guarantees a client must make upon usage

– Postconditions:
guarantees a provider must make if the client help up their end

– Additional nonfunctional requirements can be specified, as well

● Note, if the preconditions do not hold, no guarantees are made

● For example:template<class Collection, class Predicate>
Range partition(const Range& r, const Predicate& p);

PRECONDITION: None
POSTCONDITION:

Reorders r s.t. x,y r, p(x)&!p(y) ∀ ∈ → index(x) < index(y).
Returns the range s at the front of r s.t. x r, p(x)∀ ∈ ↔ x s.∈

Specifications (hopefully review)

● A specification usually includes
– Preconditions:

guarantees a client must make upon usage

– Postconditions:
guarantees a provider must make if the client help up their end

– Additional nonfunctional requirements can be specified, as well

● Note, if the preconditions do not hold, no guarantees are made

● For example:template<class Collection, class Predicate>
Range partition(const Range& r, const Predicate& p);

PRECONDITION: None
POSTCONDITION:

Reorders r s.t. x,y r, p(x)&!p(y) ∀ ∈ → index(x) < index(y).
Returns the range s at the front of r s.t. x r, p(x)∀ ∈ ↔ x s.∈

Specifications (hopefully review)

● A specification usually includes
– Preconditions:

guarantees a client must make upon usage

– Postconditions:
guarantees a provider must make if the client help up their end

– Additional nonfunctional requirements can be specified, as well

● Note, if the preconditions do not hold, no guarantees are made

● For example:template<class Collection, class Predicate>
Range partition(const Range& r, const Predicate& p);

PRECONDITION: None
POSTCONDITION:

Reorders r s.t. x,y r, p(x)&!p(y) ∀ ∈ → index(x) < index(y).
Returns the range s at the front of r s.t. x r, p(x)∀ ∈ ↔ x s.∈

Specifications

● Specifications can be formal or informal

Specifications

● Specifications can be formal or informal
– Informal: usually expressed in comments
– Formal: expressed in a language that can automatically be analyzed

Specifications

● Specifications can be formal or informal
– Informal: usually expressed in comments
– Formal: expressed in a language that can automatically be analyzed

● What sorts of trade-offs do you see between these?

Specifications

● Specifications can be formal or informal
– Informal: usually expressed in comments
– Formal: expressed in a language that can automatically be analyzed

● What sorts of trade-offs do you see between these?

[twitter]

https://twitter.com/rsnous/status/1330739037162782720

Specifications

● Specifications can be formal or informal
– Informal: usually expressed in comments
– Formal: expressed in a language that can automatically be analyzed

● What sorts of trade-offs do you see between these?
– Informal specs allow loose reasoning & may even hide bugs.

They can also drift from the implementation.
BUT they are cheaper to write.

Specifications

● Specifications can be formal or informal
– Informal: usually expressed in comments
– Formal: expressed in a language that can automatically be analyzed

● What sorts of trade-offs do you see between these?
– Informal specs allow loose reasoning & may even hide bugs.

They can also drift from the implementation.
BUT they are cheaper to write.

– Formal specs can be challenging to write (imagine distributed systems).
If code is poorly coupled, they increase maintenance costs.
BUT they provide stronger guarantees.

Specifications

● Specifications can be formal or informal
– Informal: usually expressed in comments
– Formal: expressed in a language that can automatically be analyzed

● What sorts of trade-offs do you see between these?
– Informal specs allow loose reasoning & may even hide bugs.

They can also drift from the implementation.
BUT they are cheaper to write.

– Formal specs can be challenging to write (imagine distributed systems).
If code is poorly coupled, they increase maintenance costs.
BUT they provide stronger guarantees.

● In practice, a combination of the two is frequently used.
Being able to reason formally helps with designing systems.
Managing risk/benefit is important.

Specifications

● Each language will have its own tools and languages for writing
formal specs, e.g.
– Java – JML

– C++ - Boost contracts, std contracts (maybe)

– Eiffel – built in

Specifications

● Each language will have its own tools and languages for writing
formal specs, e.g.
– Java – JML

– C++ - Boost contracts, std contracts (maybe)

– Eiffel – built in

//@ requires sortedArray != null
 && 0 < sortedArray.length < Integer.MAX_VALUE;
//@ requires \forall int i; 0 <= i < sortedArray.length;

\forall int j; i < j < sortedArray.length;
sortedArray[i] <= sortedArray[j];

//@ old boolean containsValue =
 (\exists int i; 0 <= i < sortedArray.length; sortedArray[i] == value);
//@ ensures containsValue <==> 0 <= \result < sortedArray.length;
//@ ensures !containsValue <==> \result == -1;
//@ pure
public static int search(int[] sortedArray, int value) {
 ...
}

[OpenJML]

http://www.openjml.org/examples/binary-search.html

Specifications

● Each language will have its own tools and languages for writing
formal specs, e.g.
– Java – JML

– C++ - Boost contracts, std contracts (maybe)

– Eiffel – built in

//@ requires sortedArray != null
 && 0 < sortedArray.length < Integer.MAX_VALUE;
//@ requires \forall int i; 0 <= i < sortedArray.length;

\forall int j; i < j < sortedArray.length;
sortedArray[i] <= sortedArray[j];

//@ old boolean containsValue =
 (\exists int i; 0 <= i < sortedArray.length; sortedArray[i] == value);
//@ ensures containsValue <==> 0 <= \result < sortedArray.length;
//@ ensures !containsValue <==> \result == -1;
//@ pure
public static int search(int[] sortedArray, int value) {
 ...
}

[OpenJML]

http://www.openjml.org/examples/binary-search.html

Specifications

● Each language will have its own tools and languages for writing
formal specs, e.g.
– Java – JML

– C++ - Boost contracts, std contracts (maybe)

– Eiffel – built in

//@ requires sortedArray != null
 && 0 < sortedArray.length < Integer.MAX_VALUE;
//@ requires \forall int i; 0 <= i < sortedArray.length;

\forall int j; i < j < sortedArray.length;
sortedArray[i] <= sortedArray[j];

//@ old boolean containsValue =
 (\exists int i; 0 <= i < sortedArray.length; sortedArray[i] == value);
//@ ensures containsValue <==> 0 <= \result < sortedArray.length;
//@ ensures !containsValue <==> \result == -1;
//@ pure
public static int search(int[] sortedArray, int value) {
 ...
}

[OpenJML]

http://www.openjml.org/examples/binary-search.html

Specifications

● Each language will have its own tools and languages for writing
formal specs, e.g.
– Java – JML

– C++ - Boost contracts, std contracts (maybe)

– Eiffel – built in

//@ requires sortedArray != null
 && 0 < sortedArray.length < Integer.MAX_VALUE;
//@ requires \forall int i; 0 <= i < sortedArray.length;

\forall int j; i < j < sortedArray.length;
sortedArray[i] <= sortedArray[j];

//@ old boolean containsValue =
 (\exists int i; 0 <= i < sortedArray.length; sortedArray[i] == value);
//@ ensures containsValue <==> 0 <= \result < sortedArray.length;
//@ ensures !containsValue <==> \result == -1;
//@ pure
public static int search(int[] sortedArray, int value) {
 ...
}

[OpenJML]

http://www.openjml.org/examples/binary-search.html

Specifications

● Each language will have its own tools and languages for writing
formal specs, e.g.
– Java – JML

– C++ - Boost contracts, std contracts (maybe)

– Eiffel – built in

//@ requires sortedArray != null
 && 0 < sortedArray.length < Integer.MAX_VALUE;
//@ requires \forall int i; 0 <= i < sortedArray.length;

\forall int j; i < j < sortedArray.length;
sortedArray[i] <= sortedArray[j];

//@ old boolean containsValue =
 (\exists int i; 0 <= i < sortedArray.length; sortedArray[i] == value);
//@ ensures containsValue <==> 0 <= \result < sortedArray.length;
//@ ensures !containsValue <==> \result == -1;
//@ pure
public static int search(int[] sortedArray, int value) {
 ...
}

[OpenJML]

http://www.openjml.org/examples/binary-search.html

Specifications

● Each language will have its own tools and languages for writing
formal specs, e.g.
– Java – JML

– C++ - Boost contracts, std contracts (maybe)

– Eiffel – built in

//@ requires sortedArray != null
 && 0 < sortedArray.length < Integer.MAX_VALUE;
//@ requires \forall int i; 0 <= i < sortedArray.length;

\forall int j; i < j < sortedArray.length;
sortedArray[i] <= sortedArray[j];

//@ old boolean containsValue =
 (\exists int i; 0 <= i < sortedArray.length; sortedArray[i] == value);
//@ ensures containsValue <==> 0 <= \result < sortedArray.length;
//@ ensures !containsValue <==> \result == -1;
//@ pure
public static int search(int[] sortedArray, int value) {
 ...
}

[OpenJML]

http://www.openjml.org/examples/binary-search.html

Specifications

● Each language will have its own tools and languages for writing
formal specs, e.g.
– Java – JML

– C++ - Boost contracts, std contracts (maybe)

– Eiffel – built in

//@ requires sortedArray != null
 && 0 < sortedArray.length < Integer.MAX_VALUE;
//@ requires \forall int i; 0 <= i < sortedArray.length;

\forall int j; i < j < sortedArray.length;
sortedArray[i] <= sortedArray[j];

//@ old boolean containsValue =
 (\exists int i; 0 <= i < sortedArray.length; sortedArray[i] == value);
//@ ensures containsValue <==> 0 <= \result < sortedArray.length;
//@ ensures !containsValue <==> \result == -1;
//@ pure
public static int search(int[] sortedArray, int value) {
 ...
}

[OpenJML]

http://www.openjml.org/examples/binary-search.html

Specifications

● Each language will have its own tools and languages for writing
formal specs, e.g.
– Java – JML

– C++ - Boost contracts, std contracts (maybe)

– Eiffel – built in

public static int search(int[] sortedArray, int value) {
 assert sortedArray != null && 0 < sortedArray.length;
 assert isSorted(sortedArray) : "Array not sorted";
 ...
 assert -1 <= result && result < array.length;
}

Trade offs?

Specifications

● Each language will have its own tools and languages for writing
formal specs, e.g.
– Java – JML

– C++ - Boost contracts, std contracts (maybe)

– Eiffel – built in

● Using these formal specs enables contracts to be checked at compile
time in high assurance code!

Specifications

● Each language will have its own tools and languages for writing
formal specs, e.g.
– Java – JML

– C++ - Boost contracts, std contracts (maybe)

– Eiffel – built in

● Using these formal specs enables contracts to be checked at compile
time in high assurance code!

● These are generally built on foundations of program logics

Specifications

● Each language will have its own tools and languages for writing
formal specs, e.g.
– Java – JML

– C++ - Boost contracts, std contracts (maybe)

– Eiffel – built in

● Using these formal specs enables contracts to be checked at compile
time in high assurance code!

● These are generally built on foundations of program logics

– When P holds before a component c, Q will hold after

{P} c {Q}

Specifications – design concerns

Design concerns

● How clear & informative is the specification to a reader?

Specifications – design concerns

Design concerns

● How clear & informative is the specification to a reader?

● Is the specification strong enough to prevent defects?

Specifications – design concerns

Design concerns

● How clear & informative is the specification to a reader?

● Is the specification strong enough to prevent defects?

● Is the specification weak enough to allow flexibility?

Specifications – design concerns

Design concerns

● How clear & informative is the specification to a reader?

● Is the specification strong enough to prevent defects?

● Is the specification weak enough to allow flexibility?

● How early will defects be found? (Early in execution? Early in design?)

Specifications – design concerns

Design concerns

● How clear & informative is the specification to a reader?

● Is the specification strong enough to prevent defects?

● Is the specification weak enough to allow flexibility?

● How early will defects be found? (Early in execution? Early in design?)

● Do you want to place more burden on the client or the provider?

Specifications – design concerns

Design concerns

● How clear & informative is the specification to a reader?

● Is the specification strong enough to prevent defects?

● Is the specification weak enough to allow flexibility?

● How early will defects be found? (Early in execution? Early in design?)

● Do you want to place more burden on the client or the provider?
– Originally, Postel’s law was regarded highly

Be conservative in what you do. Be liberal in what you accept.

Specifications – design concerns

Design concerns

● How clear & informative is the specification to a reader?

● Is the specification strong enough to prevent defects?

● Is the specification weak enough to allow flexibility?

● How early will defects be found? (Early in execution? Early in design?)

● Do you want to place more burden on the client or the provider?
– Originally, Postel’s law was regarded highly

Be conservative in what you do. Be liberal in what you accept.

– This is now regarded as problematic, poorly maintainable,
& prone to security problems

Invariants

● In some cases, design can be simplified by saying that something
always holds for a component

Invariants

● In some cases, design can be simplified by saying that something
always holds for a component
– These pointers are never null
– This collection is never empty
– The value {‘a’, ‘b’, ‘c’, ...} will always be present in a collection

Invariants

● In some cases, design can be simplified by saying that something
always holds for a component
– These pointers are never null
– This collection is never empty
– The value {‘a’, ‘b’, ‘c’, ...} will always be present in a collection

● An invariant is a condition that is always true

Invariants

● In some cases, design can be simplified by saying that something
always holds for a component
– These pointers are never null
– This collection is never empty
– The value {‘a’, ‘b’, ‘c’, ...} will always be present in a collection

● An invariant is a condition that is always true
– Invariants may apply at different granularities & abstractions

class invariants, loop invariants, representation invariants, ...

Invariants

● In some cases, design can be simplified by saying that something
always holds for a component
– These pointers are never null
– This collection is never empty
– The value {‘a’, ‘b’, ‘c’, ...} will always be present in a collection

● An invariant is a condition that is always true
– Invariants may apply at different granularities & abstractions

class invariants, loop invariants, representation invariants, ...

How are constructors related?

Invariants

● In some cases, design can be simplified by saying that something
always holds for a component
– These pointers are never null
– This collection is never empty
– The value {‘a’, ‘b’, ‘c’, ...} will always be present in a collection

● An invariant is a condition that is always true
– Invariants may apply at different granularities & abstractions

class invariants, loop invariants, representation invariants, ...

● Invariants can help you leverage inductive reasoning to simplify design
– They can also give a bit of rigour to otherwise ad hoc code

Invariants

● In some cases, design can be simplified by saying that something
always holds for a component
– These pointers are never null
– This collection is never empty
– The value {‘a’, ‘b’, ‘c’, ...} will always be present in a collection

● An invariant is a condition that is always true
– Invariants may apply at different granularities & abstractions

class invariants, loop invariants, representation invariants, ...

● Invariants can help you leverage inductive reasoning to simplify design
– They can also give a bit of rigour to otherwise ad hoc code

In fact, I’ve used invariants to help design
some of the demos we’ve seen in class!

Invariants

● In some cases, design can be simplified by saying that something
always holds for a component
– These pointers are never null
– This collection is never empty
– The value {‘a’, ‘b’, ‘c’, ...} will always be present in a collection

● An invariant is a condition that is always true
– Invariants may apply at different granularities & abstractions

class invariants, loop invariants, representation invariants, ...

● Invariants can help you leverage inductive reasoning to simplify design
– They can also give a bit of rigour to otherwise ad hoc code

//@ ghost boolean containsValue =
 (\exists int i; 0 <= i < sortedArray.length; sortedArray[i] == value);
if (value < sortedArray[0]) return -1;
if (value > sortedArray[sortedArray.length-1]) return -1;
int lo = 0;
int hi = sortedArray.length-1;

//@ loop_invariant 0 <= lo < sortedArray.length
 && 0 <= hi < sortedArray.length;
//@ loop_invariant containsValue ==>
 sortedArray[lo] <= value <= sortedArray[hi];
//@ loop_invariant \forall int i; 0 <= i < lo; sortedArray[i] < value;
//@ loop_invariant \forall int i; hi < i < sortedArray.length;
 value < sortedArray[i];
//@ loop_decreases hi - lo;
while (lo <= hi) {
 int mid = lo + (hi-lo)/2;
 if (sortedArray[mid] == value) {
 return mid;
 } else if (sortedArray[mid] < value) {
 lo = mid+1;
 } else {
 hi = mid-1;
 }
}
return -1;

Invariants

● In some cases, design can be simplified by saying that something
always holds for a component
– These pointers are never null
– This collection is never empty
– The value {‘a’, ‘b’, ‘c’, ...} will always be present in a collection

● An invariant is a condition that is always true
– Invariants may apply at different granularities & abstractions

class invariants, loop invariants, representation invariants, ...

● Invariants can help you leverage inductive reasoning to simplify design
– They can also give a bit of rigour to otherwise ad hoc code

//@ ghost boolean containsValue =
 (\exists int i; 0 <= i < sortedArray.length; sortedArray[i] == value);
if (value < sortedArray[0]) return -1;
if (value > sortedArray[sortedArray.length-1]) return -1;
int lo = 0;
int hi = sortedArray.length-1;

//@ loop_invariant 0 <= lo < sortedArray.length
 && 0 <= hi < sortedArray.length;
//@ loop_invariant containsValue ==>
 sortedArray[lo] <= value <= sortedArray[hi];
//@ loop_invariant \forall int i; 0 <= i < lo; sortedArray[i] < value;
//@ loop_invariant \forall int i; hi < i < sortedArray.length;
 value < sortedArray[i];
//@ loop_decreases hi - lo;
while (lo <= hi) {
 int mid = lo + (hi-lo)/2;
 if (sortedArray[mid] == value) {
 return mid;
 } else if (sortedArray[mid] < value) {
 lo = mid+1;
 } else {
 hi = mid-1;
 }
}
return -1;

Invariants

● In some cases, design can be simplified by saying that something
always holds for a component
– These pointers are never null
– This collection is never empty
– The value {‘a’, ‘b’, ‘c’, ...} will always be present in a collection

● An invariant is a condition that is always true
– Invariants may apply at different granularities & abstractions

class invariants, loop invariants, representation invariants, ...

● Invariants can help you leverage inductive reasoning to simplify design
– They can also give a bit of rigour to otherwise ad hoc code

//@ ghost boolean containsValue =
 (\exists int i; 0 <= i < sortedArray.length; sortedArray[i] == value);
if (value < sortedArray[0]) return -1;
if (value > sortedArray[sortedArray.length-1]) return -1;
int lo = 0;
int hi = sortedArray.length-1;

//@ loop_invariant 0 <= lo < sortedArray.length
 && 0 <= hi < sortedArray.length;
//@ loop_invariant containsValue ==>
 sortedArray[lo] <= value <= sortedArray[hi];
//@ loop_invariant \forall int i; 0 <= i < lo; sortedArray[i] < value;
//@ loop_invariant \forall int i; hi < i < sortedArray.length;
 value < sortedArray[i];
//@ loop_decreases hi - lo;
while (lo <= hi) {
 int mid = lo + (hi-lo)/2;
 if (sortedArray[mid] == value) {
 return mid;
 } else if (sortedArray[mid] < value) {
 lo = mid+1;
 } else {
 hi = mid-1;
 }
}
return -1;

Invariants

● In some cases, design can be simplified by saying that something
always holds for a component
– These pointers are never null
– This collection is never empty
– The value {‘a’, ‘b’, ‘c’, ...} will always be present in a collection

● An invariant is a condition that is always true
– Invariants may apply at different granularities & abstractions

class invariants, loop invariants, representation invariants, ...

● Invariants can help you leverage inductive reasoning to simplify design
– They can also give a bit of rigour to otherwise ad hoc code

//@ ghost boolean containsValue =
 (\exists int i; 0 <= i < sortedArray.length; sortedArray[i] == value);
if (value < sortedArray[0]) return -1;
if (value > sortedArray[sortedArray.length-1]) return -1;
int lo = 0;
int hi = sortedArray.length-1;

//@ loop_invariant 0 <= lo < sortedArray.length
 && 0 <= hi < sortedArray.length;
//@ loop_invariant containsValue ==>
 sortedArray[lo] <= value <= sortedArray[hi];
//@ loop_invariant \forall int i; 0 <= i < lo; sortedArray[i] < value;
//@ loop_invariant \forall int i; hi < i < sortedArray.length;
 value < sortedArray[i];
//@ loop_decreases hi - lo;
while (lo <= hi) {
 int mid = lo + (hi-lo)/2;
 if (sortedArray[mid] == value) {
 return mid;
 } else if (sortedArray[mid] < value) {
 lo = mid+1;
 } else {
 hi = mid-1;
 }
}
return -1;

Enforcement OR Dealing with errors

● Once you have agreement on a contract, you must decide how to
manage it.

Enforcement OR Dealing with errors

● Once you have agreement on a contract, you must decide how to
manage it.

● No matter which philosophy you choose,
your still want to find & report errors as soon as possible

Enforcement OR Dealing with errors

● Once you have agreement on a contract, you must decide how to
manage it.

● No matter which philosophy you choose,
your still want to find & report errors as soon as possible

● Major philosophies at extremes:

Enforcement OR Dealing with errors

● Once you have agreement on a contract, you must decide how to
manage it.

● No matter which philosophy you choose,
your still want to find & report errors as soon as possible

● Major philosophies at extremes:
– Provider must ensure consistency of the component

Enforcement OR Dealing with errors

● Once you have agreement on a contract, you must decide how to
manage it.

● No matter which philosophy you choose,
your still want to find & report errors as soon as possible

● Major philosophies at extremes:
– Provider must ensure consistency of the component

– The client must fulfill its obligations in order to use the component

Design by contract (obligation of the client)

● You document & formalize a the contract

● A component may assume that its preconditions hold

Design by contract (obligation of the client)

● You document & formalize a the contract

● A component may assume that its preconditions hold

● The client may use the strong contract to guard program behavior
early & enforce consistency

● If a violation occurs, the contracts may be used to guide debugging

Defensive programming (obligation of provider)

● The component author includes all checks necessary for correctness

● If a contract is violated at runtime,
then the author notifies the client via some error mechanism

Trade offs & Implementations

● Design by contract usually has fewer checks in practice

Trade offs & Implementations

● Design by contract usually has fewer checks in practice
– They can be easier to maintain
– There are lower performance overheads
– Assumptions of one component may be hoisted through many
– There can be greater risks without static enforcement

Trade offs & Implementations

● Design by contract usually has fewer checks in practice
– They can be easier to maintain
– There are lower performance overheads
– Assumptions of one component may be hoisted through many
– There can be greater risks without static enforcement

● Defensive programming usually has more checks

Trade offs & Implementations

● Design by contract usually has fewer checks in practice
– They can be easier to maintain
– There are lower performance overheads
– Assumptions of one component may be hoisted through many
– There can be greater risks without static enforcement

● Defensive programming usually has more checks
– Can occlude the meaning of the business logic
– Errors are typically only at runtime
– It is easier to locally guarantee, e.g. safety & security.

Trade offs & Implementations

● Design by contract usually has fewer checks in practice
– They can be easier to maintain
– There are lower performance overheads
– Assumptions of one component may be hoisted through many
– There can be greater risks without static enforcement

● Defensive programming usually has more checks
– Can occlude the meaning of the business logic
– Errors are typically only at runtime
– It is easier to locally guarantee, e.g. safety & security.

● Frequently in practice:
– Assertions
– Exceptions

Failing fast

● Using either philosophy, you prefer to fail as early as possible.
– Prevent the corruption of state

– Observation of a defect will be closer to the cause

Failing fast

● Using either philosophy, you prefer to fail as early as possible.
– Prevent the corruption of state

– Observation of a defect will be closer to the cause

● This leads to common patterns...
– Validate user input before starting to process it

– Check where API invocations may violate invariants & throw

Failing fast

● Using either philosophy, you prefer to fail as early as possible.
– Prevent the corruption of state

– Observation of a defect will be closer to the cause

● This leads to common patterns...
– Validate user input before starting to process it

– Check where API invocations may violate invariants & throw

[Baeldung 2019]

List<Integer> integers = newArrayList(1, 2, 3);
for (Integer integer : integers) {
 integers.remove(1);
}

https://www.baeldung.com/java-concurrentmodificationexception

Failing fast

● Using either philosophy, you prefer to fail as early as possible.
– Prevent the corruption of state

– Observation of a defect will be closer to the cause

● This leads to common patterns...
– Validate user input before starting to process it

– Check where API invocations may violate invariants & throw

How may these patterns relate to
software architecture?

[Baeldung 2019]

List<Integer> integers = newArrayList(1, 2, 3);
for (Integer integer : integers) {
 integers.remove(1);
}

https://www.baeldung.com/java-concurrentmodificationexception

Assertions

● Assertions follow a design by contract idiom

Assertions

● Assertions follow a design by contract idiom
– Not checked during a normal build

– Check whether a condition is true and terminate the program

– Used for documentation, debugging, & testing

Assertions

● Assertions follow a design by contract idiom
– Not checked during a normal build

– Check whether a condition is true and terminate the program

– Used for documentation, debugging, & testing

● The exact relationship between asserts & defects is nuanced
but there is some evidence that they decrease defect rates

Assertions

● Assertions follow a design by contract idiom
– Not checked during a normal build

– Check whether a condition is true and terminate the program

– Used for documentation, debugging, & testing

● The exact relationship between asserts & defects is nuanced
but there is some evidence that they decrease defect rates

#include <cassert>
constexpr Image ascii[256] = ...

Image& getCharGlyph(int asciiCode) {
 assert(0 < asciiCode && asciiCode < 256
 && “ASCII code out of range.”);
 return ascii[asciiCode];
}

Exceptions

● Exceptions typically follow a defensive programming strategy
– A component will check that the spec is satisfied at its boundaries

– An exception is thrown when the spec is violated

Exceptions

● Exceptions typically follow a defensive programming strategy
– A component will check that the spec is satisfied at its boundaries

– An exception is thrown when the spec is violated

● NOTE: One trend is to use exceptions for normal control flow.
Prefer to avoid this.

Exceptions

● Exceptions typically follow a defensive programming strategy
– A component will check that the spec is satisfied at its boundaries

– An exception is thrown when the spec is violated

● NOTE: One trend is to use exceptions for normal control flow.
Prefer to avoid this.
– Exceptions are for exceptional circumstances

– Both assertions & exceptions should be used with input validation at the
boundaries of an interface!

Exceptions

● Exceptions typically follow a defensive programming strategy
– A component will check that the spec is satisfied at its boundaries

– An exception is thrown when the spec is violated

● NOTE: One trend is to use exceptions for normal control flow.
Prefer to avoid this.
– Exceptions are for exceptional circumstances

– Both assertions & exceptions should be used with input validation at the
boundaries of an interface!

● Exact exception semantics differ across languages, but prefer to
1) catch & manage specific exception types
2) consider exceptions hard failures

Logging

● In practice, there is often not much you can do to recover from spec
violations
– Termination is often the right thing
– But termination itself can be an error in some circumstance
– Abruptly terminating may also make debugging challenging

Logging

● In practice, there is often not much you can do to recover from spec
violations
– Termination is often the right thing
– But termination itself can be an error in some circumstance
– Abruptly terminating may also make debugging challenging

● In practice, companies prefer to use logging
– Maybe the absence of behavior was erroneous
– Maybe a trend is erroneous
– Maybe an error only happens when deployed

Logging

● In practice, there is often not much you can do to recover from spec
violations
– Termination is often the right thing
– But termination itself can be an error in some circumstance
– Abruptly terminating may also make debugging challenging

● In practice, companies prefer to use logging
– Maybe the absence of behavior was erroneous
– Maybe a trend is erroneous
– Maybe an error only happens when deployed

● A logging system records program state & events over time.

Logging

LOG(INFO) << "Creating new account. "
 << "name:" << username;

Logging

LOG(INFO) << "Creating new account. "
 << "name:" << username;

Logging

LOG(INFO) << "Creating new account. "
 << "name:" << username;

Logging

LOG(INFO) << "Creating new account. "
 << "name:" << username;

LOG_IF(INFO, numUsers > 10)
 << "Many users logged in. "
 << "numusers:" << numUsers;

Logging

LOG(INFO) << "Creating new account. "
 << "name:" << username;

LOG_IF(INFO, numUsers > 10)
 << "Many users logged in. "
 << "numusers:" << numUsers;

CHECK_LT(index, size) << "Index out of bounds.";
CHECK_NOTNULL(ptr);

Logging

● A logging system records program state & events over time.

● Common to log: [Fu et al., ICSE 2014]

Logging

● A logging system records program state & events over time.

● Common to log: [Fu et al., ICSE 2014]

– Assertion failures
– Critical return values
– Exceptions

Unexpected
Situations

Logging

● A logging system records program state & events over time.

● Common to log: [Fu et al., ICSE 2014]

– Assertion failures
– Critical return values
– Exceptions

– Key branch points
– Observation points

Unexpected
Situations

Key Execution
Points

Logging

● A logging system records program state & events over time.

● Common to log: [Fu et al., ICSE 2014]

– Assertion failures
– Critical return values
– Exceptions

– Key branch points
– Observation points

● Logging too little or too much can be a problem
– Might miss what you want
– Might create a haystack for your needle
– Might spend too many resources!

Unexpected
Situations

Key Execution
Points

Logging Guidelines

● Log all assertion failures

Logging Guidelines

● Log all assertion failures

● Log exceptions at most once
– Might defer logging if exception is rethrown

– Might skip logging exceptions that do no harm
(e.g. if deleting a file failed because it was not there)

Logging Guidelines

● Log all assertion failures

● Log exceptions at most once
– Might defer logging if exception is rethrown

– Might skip logging exceptions that do no harm
(e.g. if deleting a file failed because it was not there)

● Log all events needed for auditing

Logging Guidelines

● Log all assertion failures

● Log exceptions at most once
– Might defer logging if exception is rethrown

– Might skip logging exceptions that do no harm
(e.g. if deleting a file failed because it was not there)

● Log all events needed for auditing

● Log logic that provides context for possible errors

Logging Guidelines

● Log all assertion failures

● Log exceptions at most once
– Might defer logging if exception is rethrown

– Might skip logging exceptions that do no harm
(e.g. if deleting a file failed because it was not there)

● Log all events needed for auditing

● Log logic that provides context for possible errors

● Make your log easy to use
– Machine parsable if possible

– What / When / Why / Where should be clearly captured

Summary

● Specification can be a powerful tool for reasoning about program
correctness

● You can apply a specification using
– Design by contract (client managed)

– Defensive programming (provider managed)

● Logging provides a key mechanism for getting more value our of
specifications in practice

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110

