
CMPT 373
Software Development Methods

Nick Sumner
wsumner@sfu.ca

Designing APIs for Simplicity
and Preventing Errors



  

What is an API?

● API – Application Programming Interface
– A specification of how things interact



  

What is an API?

● API – Application Programming Interface
– A specification of how things interact

● Crosses many levels of design



  

What is an API?

● API – Application Programming Interface
– A specification of how things interact

● Crosses many levels of design
– Web Apps: REST, GraphQL, OpenAPI spec



  

What is an API?

● API – Application Programming Interface
– A specification of how things interact

● Crosses many levels of design
– Web Apps: REST, GraphQL, OpenAPI spec
– Library interfaces



  

What is an API?

● API – Application Programming Interface
– A specification of how things interact

● Crosses many levels of design
– Web Apps: REST, GraphQL, OpenAPI spec
– Library interfaces
– Class & function definitions



  

What is an API?

● API – Application Programming Interface
– A specification of how things interact

● Crosses many levels of design
– Web Apps: REST, GraphQL, OpenAPI spec
– Library interfaces
– Class & function definitions
– For some functions, even just the code within the function....



  

What is an API?

● API – Application Programming Interface
– A specification of how things interact

● Crosses many levels of design
– Web Apps: REST, GraphQL, OpenAPI spec
– Library interfaces
– Class & function definitions
– For some functions, even just the code within the function....

● An API just describes some boundary within the design process



  

What makes an API good?

● Some guidance from leaders with significant experience [Bloch 2008]
– Easy to use and hard to misuse
– Self documenting
– Structured by use cases
– Strong examples
– Displease clients equally
– Avoids fixed limits
– Minimal
– Immutable
– Fail fast
– ...
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What makes an API good?

● Some guidance from leaders with significant experience [Bloch 2008]
– Easy to use and hard to misuse
– Self documenting
– Structured by use cases
– Strong examples
– Displease clients equally
– Avoids fixed limits
– Minimal
– Immutable
– Fail fast
– ...

● Many of these can be seen as a version of the first criterion
– That will be our goal today: easy to use & hard to misuse
– The topic expands well beyond what we have time to cover

https://www.infoq.com/articles/API-Design-Joshua-Bloch/


  

Let us consider a problematic API
bool
isFasterThanSound(double speed) {
  return speed > MACH1;
}

Is this easy or hard to use? Why?



  

Let us consider a problematic API
bool
isFasterThanSound(double speed) {
  return speed > MACH1;
}

Is this easy or hard to use? Why?

      
      (double speed, double angle) {
            
}



  

Let us consider a problematic API

● Exposing primitive types on an API boundary leaves the user guessing
– What are the units? Which argument is which? ...

bool
isFasterThanSound(double speed) {
  return speed > MACH1;
}

      
      (double speed, double angle) {
            
}



  

Let us consider a problematic API

● Exposing primitive types on an API boundary leaves the user guessing
– What are the units? Which argument is which? ...

● One common form of this is a stringly typed API. Don’t.

bool
isFasterThanSound(double speed) {
  return speed > MACH1;
}

      
      (double speed, double angle) {
            
}



  

Let us consider a problematic API

● Exposing primitive types on an API boundary leaves the user guessing
– What are the units? Which argument is which? ...

● One common form of this is a stringly typed API. Don’t.

bool
isFasterThanSound(double speed) {
  return speed > MACH1;
}

      
      (double speed, double angle) {
            
}

void
feed(string food, string user) {
                      
}



  

Let us consider a problematic API

● Exposing primitive types on an API boundary leaves the user guessing
– What are the units? Which argument is which? ...

● One common form of this is a stringly typed API. Don’t.

bool
isFasterThanSound(double speed) {
  return speed > MACH1;
}

      
      (double speed, double angle) {
            
}

void
feed(string food, string user) {
                      
}

feed("John Smith", "chicken");



  

Let us consider a problematic API

● Exposing primitive types on an API boundary leaves the user guessing
– What are the units? Which argument is which? ...

● One common form of this is a stringly typed API. Don’t.

● Ideally, only the set of appropriate values should even be possible

bool
isFasterThanSound(double speed) {
  return speed > MACH1;
}

      
      (double speed, double angle) {
            
}

void
feed(string food, string user) {
                      
}

feed("John Smith", "chicken");



  

Let us consider a problematic API

● Exposing primitive types on an API boundary leaves the user guessing
– What are the units? Which argument is which? ...

● One common form of this is a stringly typed API. Don’t.

● Ideally, only the set of appropriate values should even be possible
– What name do we give to a set of values?

bool
isFasterThanSound(double speed) {
  return speed > MACH1;
}

      
      (double speed, double angle) {
            
}

void
feed(string food, string user) {
                      
}

feed("John Smith", "chicken");
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Use strong types to make APIs clear & prevent bugs

● Misusing the API results in a compile time error
● Most IDEs will even make it particularly clear
● This is sometimes called a “tiny types” idiom
● NOTE: In C++, normal type aliases are insufficient,

but we have already seen strongly typed aliases

struct User {
  ...
};

struct Food {
  ...
};

void
feed(Food food, User user) {
                      
}

feed(Food{"chicken"}, User{"John Smith"});

template<typename Value, typename Tag>
struct StrongAlias {
...
  const Value value;
};

using Side = StrongAlias<int, struct SideTag>;
using Angle = StrongAlias<double, struct AngleTag>;
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Phantom Types

● Parameterize your types by unique type names...
struct Meters {};
struct Miles {};
struct Seconds {};
struct Hours {};

template <typename T, typename U>
struct Speed { double speed; };

template <typename T>
struct Distance { double distance; };

template <typename T>
struct Time { double time; };

Speed is parameterized by
time & a unit of length



  

Phantom Types

● Consistent units are enforced via template arguments
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Phantom Types

phantom.cpp:37:19: error: no matching function for call to 'distanceTraveled’
... deduced conflicting types for parameter 'U' ('Hours' vs. 'Seconds')

phantom.cpp:41:30: error: invalid operands to binary expression
... deduced conflicting types for parameter 'T' ('Miles' vs. 'Meters')

What are the trade offs for using this technique?

d1 = distanceTraveled(Speed<Miles,Hours>{3}, Time<Hours>{5});
d2 = distanceTraveled(Speed<Meters,Seconds>{3}, Time<Seconds>{5});
d3 = d2 + d3;

distanceTraveled(Speed<Miles,Hours>{3}, Time<Seconds>{5});
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Avoiding Inconsistent State

● How can we fix it?

class CurrentState {
...
};

class Sleep
  : public CurrentState
{ };

class Work
  : public CurrentState {
  uint64_t timeWorked
};

class Student {
  unique_ptr<CurrentState> state;
};

This is part of the state pattern!

Work
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Null Object Pattern
Create a subtype representing
an object with no information. 

Any getters/methods effectively
perform no-ops.
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● Sometimes complexity comes because an abstraction is too specific!
– We can generalize the interface to handle corner cases transparently

● Consider a tree that may be traversed
● Implicitly

– e.g. the null object patternstruct Node {
  void traverseInOrder(auto onNode);

  Node* left;
  Node* right
  int value;
};

root->traverseInOrder(printValue);void
Node::traverseInOrder(auto onNode) {
  if (left) left->traverseInOrder(onNode);
  onNode(this);
  if (right) right->traverseInOrder(onNode);
}

struct Node {
  virtual void traverseInOrder(auto onNode) = 0;
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    onNode(this);
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Generalize away corner cases

● Sometimes complexity comes because an abstraction is too specific!
– We can generalize the interface to handle corner cases transparently

● Consider a tree that may be traversed
● Implicitly

– e.g. the null object patternstruct Node {
  void traverseInOrder(auto onNode);

  Node* left;
  Node* right
  int value;
};

root->traverseInOrder(printValue);void
Node::traverseInOrder(auto onNode) {
  if (left) left->traverseInOrder(onNode);
  onNode(this);
  if (right) right->traverseInOrder(onNode);
}

struct Node {
  virtual void traverseInOrder(auto onNode) = 0;
}; struct InternalNode : public Node {

  void traverseInOrder(auto onNode) override {
    left->traverseInOrder(onNode);
    onNode(this);
    right->traverseInOrder(onNode);
  }
  int value;
};

struct LeafNode : public Node {
  void traverseInOrder(auto onNode) override { }
};
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Generalize away corner cases

● Sometimes complexity comes because an abstraction is too specific!
– We can generalize the interface to handle corner cases transparently

● Consider a tree that may be traversed
● Implicitly

– e.g. the null object pattern
● Explicitly

– e.g. getChildren() vs getLeft() & getRight()

What are the trade offs?
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using nothing more than return types!

state machines



  

Fluent APIs

● Fluent APIs use strong return types to enforce correct behaviors
● By returning a new type that controls the available behaviors,

you can enforce the protocols you want.
● In practice, you can express things like

– Selecting from options
– Sequencing
– Iteration

using nothing more than return types!

state machines

InSequence dummy;
EXPECT_CALL(mockThing, foo(Ge(20)))
    .Times(2) // Can be omitted here
    .WillOnce(Return(100))
    .WillOnce(Return(200));
EXPECT_CALL(mockThing, bar(Lt(5)));
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Monadic APIs

● Monadic APIs use patterns from functional languages
to hide corner cases behind an API
– There is a rich formalism behind them that provides composability
– These are increasingly common (Java, Javascript, C++, ...)
– In fact, we have already seen some in class!

int total = accumulate(view::iota(1)
                     | view::transform([](int x){return x*x;})
                     | view::take(10), 0);

[Milewski 2014]
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Monadic APIs

● Monadic APIs use patterns from functional languages
to hide corner cases behind an API
– There is a rich formalism behind them that provides composability
– These are increasingly common (Java, Javascript, C++, ...)
– In fact, we have already seen some in class!

● We can create an abstraction for a specific design concern,
hide burdens of it within a clean API,
& push behaviors into the API that handles the concern.

– Create: z → A[z]
– Bind: (A[x] , x → A[y]) → A[y]

● In fact, Option is a monad in many languages



  

Monadic APIs

● Monadic APIs use patterns from functional languages
to hide corner cases behind an API
– There is a rich formalism behind them that provides composability
– These are increasingly common (Java, Javascript, C++, ...)
– In fact, we have already seen some in class!

std::optional<image>
get_cute_cat (const image& img) {
    auto cropped = crop_to_cat(img);
    if (!cropped) {
      return std::nullopt;
    }

    auto with_tie = add_bow_tie(*cropped);
    if (!with_tie) {
      return std::nullopt;
    }

    auto with_sparkles = make_eyes_sparkle(*with_tie);
    if (!with_sparkles) {
      return std::nullopt;
    }

    return add_rainbow(make_smaller(*with_sparkles));
}

[Brand 2017]
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std::optional<image>
get_cute_cat (const image& img) {
    return crop_to_cat(img)
           .and_then(add_bow_tie)
           .and_then(make_eyes_sparkle)
           .map(make_smaller)
           .map(add_rainbow);
}



  

Other more advanced topics?

● Versioning
● Performance
● Wire protocols (more like GraphQL, protobuffers, etc.)



  

Summary

● Try to make your APIs
– express essential complexity of the boundary
– hide the corner cases of the implementation



  

Summary

● Try to make your APIs
– express essential complexity of the boundary
– hide the corner cases of the implementation

● Use types to you advantage in the process
– Strong, expressive types
– Fluent APIs to direct flow
– Monadic APIs for composability while abstracting out complexity
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