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● Think back to a familiar example. Where is the bug?
– Is it in getNewPosition?
– It it in the calling code?
– Is it in the design requirements?!

● In reality, even agreeing on where a bug resides can be fraught
– Many bugs do not even have a root cause in code!

● We need extra leverage to make the problem manageable
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● Thinking about correctness can be guided by specifications

● Specifications explain what a component is intended to do
– What are the requirements necessary for successful completion?
– What are the guarantees provided during execution & upon completion?

● For clients, these
– separate the intentions/interface from implementation details
– clarify the correct use
– (maybe) provide safety guarantees to ensure correct use

● For implementers, these
– guide the design requirements & details (smaller design space)
– Enable changing the implementation as long as the spec is met!

● The specification is a contract for usage

Specifications also help establish root causes
and guide fixing / maintenance.
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guarantees a client must make upon usage

– Postconditions:
guarantees a provider must make if the client help up their end

– Additional nonfunctional requirements can be specified, as well

● Note, if the preconditions do not hold, no guarantees are made

● For example:
template<class Range, class Value>
size_t find(const Range& r, const Value& v);

PRECONDITION: r contains the value v
POSTCONDITION: returns an index of v in r

How does this spec decouple the 
interface from implementation?
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● Specifications can be formal or informal
– Informal: usually expressed in comments
– Formal: expressed in a language that can automatically be analyzed

● What sorts of trade-offs do you see between these?
– Informal specs allow loose reasoning & may even hide bugs.

They can also drift from the implementation.
BUT they are cheaper to write.

– Formal specs can be challenging to write (imagine distributed systems).
If code is poorly coupled, they increase maintenance costs.
BUT they provide stronger guarantees.

● In practice, a combination of the two is frequently used.
Being able to reason formally helps with designing systems.
Managing risk/benefit is important.
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● Each language will have its own tools and languages for writing 
formal specs, e.g.
– Java – JML

– C++ - Boost contracts, std contracts (maybe)

– Eiffel – built in

public static int search(int[] sortedArray, int value) {
    assert sortedArray != null && 0 < sortedArray.length;
    assert isSorted(sortedArray) : "Array not sorted";
    ...
    assert -1 <= result && result < array.length;
}

Trade offs?
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● Each language will have its own tools and languages for writing 
formal specs, e.g.
– Java – JML

– C++ - Boost contracts, std contracts (maybe)

– Eiffel – built in

● Using these formal specs enables contracts to be checked at compile 
time in high assurance code!

● These are generally built on foundations of program logics

– When P holds before a component c, Q will hold after

{P} c {Q}
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Specifications – design concerns

Design concerns

● How clear & informative is the specification to a reader?

● Is the specification strong enough to prevent defects?

● Is the specification weak enough to allow flexibility?

● How early will defects be found? (Early in execution? Early in design?)

● Do you want to place more burden on the client or the provider?
– Originally, Postel’s law was regarded highly

Be conservative in what you do. Be liberal in what you accept.

– This is now regarded as problematic, poorly maintainable,
& prone to security problems



  

Invariants

● In some cases, design can be simplified by saying that something 
always holds for a component



  

Invariants

● In some cases, design can be simplified by saying that something 
always holds for a component
– These pointers are never null
– This collection is never empty
– The value {‘a’, ‘b’, ‘c’, ...} will always be present in a collection



  

Invariants

● In some cases, design can be simplified by saying that something 
always holds for a component
– These pointers are never null
– This collection is never empty
– The value {‘a’, ‘b’, ‘c’, ...} will always be present in a collection

● An invariant is a condition that is always true



  

Invariants

● In some cases, design can be simplified by saying that something 
always holds for a component
– These pointers are never null
– This collection is never empty
– The value {‘a’, ‘b’, ‘c’, ...} will always be present in a collection

● An invariant is a condition that is always true
– Invariants may apply at different granularities & abstractions

class invariants, loop invariants, representation invariants, ...



  

Invariants

● In some cases, design can be simplified by saying that something 
always holds for a component
– These pointers are never null
– This collection is never empty
– The value {‘a’, ‘b’, ‘c’, ...} will always be present in a collection

● An invariant is a condition that is always true
– Invariants may apply at different granularities & abstractions

class invariants, loop invariants, representation invariants, ...

How are constructors related?
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In fact, I’ve used invariants to help design
some of the demos we’ve seen in class!
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– These pointers are never null
– This collection is never empty
– The value {‘a’, ‘b’, ‘c’, ...} will always be present in a collection

● An invariant is a condition that is always true
– Invariants may apply at different granularities & abstractions

class invariants, loop invariants, representation invariants, ...

● Invariants can help you leverage inductive reasoning to simplify design
– They can also give a bit of rigour to otherwise ad hoc code
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Enforcement   OR   Dealing with errors

● Once you have agreement on a contract, you must decide how to 
manage it.

● No matter which philosophy you choose,
your still want to find & report errors as soon as possible

● Major philosophies at extremes:
– Provider must ensure consistency of the component

– The client must fulfill its obligations in order to use the component



  

Design by contract (obligation of the client)

● You document & formalize a the contract

● A component may assume that its preconditions hold



  

Design by contract (obligation of the client)

● You document & formalize a the contract

● A component may assume that its preconditions hold

● The client may use the strong contract to guard program behavior
early & enforce consistency

● If a violation occurs, the contracts may be used to guide debugging



  

Defensive programming (obligation of provider)

● The component author includes all checks necessary for correctness

● If a contract is violated at runtime,
then the author notifies the client via some error mechanism
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Trade offs & Implementations

● Design by contract usually has fewer checks in practice
– They can be easier to maintain
– There are lower performance overheads
– Assumptions of one component may be hoisted through many
– There can be greater risks without static enforcement

● Defensive programming usually has more checks
– Can occlude the meaning of the business logic
– Errors are typically only at runtime
– It is easier to locally guarantee, e.g. safety & security.

● Frequently in practice:
– Assertions
– Exceptions
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[Baeldung 2019]

List<Integer> integers = newArrayList(1, 2, 3);
for (Integer integer : integers) {
    integers.remove(1);
}
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Failing fast

● Using either philosophy, you prefer to fail as early as possible.
– Prevent the corruption of state

– Observation of a defect will be closer to the cause

● This leads to common patterns...
– Validate user input before starting to process it

– Check where API invocations may violate invariants & throw

How may these patterns relate to 
software architecture?

[Baeldung 2019]

List<Integer> integers = newArrayList(1, 2, 3);
for (Integer integer : integers) {
    integers.remove(1);
}

https://www.baeldung.com/java-concurrentmodificationexception
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Assertions

● Assertions follow a design by contract idiom
– Not checked during a normal build

– Check whether a condition is true and terminate the program

– Used for documentation, debugging, & testing

● The exact relationship between asserts & defects is nuanced
but there is some evidence that they decrease defect rates

#include <cassert>
constexpr Image ascii[256] = ...

Image& getCharGlyph(int asciiCode) {
  assert(0 < asciiCode && asciiCode < 256
         && “ASCII code out of range.”);
  return ascii[asciiCode];
}
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Exceptions

● Exceptions typically follow a defensive programming strategy
– A component will check that the spec is satisfied at its boundaries

– An exception is thrown when the spec is violated

● NOTE: One trend is to use exceptions for normal control flow.
Prefer to avoid this.
– Exceptions are for exceptional circumstances

– Both assertions & exceptions should be used with input validation at the 
boundaries of an interface!

● Exact exception semantics differ across languages, but prefer to
1) catch & manage specific exception types
2) consider exceptions hard failures
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● In practice, there is often not much you can do to recover from spec 
violations
– Termination is often the right thing
– But termination itself can be an error in some circumstance
– Abruptly terminating may also make debugging challenging

● In practice, companies prefer to use logging
– Maybe the absence of behavior was erroneous
– Maybe a trend is erroneous
– Maybe an error only happens when deployed

● A logging system records program state & events over time.
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Logging

LOG(INFO) << "Creating new account. "
          << "name:" << username;

LOG_IF(INFO, numUsers > 10)
  << "Many users logged in. "
  << "numusers:" << numUsers;

CHECK_LT(index, size) << "Index out of bounds.";
CHECK_NOTNULL(ptr);
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● Common to log: [Fu et al., ICSE 2014]
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Logging

● A logging system records program state & events over time.

● Common to log: [Fu et al., ICSE 2014]

– Assertion failures
– Critical return values
– Exceptions

– Key branch points
– Observation points

● Logging too little or too much can be a problem
– Might miss what you want
– Might create a haystack for your needle
– Might spend too many resources!

Unexpected
Situations

Key Execution
Points
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Logging Guidelines

● Log all assertion failures

● Log exceptions at most once
– Might defer logging if exception is rethrown

– Might skip logging exceptions that do no harm
(e.g. if deleting a file failed because it was not there)

● Log all events needed for auditing

● Log logic that provides context for possible errors

● Make your log easy to use
– Machine parsable if possible

– What / When / Why / Where should be clearly captured



  

Summary

● Specification can be a powerful tool for reasoning about program 
correctness

● You can apply a specification using
– Design by contract (client managed)

– Defensive programming (provider managed)

● Logging provides a key mechanism for getting more value our of 
specifications in practice
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