
CMPT 373
Software Development Methods

Nick Sumner
wsumner@sfu.ca

Designing APIs for Simplicity
and Preventing Errors

What is an API?

● API – Application Programming Interface
– A specification of how things interact

What is an API?

● API – Application Programming Interface
– A specification of how things interact

● Crosses many levels of design

What is an API?

● API – Application Programming Interface
– A specification of how things interact

● Crosses many levels of design
– Web Apps: REST, GraphQL, OpenAPI spec

What is an API?

● API – Application Programming Interface
– A specification of how things interact

● Crosses many levels of design
– Web Apps: REST, GraphQL, OpenAPI spec
– Library interfaces

What is an API?

● API – Application Programming Interface
– A specification of how things interact

● Crosses many levels of design
– Web Apps: REST, GraphQL, OpenAPI spec
– Library interfaces
– Class & function definitions

What is an API?

● API – Application Programming Interface
– A specification of how things interact

● Crosses many levels of design
– Web Apps: REST, GraphQL, OpenAPI spec
– Library interfaces
– Class & function definitions
– For some functions, even just the code within the function....

What is an API?

● API – Application Programming Interface
– A specification of how things interact

● Crosses many levels of design
– Web Apps: REST, GraphQL, OpenAPI spec
– Library interfaces
– Class & function definitions
– For some functions, even just the code within the function....

● An API just describes some boundary within the design process

What makes an API good?

● Some guidance from leaders with significant experience [Bloch 2008]
– Easy to use and hard to misuse
– Self documenting
– Structured by use cases
– Strong examples
– Displease clients equally
– Avoids fixed limits
– Minimal
– Immutable
– Fail fast
– ...

https://www.infoq.com/articles/API-Design-Joshua-Bloch/

What makes an API good?

● Some guidance from leaders with significant experience [Bloch 2008]
– Easy to use and hard to misuse
– Self documenting
– Structured by use cases
– Strong examples
– Displease clients equally
– Avoids fixed limits
– Minimal
– Immutable
– Fail fast
– ...

● Many of these can be seen as a version of the first criterion

https://www.infoq.com/articles/API-Design-Joshua-Bloch/

What makes an API good?

● Some guidance from leaders with significant experience [Bloch 2008]
– Easy to use and hard to misuse
– Self documenting
– Structured by use cases
– Strong examples
– Displease clients equally
– Avoids fixed limits
– Minimal
– Immutable
– Fail fast
– ...

● Many of these can be seen as a version of the first criterion
– That will be our goal today: easy to use & hard to misuse
– The topic expands well beyond what we have time to cover

https://www.infoq.com/articles/API-Design-Joshua-Bloch/

Let us consider a problematic API
bool
isFasterThanSound(double speed) {
 return speed > MACH1;
}

Is this easy or hard to use? Why?

Let us consider a problematic API
bool
isFasterThanSound(double speed) {
 return speed > MACH1;
}

Is this easy or hard to use? Why?

 (double speed, double angle) {

}

Let us consider a problematic API

● Exposing primitive types on an API boundary leaves the user guessing
– What are the units? Which argument is which? ...

bool
isFasterThanSound(double speed) {
 return speed > MACH1;
}

 (double speed, double angle) {

}

Let us consider a problematic API

● Exposing primitive types on an API boundary leaves the user guessing
– What are the units? Which argument is which? ...

● One common form of this is a stringly typed API. Don’t.

bool
isFasterThanSound(double speed) {
 return speed > MACH1;
}

 (double speed, double angle) {

}

Let us consider a problematic API

● Exposing primitive types on an API boundary leaves the user guessing
– What are the units? Which argument is which? ...

● One common form of this is a stringly typed API. Don’t.

bool
isFasterThanSound(double speed) {
 return speed > MACH1;
}

 (double speed, double angle) {

}

void
feed(string food, string user) {

}

Let us consider a problematic API

● Exposing primitive types on an API boundary leaves the user guessing
– What are the units? Which argument is which? ...

● One common form of this is a stringly typed API. Don’t.

bool
isFasterThanSound(double speed) {
 return speed > MACH1;
}

 (double speed, double angle) {

}

void
feed(string food, string user) {

}

feed("John Smith", "chicken");

Let us consider a problematic API

● Exposing primitive types on an API boundary leaves the user guessing
– What are the units? Which argument is which? ...

● One common form of this is a stringly typed API. Don’t.

● Ideally, only the set of appropriate values should even be possible

bool
isFasterThanSound(double speed) {
 return speed > MACH1;
}

 (double speed, double angle) {

}

void
feed(string food, string user) {

}

feed("John Smith", "chicken");

Let us consider a problematic API

● Exposing primitive types on an API boundary leaves the user guessing
– What are the units? Which argument is which? ...

● One common form of this is a stringly typed API. Don’t.

● Ideally, only the set of appropriate values should even be possible
– What name do we give to a set of values?

bool
isFasterThanSound(double speed) {
 return speed > MACH1;
}

 (double speed, double angle) {

}

void
feed(string food, string user) {

}

feed("John Smith", "chicken");

Use strong types to make APIs clear & prevent bugs
struct User {
 ...
};

struct Food {
 ...
};

void
feed(Food food, User user) {

}

Use strong types to make APIs clear & prevent bugs
struct User {
 ...
};

struct Food {
 ...
};

void
feed(Food food, User user) {

}

feed(Food{"chicken"}, User{"John Smith"});

Use strong types to make APIs clear & prevent bugs

● Misusing the API results in a compile time error

struct User {
 ...
};

struct Food {
 ...
};

void
feed(Food food, User user) {

}

feed(Food{"chicken"}, User{"John Smith"});

Use strong types to make APIs clear & prevent bugs

● Misusing the API results in a compile time error
● Most IDEs will even make it particularly clear

struct User {
 ...
};

struct Food {
 ...
};

void
feed(Food food, User user) {

}

feed(Food{"chicken"}, User{"John Smith"});

Use strong types to make APIs clear & prevent bugs

● Misusing the API results in a compile time error
● Most IDEs will even make it particularly clear
● This is sometimes called a “tiny types” idiom

struct User {
 ...
};

struct Food {
 ...
};

void
feed(Food food, User user) {

}

feed(Food{"chicken"}, User{"John Smith"});

Use strong types to make APIs clear & prevent bugs

● Misusing the API results in a compile time error
● Most IDEs will even make it particularly clear
● This is sometimes called a “tiny types” idiom
● NOTE: In C++, normal type aliases are insufficient,

but we have already seen strongly typed aliases

struct User {
 ...
};

struct Food {
 ...
};

void
feed(Food food, User user) {

}

feed(Food{"chicken"}, User{"John Smith"});

Use strong types to make APIs clear & prevent bugs

● Misusing the API results in a compile time error
● Most IDEs will even make it particularly clear
● This is sometimes called a “tiny types” idiom
● NOTE: In C++, normal type aliases are insufficient,

but we have already seen strongly typed aliases

struct User {
 ...
};

struct Food {
 ...
};

void
feed(Food food, User user) {

}

feed(Food{"chicken"}, User{"John Smith"});

template<typename Value, typename Tag>
struct StrongAlias {
...
 const Value value;
};

Use strong types to make APIs clear & prevent bugs

● Misusing the API results in a compile time error
● Most IDEs will even make it particularly clear
● This is sometimes called a “tiny types” idiom
● NOTE: In C++, normal type aliases are insufficient,

but we have already seen strongly typed aliases

struct User {
 ...
};

struct Food {
 ...
};

void
feed(Food food, User user) {

}

feed(Food{"chicken"}, User{"John Smith"});

template<typename Value, typename Tag>
struct StrongAlias {
...
 const Value value;
};

using Side = StrongAlias<int, struct SideTag>;
using Angle = StrongAlias<double, struct AngleTag>;

Use strong types to make APIs clear & prevent bugs

● Misusing the API results in a compile time error
● Most IDEs will even make it particularly clear
● This is sometimes called a “tiny types” idiom
● NOTE: In C++, normal type aliases are insufficient,

but we have already seen strongly typed aliases

struct User {
 ...
};

struct Food {
 ...
};

void
feed(Food food, User user) {

}

feed(Food{"chicken"}, User{"John Smith"});

template<typename Value, typename Tag>
struct StrongAlias {
...
 const Value value;
};

using Side = StrongAlias<int, struct SideTag>;
using Angle = StrongAlias<double, struct AngleTag>;

Bool on a boundary

● Avoid booleans across an interface boundary

bool add(Element e);
void setPolicy(bool enabled);

Bool on a boundary

● Avoid booleans across an interface boundary

bool add(Element e);
void setPolicy(bool enabled);

bool result = add(e);
setPolicy(true);

Bool on a boundary

● Avoid booleans across an interface boundary
– These are designs that frequently cause problems in practice

bool add(Element e);
void setPolicy(bool enabled);

bool result = add(e);
setPolicy(true);

Bool on a boundary

● Avoid booleans across an interface boundary
– These are designs that frequently cause problems in practice
– Does add return true when there is an error or on success?
– Does passing true choose policy A or policy B?

bool add(Element e);
void setPolicy(bool enabled);

bool result = add(e);
setPolicy(true);

Bool on a boundary

● Avoid booleans across an interface boundary
– These are designs that frequently cause problems in practice
– Does add return true when there is an error or on success?
– Does passing true choose policy A or policy B?
– What if I need to add another policy?!

bool add(Element e);
void setPolicy(bool enabled);

bool result = add(e);
setPolicy(true);

Bool on a boundary

● Avoid booleans across an interface boundary
– These are designs that frequently cause problems in practice
– Does add return true when there is an error or on success?
– Does passing true choose policy A or policy B?
– What if I need to add another policy?!

● How can we limit the set of values on the boundary while being clearer?

bool add(Element e);
void setPolicy(bool enabled);

bool result = add(e);
setPolicy(true);

Bool on a boundary

● Avoid booleans across an interface boundary
– These are designs that frequently cause problems in practice
– Does add return true when there is an error or on success?
– Does passing true choose policy A or policy B?
– What if I need to add another policy?!

● How can we limit the set of values on the boundary while being clearer?

bool add(Element e);
void setPolicy(bool enabled);

bool result = add(e);
setPolicy(true);

enum class AddResult {
 SUCCESS, FAILURE
};

enum class Policy {
 OptionA, OptionB, OptionC
};

Bool on a boundary

● Avoid booleans across an interface boundary
– These are designs that frequently cause problems in practice
– Does add return true when there is an error or on success?
– Does passing true choose policy A or policy B?
– What if I need to add another policy?!

● How can we limit the set of values on the boundary while being clearer?

– Recall that sum types capture a finite set cleanly!
– They can also force the compiler to warn when new options are unhandled!

bool add(Element e);
void setPolicy(bool enabled);

bool result = add(e);
setPolicy(true);

enum class AddResult {
 SUCCESS, FAILURE
};

enum class Policy {
 OptionA, OptionB, OptionC
};

Bool on a boundary

● Avoid booleans across an interface boundary
– These are designs that frequently cause problems in practice
– Does add return true when there is an error or on success?
– Does passing true choose policy A or policy B?
– What if I need to add another policy?!

● How can we limit the set of values on the boundary while being clearer?

– Recall that sum types capture a finite set cleanly!
– They can also force the compiler to warn when new options are unhandled!

bool add(Element e);
void setPolicy(bool enabled);

bool result = add(e);
setPolicy(true);

enum class AddResult {
 SUCCESS, FAILURE
};

enum class Policy {
 OptionA, OptionB, OptionC
};

Phantom Types

double
distanceTraveled(double speed, double time) {
 return speed * time;
}

What can go wrong?

Phantom Types

// Miles per hour * seconds?
... = distanceTraveled(3, 5);

d1 = ...; // Meters
d2 = ...; // Miles
... = d1 + d2; // Uh oh.

double
distanceTraveled(double speed, double time) {
 return speed * time;
}

What can go wrong?

Phantom Types

// Miles per hour * seconds?
... = distanceTraveled(3, 5);

d1 = ...; // Meters
d2 = ...; // Miles
... = d1 + d2; // Uh oh.

double
distanceTraveled(double speed, double time) {
 return speed * time;
}

What can go wrong?

Phantom Types

● Parameterize your types by unique type names...
struct Meters {};
struct Miles {};
struct Seconds {};
struct Hours {};

template <typename T, typename U>
struct Speed { double speed; };

template <typename T>
struct Distance { double distance; };

template <typename T>
struct Time { double time; };

Phantom Types

● Parameterize your types by unique type names...
struct Meters {};
struct Miles {};
struct Seconds {};
struct Hours {};

template <typename T, typename U>
struct Speed { double speed; };

template <typename T>
struct Distance { double distance; };

template <typename T>
struct Time { double time; };

Speed is parameterized by
time & a unit of length

Phantom Types

● Consistent units are enforced via template arguments

template <typename T, typename U>
Distance<T>
distanceTraveled(Speed<T,U> speed, Time<U> time) {
 return {speed.speed * time.time};
}

template <typename T>
Distance<T>
operator+(Distance<T> d1, Distance<T> d2) {
 return d1.distance + d2.distance;
}

Phantom Types

● Consistent units are enforced via template arguments

template <typename T, typename U>
Distance<T>
distanceTraveled(Speed<T,U> speed, Time<U> time) {
 return {speed.speed * time.time};
}

template <typename T>
Distance<T>
operator+(Distance<T> d1, Distance<T> d2) {
 return d1.distance + d2.distance;
}

Phantom Types

distanceTraveled(Speed<Miles,Hours>{3}, Time<Seconds>{5});

Phantom Types

phantom.cpp:37:19: error: no matching function for call to 'distanceTraveled’
... deduced conflicting types for parameter 'U' ('Hours' vs. 'Seconds')

distanceTraveled(Speed<Miles,Hours>{3}, Time<Seconds>{5});

Phantom Types

phantom.cpp:37:19: error: no matching function for call to 'distanceTraveled’
... deduced conflicting types for parameter 'U' ('Hours' vs. 'Seconds')

d1 = distanceTraveled(Speed<Miles,Hours>{3}, Time<Hours>{5});
d2 = distanceTraveled(Speed<Meters,Seconds>{3}, Time<Seconds>{5});
d3 = d2 + d3;

distanceTraveled(Speed<Miles,Hours>{3}, Time<Seconds>{5});

Phantom Types

phantom.cpp:37:19: error: no matching function for call to 'distanceTraveled’
... deduced conflicting types for parameter 'U' ('Hours' vs. 'Seconds')

phantom.cpp:41:30: error: invalid operands to binary expression
... deduced conflicting types for parameter 'T' ('Miles' vs. 'Meters')

d1 = distanceTraveled(Speed<Miles,Hours>{3}, Time<Hours>{5});
d2 = distanceTraveled(Speed<Meters,Seconds>{3}, Time<Seconds>{5});
d3 = d2 + d3;

distanceTraveled(Speed<Miles,Hours>{3}, Time<Seconds>{5});

Phantom Types

phantom.cpp:37:19: error: no matching function for call to 'distanceTraveled’
... deduced conflicting types for parameter 'U' ('Hours' vs. 'Seconds')

phantom.cpp:41:30: error: invalid operands to binary expression
... deduced conflicting types for parameter 'T' ('Miles' vs. 'Meters')

What are the trade offs for using this technique?

d1 = distanceTraveled(Speed<Miles,Hours>{3}, Time<Hours>{5});
d2 = distanceTraveled(Speed<Meters,Seconds>{3}, Time<Seconds>{5});
d3 = d2 + d3;

distanceTraveled(Speed<Miles,Hours>{3}, Time<Seconds>{5});

Avoiding Inconsistent State

Work

Sleep

PlayStudent

Avoiding Inconsistent State

Work

Sleep

PlayStudent
class Student {
 CurrentState state;
 uint64_t timeWorked;
};

enum class CurrentState {
 SLEEP, PLAY, WORK
};

Avoiding Inconsistent State

Work

Sleep

PlayStudent
class Student {
 CurrentState state;
 uint64_t timeWorked;
};

enum class CurrentState {
 SLEEP, PLAY, WORK
};

What can go wrong?

Avoiding Inconsistent State

● How can we fix it?
Work

Sleep

PlayStudent

Avoiding Inconsistent State

● How can we fix it?

class Student {
 unique_ptr<CurrentState> state;
};

Work

Sleep

PlayStudent

Avoiding Inconsistent State

● How can we fix it?

class CurrentState {
...
};

class Student {
 unique_ptr<CurrentState> state;
};

Work

Sleep

PlayStudent

Avoiding Inconsistent State

● How can we fix it?

class CurrentState {
...
};

class Sleep
 : public CurrentState
{ };

class Work
 : public CurrentState {
 uint64_t timeWorked
};

class Student {
 unique_ptr<CurrentState> state;
};

Work

Sleep

PlayStudent

Avoiding Inconsistent State

● How can we fix it?

class CurrentState {
...
};

class Sleep
 : public CurrentState
{ };

class Work
 : public CurrentState {
 uint64_t timeWorked
};

class Student {
 unique_ptr<CurrentState> state;
};

This is part of the state pattern!

Work

Sleep

PlayStudent

Avoiding Inconsistent State

● How can we fix it?
Work

Sleep

PlayStudent

class Student {
 struct Sleep {};
 struct Play {};
 struct Work { uint64_t timeWorked; };

 std::variant<Sleep, Play, Work> currentState;
};

Avoiding Inconsistent State

● How can we fix it?
Work

Sleep

PlayStudent

class Student {
 struct Sleep {};
 struct Play {};
 struct Work { uint64_t timeWorked; };

 std::variant<Sleep, Play, Work> currentState;
};

Avoiding Inconsistent State

● How can we fix it?
Work

Sleep

PlayStudent

class Student {
 struct Sleep {};
 struct Play {};
 struct Work { uint64_t timeWorked; };

 std::variant<Sleep, Play, Work> currentState;
};

Generalize away corner cases

● Sometimes complexity comes because an abstraction is too specific!

Generalize away corner cases

● Sometimes complexity comes because an abstraction is too specific!
– We can generalize the interface to handle corner cases transparently

Generalize away corner cases

● Sometimes complexity comes because an abstraction is too specific!
– We can generalize the interface to handle corner cases transparently

● Consider a tree that may be traversed

Generalize away corner cases

● Sometimes complexity comes because an abstraction is too specific!
– We can generalize the interface to handle corner cases transparently

● Consider a tree that may be traversed
● Implicitly

– e.g. the null object pattern

Null Object Pattern
Create a subtype representing
an object with no information.

Any getters/methods effectively
perform no-ops.

Generalize away corner cases

● Sometimes complexity comes because an abstraction is too specific!
– We can generalize the interface to handle corner cases transparently

● Consider a tree that may be traversed
● Implicitly

– e.g. the null object pattern
struct Node {
 void traverseInOrder(auto onNode);

 Node* left;
 Node* right
 int value;
};

Generalize away corner cases

● Sometimes complexity comes because an abstraction is too specific!
– We can generalize the interface to handle corner cases transparently

● Consider a tree that may be traversed
● Implicitly

– e.g. the null object pattern
struct Node {
 void traverseInOrder(auto onNode);

 Node* left;
 Node* right
 int value;
};

root->traverseInOrder(printValue);

Generalize away corner cases

● Sometimes complexity comes because an abstraction is too specific!
– We can generalize the interface to handle corner cases transparently

● Consider a tree that may be traversed
● Implicitly

– e.g. the null object pattern
struct Node {
 void traverseInOrder(auto onNode);

 Node* left;
 Node* right
 int value;
};

root->traverseInOrder(printValue);
void
Node::traverseInOrder(auto onNode) {
 if (left) left->traverseInOrder(onNode);
 onNode(this);
 if (right) right->traverseInOrder(onNode);
}

Generalize away corner cases

● Sometimes complexity comes because an abstraction is too specific!
– We can generalize the interface to handle corner cases transparently

● Consider a tree that may be traversed
● Implicitly

– e.g. the null object patternstruct Node {
 void traverseInOrder(auto onNode);

 Node* left;
 Node* right
 int value;
};

root->traverseInOrder(printValue);void
Node::traverseInOrder(auto onNode) {
 if (left) left->traverseInOrder(onNode);
 onNode(this);
 if (right) right->traverseInOrder(onNode);
}

struct Node {
 virtual void traverseInOrder(auto onNode) = 0;
};

Generalize away corner cases

● Sometimes complexity comes because an abstraction is too specific!
– We can generalize the interface to handle corner cases transparently

● Consider a tree that may be traversed
● Implicitly

– e.g. the null object patternstruct Node {
 void traverseInOrder(auto onNode);

 Node* left;
 Node* right
 int value;
};

root->traverseInOrder(printValue);void
Node::traverseInOrder(auto onNode) {
 if (left) left->traverseInOrder(onNode);
 onNode(this);
 if (right) right->traverseInOrder(onNode);
}

struct Node {
 virtual void traverseInOrder(auto onNode) = 0;
}; struct InternalNode : public Node {

 void traverseInOrder(auto onNode) override {
 left->traverseInOrder(onNode);
 onNode(this);
 right->traverseInOrder(onNode);
 }
 int value;
};

Generalize away corner cases

● Sometimes complexity comes because an abstraction is too specific!
– We can generalize the interface to handle corner cases transparently

● Consider a tree that may be traversed
● Implicitly

– e.g. the null object patternstruct Node {
 void traverseInOrder(auto onNode);

 Node* left;
 Node* right
 int value;
};

root->traverseInOrder(printValue);void
Node::traverseInOrder(auto onNode) {
 if (left) left->traverseInOrder(onNode);
 onNode(this);
 if (right) right->traverseInOrder(onNode);
}

struct Node {
 virtual void traverseInOrder(auto onNode) = 0;
}; struct InternalNode : public Node {

 void traverseInOrder(auto onNode) override {
 left->traverseInOrder(onNode);
 onNode(this);
 right->traverseInOrder(onNode);
 }
 int value;
};

struct LeafNode : public Node {
 void traverseInOrder(auto onNode) override { }
};

Generalize away corner cases

● Sometimes complexity comes because an abstraction is too specific!
– We can generalize the interface to handle corner cases transparently

● Consider a tree that may be traversed
● Implicitly

– e.g. the null object pattern
● Explicitly

– e.g. getChildren() vs getLeft() & getRight()

Generalize away corner cases

● Sometimes complexity comes because an abstraction is too specific!
– We can generalize the interface to handle corner cases transparently

● Consider a tree that may be traversed
● Implicitly

– e.g. the null object pattern
● Explicitly

– e.g. getChildren() vs getLeft() & getRight()

What are the trade offs?

Fluent APIs

● Fluent APIs use strong return types to enforce correct behaviors

Fluent APIs

● Fluent APIs use strong return types to enforce correct behaviors

ComplexProcess p;
p.doThing1();
p.doThing2();
p.doThing3();

Fluent APIs

● Fluent APIs use strong return types to enforce correct behaviors

ComplexProcess p;
p.doThing1();
p.doThing3();
p.doThing2();

ComplexProcess p;
p.doThing1();
p.doThing2();
p.doThing3();

Fluent APIs

● Fluent APIs use strong return types to enforce correct behaviors

ComplexProcess p;
p.doThing1();
p.doThing3();

ComplexProcess p;
p.doThing1();
p.doThing3();
p.doThing2();

ComplexProcess p;
p.doThing1();
p.doThing2();
p.doThing3();

Fluent APIs

● Fluent APIs use strong return types to enforce correct behaviors
● By returning a new type that controls the available behaviors,

you can enforce the protocols you want.

Fluent APIs

● Fluent APIs use strong return types to enforce correct behaviors
● By returning a new type that controls the available behaviors,

you can enforce the protocols you want.
struct ComplexProcess {
 Stage1 doStep1();
}
struct Stage1 {
 Stage2 doStep2();
}
struct Stage2 {
 void doStep3();
}

Fluent APIs

● Fluent APIs use strong return types to enforce correct behaviors
● By returning a new type that controls the available behaviors,

you can enforce the protocols you want.
struct ComplexProcess {
 Stage1 doStep1();
}
struct Stage1 {
 Stage2 doStep2();
}
struct Stage2 {
 void doStep3();
}

ComplexProcess p;
p.doStep1()
 .doStep2()
 .doStep3();

Fluent APIs

● Fluent APIs use strong return types to enforce correct behaviors
● By returning a new type that controls the available behaviors,

you can enforce the protocols you want.
struct ComplexProcess {
 Stage1 doStep1();
}
struct Stage1 {
 Stage2 doStep2();
}
struct Stage2 {
 void doStep3();
}

ComplexProcess p;
p.doStep1()
 .doStep3();

We can make invalid usage
a compilation error.

ComplexProcess p;
p.doStep1()
 .doStep2()
 .doStep3();

Fluent APIs

● Fluent APIs use strong return types to enforce correct behaviors
● By returning a new type that controls the available behaviors,

you can enforce the protocols you want.
struct ComplexProcess {
 Stage1 doStep1();
}
struct Stage1 {
 Stage2 doStep2();
}
struct Stage2 {
 void doStep3();
}

ComplexProcess p;
p.doStep1()
 .doStep3();

ComplexProcess p;
p.doStep1()
 .doStep2();
 .doStep3();

ComplexProcess p;
p.doStep1()
 .doStep2()
 .doStep3();

Fluent APIs

● Fluent APIs use strong return types to enforce correct behaviors
● By returning a new type that controls the available behaviors,

you can enforce the protocols you want.
struct ComplexProcess {
 [[nodiscard]] Stage1 doStep1();
}
struct Stage1 {
 [[nodiscard]] Stage2 doStep2();
}
struct Stage2 {
 void doStep3();
}

ComplexProcess p;
p.doStep1()
 .doStep3();

ComplexProcess p;
p.doStep1()
 .doStep2();
 .doStep3();

Fluent APIs

● Fluent APIs use strong return types to enforce correct behaviors
● By returning a new type that controls the available behaviors,

you can enforce the protocols you want.
struct ComplexProcess {
 Stage1 doStep1();
}
[[nodiscard]] struct Stage1 {
 Stage2 doStep2();
}
[[nodiscard]] struct Stage2 {
 void doStep3();
}

ComplexProcess p;
p.doStep1()
 .doStep3();

ComplexProcess p;
p.doStep1()
 .doStep2();
 .doStep3();

Fluent APIs

● Fluent APIs use strong return types to enforce correct behaviors
● By returning a new type that controls the available behaviors,

you can enforce the protocols you want.
● In practice, you can express things like

– Selecting from options
– Sequencing
– Iteration

using nothing more than return types!

state machines

Fluent APIs

● Fluent APIs use strong return types to enforce correct behaviors
● By returning a new type that controls the available behaviors,

you can enforce the protocols you want.
● In practice, you can express things like

– Selecting from options
– Sequencing
– Iteration

using nothing more than return types!

state machines

InSequence dummy;
EXPECT_CALL(mockThing, foo(Ge(20)))
 .Times(2) // Can be omitted here
 .WillOnce(Return(100))
 .WillOnce(Return(200));
EXPECT_CALL(mockThing, bar(Lt(5)));

Monadic APIs

● Monadic APIs use patterns from functional languages
to hide corner cases behind an API

Monadic APIs

● Monadic APIs use patterns from functional languages
to hide corner cases behind an API
– There is a rich formalism behind them that provides composability
– These are increasingly common (Java, Javascript, C++, ...)
– In fact, we have already seen some in class!

Monadic APIs

● Monadic APIs use patterns from functional languages
to hide corner cases behind an API
– There is a rich formalism behind them that provides composability
– These are increasingly common (Java, Javascript, C++, ...)
– In fact, we have already seen some in class!

int total = accumulate(view::iota(1)
 | view::transform([](int x){return x*x;})
 | view::take(10), 0);

[Milewski 2014]

Monadic APIs

● Monadic APIs use patterns from functional languages
to hide corner cases behind an API
– There is a rich formalism behind them that provides composability
– These are increasingly common (Java, Javascript, C++, ...)
– In fact, we have already seen some in class!

● We can create an abstraction for a specific design concern,
hide burdens of it within a clean API,
& push behaviors into the API that handles the concern.

Monadic APIs

● Monadic APIs use patterns from functional languages
to hide corner cases behind an API
– There is a rich formalism behind them that provides composability
– These are increasingly common (Java, Javascript, C++, ...)
– In fact, we have already seen some in class!

● We can create an abstraction for a specific design concern,
hide burdens of it within a clean API,
& push behaviors into the API that handles the concern.

– Create: z → A[z]
– Bind: (A[x] , x → A[y]) → A[y]

Monadic APIs

● Monadic APIs use patterns from functional languages
to hide corner cases behind an API
– There is a rich formalism behind them that provides composability
– These are increasingly common (Java, Javascript, C++, ...)
– In fact, we have already seen some in class!

● We can create an abstraction for a specific design concern,
hide burdens of it within a clean API,
& push behaviors into the API that handles the concern.

– Create: z → A[z]
– Bind: (A[x] , x → A[y]) → A[y]

int total = accumulate(view::iota(1)
 | view::transform([](int x){return x*x;})
 | view::take(10), 0);

Monadic APIs

● Monadic APIs use patterns from functional languages
to hide corner cases behind an API
– There is a rich formalism behind them that provides composability
– These are increasingly common (Java, Javascript, C++, ...)
– In fact, we have already seen some in class!

● We can create an abstraction for a specific design concern,
hide burdens of it within a clean API,
& push behaviors into the API that handles the concern.

– Create: z → A[z]
– Bind: (A[x] , x → A[y]) → A[y]

● In fact, Option is a monad in many languages

Monadic APIs

● Monadic APIs use patterns from functional languages
to hide corner cases behind an API
– There is a rich formalism behind them that provides composability
– These are increasingly common (Java, Javascript, C++, ...)
– In fact, we have already seen some in class!

std::optional<image>
get_cute_cat (const image& img) {
 auto cropped = crop_to_cat(img);
 if (!cropped) {
 return std::nullopt;
 }

 auto with_tie = add_bow_tie(*cropped);
 if (!with_tie) {
 return std::nullopt;
 }

 auto with_sparkles = make_eyes_sparkle(*with_tie);
 if (!with_sparkles) {
 return std::nullopt;
 }

 return add_rainbow(make_smaller(*with_sparkles));
}

[Brand 2017]

Monadic APIs

● Monadic APIs use patterns from functional languages
to hide corner cases behind an API
– There is a rich formalism behind them that provides composability
– These are increasingly common (Java, Javascript, C++, ...)
– In fact, we have already seen some in class!

std::optional<image>
get_cute_cat (const image& img) {
 auto cropped = crop_to_cat(img);
 if (!cropped) {
 return std::nullopt;
 }

 auto with_tie = add_bow_tie(*cropped);
 if (!with_tie) {
 return std::nullopt;
 }

 auto with_sparkles = make_eyes_sparkle(*with_tie);
 if (!with_sparkles) {
 return std::nullopt;
 }

 return add_rainbow(make_smaller(*with_sparkles));
}

[Brand 2017]

Monadic APIs

● Monadic APIs use patterns from functional languages
to hide corner cases behind an API
– There is a rich formalism behind them that provides composability
– These are increasingly common (Java, Javascript, C++, ...)
– In fact, we have already seen some in class!

std::optional<image>
get_cute_cat (const image& img) {
 auto cropped = crop_to_cat(img);
 if (!cropped) {
 return std::nullopt;
 }

 auto with_tie = add_bow_tie(*cropped);
 if (!with_tie) {
 return std::nullopt;
 }

 auto with_sparkles = make_eyes_sparkle(*with_tie);
 if (!with_sparkles) {
 return std::nullopt;
 }

 return add_rainbow(make_smaller(*with_sparkles));
}

[Brand 2017]

Monadic APIs

● Monadic APIs use patterns from functional languages
to hide corner cases behind an API
– There is a rich formalism behind them that provides composability
– These are increasingly common (Java, Javascript, C++, ...)
– In fact, we have already seen some in class!

std::optional<image>
get_cute_cat (const image& img) {
 auto cropped = crop_to_cat(img);
 if (!cropped) {
 return std::nullopt;
 }

 auto with_tie = add_bow_tie(*cropped);
 if (!with_tie) {
 return std::nullopt;
 }

 auto with_sparkles = make_eyes_sparkle(*with_tie);
 if (!with_sparkles) {
 return std::nullopt;
 }

 return add_rainbow(make_smaller(*with_sparkles));
}

[Brand 2017]

std::optional<image>
get_cute_cat (const image& img) {
 return crop_to_cat(img)
 .and_then(add_bow_tie)
 .and_then(make_eyes_sparkle)
 .map(make_smaller)
 .map(add_rainbow);
}

Monadic APIs

● Monadic APIs use patterns from functional languages
to hide corner cases behind an API
– There is a rich formalism behind them that provides composability
– These are increasingly common (Java, Javascript, C++, ...)
– In fact, we have already seen some in class!

std::optional<image>
get_cute_cat (const image& img) {
 auto cropped = crop_to_cat(img);
 if (!cropped) {
 return std::nullopt;
 }

 auto with_tie = add_bow_tie(*cropped);
 if (!with_tie) {
 return std::nullopt;
 }

 auto with_sparkles = make_eyes_sparkle(*with_tie);
 if (!with_sparkles) {
 return std::nullopt;
 }

 return add_rainbow(make_smaller(*with_sparkles));
}

[Brand 2017]

std::optional<image>
get_cute_cat (const image& img) {
 return crop_to_cat(img)
 .and_then(add_bow_tie)
 .and_then(make_eyes_sparkle)
 .map(make_smaller)
 .map(add_rainbow);
}

Monadic APIs

● Monadic APIs use patterns from functional languages
to hide corner cases behind an API
– There is a rich formalism behind them that provides composability
– These are increasingly common (Java, Javascript, C++, ...)
– In fact, we have already seen some in class!

std::optional<image>
get_cute_cat (const image& img) {
 auto cropped = crop_to_cat(img);
 if (!cropped) {
 return std::nullopt;
 }

 auto with_tie = add_bow_tie(*cropped);
 if (!with_tie) {
 return std::nullopt;
 }

 auto with_sparkles = make_eyes_sparkle(*with_tie);
 if (!with_sparkles) {
 return std::nullopt;
 }

 return add_rainbow(make_smaller(*with_sparkles));
}

[Brand 2017]

std::optional<image>
get_cute_cat (const image& img) {
 return crop_to_cat(img)
 .and_then(add_bow_tie)
 .and_then(make_eyes_sparkle)
 .map(make_smaller)
 .map(add_rainbow);
}

Monadic APIs

● Monadic APIs use patterns from functional languages
to hide corner cases behind an API
– There is a rich formalism behind them that provides composability
– These are increasingly common (Java, Javascript, C++, ...)
– In fact, we have already seen some in class!

std::optional<image>
get_cute_cat (const image& img) {
 auto cropped = crop_to_cat(img);
 if (!cropped) {
 return std::nullopt;
 }

 auto with_tie = add_bow_tie(*cropped);
 if (!with_tie) {
 return std::nullopt;
 }

 auto with_sparkles = make_eyes_sparkle(*with_tie);
 if (!with_sparkles) {
 return std::nullopt;
 }

 return add_rainbow(make_smaller(*with_sparkles));
}

[Brand 2017]

std::optional<image>
get_cute_cat (const image& img) {
 return crop_to_cat(img)
 .and_then(add_bow_tie)
 .and_then(make_eyes_sparkle)
 .map(make_smaller)
 .map(add_rainbow);
}

Other more advanced topics?

● Versioning
● Performance
● Wire protocols (more like GraphQL, protobuffers, etc.)

Summary

● Try to make your APIs
– express essential complexity of the boundary
– hide the corner cases of the implementation

Summary

● Try to make your APIs
– express essential complexity of the boundary
– hide the corner cases of the implementation

● Use types to you advantage in the process
– Strong, expressive types
– Fluent APIs to direct flow
– Monadic APIs for composability while abstracting out complexity

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102

