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Thinking in Sequences:
Find, Filter, Map, & Reduce
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● Programs usually work with collections of data
– Choose some subset of data to work with
– Use the values of selected data
– Create new values based based those seen
– Maybe even update the existing collection

● This is pervasive at all levels
– Data structures
– Databases
– Distributed stores
– ...

● And it is error prone and easy to overcomplicate
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Guidance on Collections

● From the very first year (ideally, semester)
you are told to break a problem into smaller parts.
– But how do you go about doing that?
– What are the primary parts to consider?

● The smaller implementation details get in the way of
what exactly is going on
why you believe it is correct

● Significant effort is spent on handling
common corner cases of collections instead of goal oriented logic

● Breaking the problem apart into pieces helps clarify these steps 
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Filter

Map

Group 

Separating these pieces makes code easier to maintain.
Most languages today make them simple & efficient.

For simpler problems than this,
removing the bookkeeping alone is worth it.

We can actually break it down
in simpler ways, too.
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This shrinks the solution space!
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● Most problems on collections break down into operations on collections
– Filter – select a subset of data to work on
– Map – transform each value into a new value
– Reduce – combine values into a result
– Find – identify a useful location / boundary in data

● How these primitives are spelled varies (e.g. in classic C++)
– Filter – partition,    stable_partition,    copy_if
– Map – transform
– Reduce – accumulate,   reduce
– Find – find,    find_if

● One of the first things you should do in a new language
is figure out how these are spelled
– Java (streams),   C# (LINQ),   Python (builtins+comprehensions),   C++ (STL & ranges)
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gpa:...

ID: C
year:1
gpa:...

ID: E
year:2
gpa:...

students

students

partition



  

Filter

● Given a predicate p, identify & group the elements for which p is true
– std::partition, stable_partition, std::copy_if

std::vector<Student> selected;
selected.reserve(students.size());
std::ranges::copy_if(students, std::back_inserter(selected),
  [](const Student& s) { return s.year >= 3; });
auto subrange = std::ranges::partition(students,
  [](const Student& s) { return s.year >= 3; });

ID: A
year:4
gpa:...

ID: B
year:3
gpa:...

ID: C
year:1
gpa:...

ID: D
year:3
gpa:...

ID: E
year:2
gpa:...

ID: A
year:4
gpa:...

ID: B
year:3
gpa:...

ID: D
year:3
gpa:...

ID: C
year:1
gpa:...

ID: E
year:2
gpa:...

Returned as a range

students

students

partition



  

Filter

● Given a predicate p, identify & group the elements for which p is true
– std::partition, stable_partition, std::copy_if

std::vector<Student> selected;
selected.reserve(students.size());
std::ranges::copy_if(students, std::back_inserter(selected),
  [](const Student& s) { return s.year >= 3; });
auto subrange = std::ranges::partition(students,
  [](const Student& s) { return s.year >= 3; });

Mutability makes it one line

ID: A
year:4
gpa:...

ID: B
year:3
gpa:...

ID: C
year:1
gpa:...

ID: D
year:3
gpa:...

ID: E
year:2
gpa:...

ID: A
year:4
gpa:...

ID: B
year:3
gpa:...

ID: D
year:3
gpa:...

ID: C
year:1
gpa:...

ID: E
year:2
gpa:...

Returned as a range

students

students

partition



  

Map

● Apply a function to each element of a collection and store the result 
as desired
– std::transform

std::vector<BucketData> projected(selected.size());
std::ranges::transform(selected, projected.begin(),
  [] (const Student& s) {
    return BucketData{min(int(s.gpa / 0.5), 8), s.offset};
});
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std::ranges::transform(selected, projected.begin(),
  [] (const Student& s) {
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});

ID: A
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gpa:...
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Map

● Apply a function to each element of a collection and store the result 
as desired
– std::transform

std::vector<BucketData> projected(selected.size());
std::ranges::transform(selected, projected.begin(),
  [] (const Student& s) {
    return BucketData{min(int(s.gpa / 0.5), 8), s.offset};
});

ID: A
year:4
gpa:...

ID: B
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projected

transform    



  

Map

● Apply a function to each element of a collection and store the result 
as desired
– std::transform

std::vector<BucketData> projected(selected.size());
std::ranges::transform(selected, projected.begin(),
  [] (const Student& s) {
    return BucketData{min(int(s.gpa / 0.5), 8), s.offset};
});

ID: A
year:4
gpa:...

ID: B
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gpa:...

ID: D
year:3
gpa:...

ID: A
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projected

transform    



  

Map

● Apply a function to each element of a collection and store the result 
as desired
– std::transform

std::vector<BucketData> projected(selected.size());
std::ranges::transform(selected, projected.begin(),
  [] (const Student& s) {
    return BucketData{min(int(s.gpa / 0.5), 8), s.offset};
});

ID: A
year:4
gpa:...

ID: B
year:3
gpa:...

ID: D
year:3
gpa:...

ID: A
offset:4
bucket:6

ID: B
offset:3
bucket:5

selected

projected

transform    



  

Map

● Apply a function to each element of a collection and store the result 
as desired
– std::transform

std::vector<BucketData> projected(selected.size());
std::ranges::transform(selected, projected.begin(),
  [] (const Student& s) {
    return BucketData{min(int(s.gpa / 0.5), 8), s.offset};
});

ID: A
year:4
gpa:...
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ID: B
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Map

● Apply a function to each element of a collection and store the result 
as desired
– std::transform

std::vector<BucketData> projected(selected.size());
std::ranges::transform(selected, projected.begin(),
  [] (const Student& s) {
    return BucketData{min(int(s.gpa / 0.5), 8), s.offset};
});

ID: A
year:4
gpa:...

ID: B
year:3
gpa:...

ID: D
year:3
gpa:...

ID: A
offset:4
bucket:6

ID: B
offset:3
bucket:5

ID: D
offset:3
bucket:6

selected

projected

transform    
The resulting type can be different,

but this is not required



  

Reduce

● Combine results of processing different elements
– std::accumulate, std::reduce

std::vector numbers = { 0, 1, 2, 3, 4, 5, 6, 7 };
auto sum = ...
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● Combine results of processing different elements
– std::accumulate, std::reduce

std::vector numbers = { 0, 1, 2, 3, 4, 5, 6, 7 };
auto sum = std::accumulate(numbers.begin(), numbers.end());
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– std::accumulate, std::reduce

std::vector numbers = { 0, 1, 2, 3, 4, 5, 6, 7 };
auto sum = std::accumulate(numbers.begin(), numbers.end());
auto product = std::accumulate(numbers.begin(), numbers.end(),
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Reduce

● Combine results of processing different elements
– std::accumulate, std::reduce

std::vector numbers = { 0, 1, 2, 3, 4, 5, 6, 7 };
auto sum = std::accumulate(numbers.begin(), numbers.end());
auto product = std::accumulate(numbers.begin(), numbers.end(),

1, std::multiplies{});



  

Reduce

● Combine results of processing different elements
– std::accumulate, std::reduce

● Reduce operations take
– An initial value

std::vector numbers = { 0, 1, 2, 3, 4, 5, 6, 7 };
auto sum = std::accumulate(numbers.begin(), numbers.end());
auto product = std::accumulate(numbers.begin(), numbers.end(),

1, std::multiplies{});



  

Reduce

● Combine results of processing different elements
– std::accumulate, std::reduce

● Reduce operations take
– An initial value
– A function consuming the value computed so far & current element

to compute a new value

std::vector numbers = { 0, 1, 2, 3, 4, 5, 6, 7 };
auto sum = std::accumulate(numbers.begin(), numbers.end());
auto product = std::accumulate(numbers.begin(), numbers.end(),

1, std::multiplies{});



  

Reduce
std::vector numbers = { 3, 5, 1, 2 };
auto product = std::accumulate(numbers.begin(), numbers.end(),

1, std::multiplies{});

So far: 1

3 5 1 2



  

Reduce

So far: 1 3

3 5 1 2*

std::vector numbers = { 3, 5, 1, 2 };
auto product = std::accumulate(numbers.begin(), numbers.end(),

1, std::multiplies{});



  

Reduce

So far: 1 3 15

3 5 1 2*

std::vector numbers = { 3, 5, 1, 2 };
auto product = std::accumulate(numbers.begin(), numbers.end(),

1, std::multiplies{});
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So far: 1 3 15 15

3 5 1 2*

std::vector numbers = { 3, 5, 1, 2 };
auto product = std::accumulate(numbers.begin(), numbers.end(),

1, std::multiplies{});



  

Reduce

So far: 1 3 15 15 30

3 5 1 2*

std::vector numbers = { 3, 5, 1, 2 };
auto product = std::accumulate(numbers.begin(), numbers.end(),

1, std::multiplies{});



  

Reduce

So far: 1 3 15 15 30

3 5 1 2

std::vector numbers = { 3, 5, 1, 2 };
auto product = std::accumulate(numbers.begin(), numbers.end(),

1, std::multiplies{});



  

Reduce

● Reduce operations explicitly capture the inductive nature of loops

So far: 1 3 15 15 30

3 5 1 2

std::vector numbers = { 3, 5, 1, 2 };
auto product = std::accumulate(numbers.begin(), numbers.end(),

1, std::multiplies{});



  

Reduce

● Reduce operations explicitly capture the inductive nature of loops
– Start with a base case

std::vector numbers = { 3, 5, 1, 2 };
auto product = std::accumulate(numbers.begin(), numbers.end(),

1, std::multiplies{});

So far: 1 3 15 15 30

3 5 1 2



  

Reduce

● Reduce operations explicitly capture the inductive nature of loops
– Start with a base case
– Each iteration computes the state so far 

So far: 1 3 15 15 30

3 5 1 2

std::vector numbers = { 3, 5, 1, 2 };
auto product = std::accumulate(numbers.begin(), numbers.end(),

1, std::multiplies{});



  

Reduce

● Reduce operations explicitly capture the inductive nature of loops
– Start with a base case
– Each iteration computes the state so far
– When all iterations have completed,

the final result should be the intended goal

So far: 1 3 15 15 30

3 5 1 2

std::vector numbers = { 3, 5, 1, 2 };
auto product = std::accumulate(numbers.begin(), numbers.end(),

1, std::multiplies{});



  

Reduce

● Note: The computed value can be a different type than the elements!
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● Note: The computed value can be a different type than the elements!
– Thus, given:

a collection of T
an initial value U
an operation (U,T) → U

reduce computes a value U from a collection

reduce: (  [T],  U,  (U,T)→U  )  →  U



  

Reduce

● Note: The computed value can be a different type than the elements!
– Thus, given:

a collection of T
an initial value U
an operation (U,T) → U

reduce computes a value U from a collection
std::vector numbers = { 3, 5, 1, 2 };
auto asString = std::accumulate(numbers.begin(), numbers.end(),std::string{},
  [](std::string sofar, int i) { return sofar + std::to_string(i); });

reduce: (  [T],  U,  (U,T)→U  )  →  U



  

Reduce

● Note: The computed value can be a different type than the elements!
– Thus, given:

a collection of T
an initial value U
an operation (U,T) → U

reduce computes a value U from a collection
std::vector numbers = { 3, 5, 1, 2 };
auto asString = std::accumulate(numbers.begin(), numbers.end(),std::string{},
  [](std::string sofar, int i) { return sofar + std::to_string(i); });

So far:

3 5 1 2

""

reduce: (  [T],  U,  (U,T)→U  )  →  U



  

Reduce

● Note: The computed value can be a different type than the elements!
– Thus, given:

a collection of T
an initial value U
an operation (U,T) → U

reduce computes a value U from a collection
std::vector numbers = { 3, 5, 1, 2 };
auto asString = std::accumulate(numbers.begin(), numbers.end(),std::string{},
  [](std::string sofar, int i) { return sofar + std::to_string(i); });

So far:

3 5 1 2

"" "3"+

reduce: (  [T],  U,  (U,T)→U  )  →  U



  

Reduce

● Note: The computed value can be a different type than the elements!
– Thus, given:

a collection of T
an initial value U
an operation (U,T) → U

reduce computes a value U from a collection
std::vector numbers = { 3, 5, 1, 2 };
auto asString = std::accumulate(numbers.begin(), numbers.end(),std::string{},
  [](std::string sofar, int i) { return sofar + std::to_string(i); });

So far:

3 5 1 2

"" "3" "35"+

reduce: (  [T],  U,  (U,T)→U  )  →  U



  

Reduce

● Note: The computed value can be a different type than the elements!
– Thus, given:

a collection of T
an initial value U
an operation (U,T) → U

reduce computes a value U from a collection
std::vector numbers = { 3, 5, 1, 2 };
auto asString = std::accumulate(numbers.begin(), numbers.end(),std::string{},
  [](std::string sofar, int i) { return sofar + std::to_string(i); });

So far:

3 5 1 2

"" "3" "35" "351"+

reduce: (  [T],  U,  (U,T)→U  )  →  U



  

Reduce

● Note: The computed value can be a different type than the elements!
– Thus, given:

a collection of T
an initial value U
an operation (U,T) → U

reduce computes a value U from a collection
std::vector numbers = { 3, 5, 1, 2 };
auto asString = std::accumulate(numbers.begin(), numbers.end(),std::string{},
  [](std::string sofar, int i) { return sofar + std::to_string(i); });

So far:

3 5 1 2

"" "3" "35" "351" "3512"+

reduce: (  [T],  U,  (U,T)→U  )  →  U



  

Reduce

● Note: The computed value can be a different type than the elements!
– Thus, given:

a collection of T
an initial value U
an operation (U,T) → U

reduce computes a value U from a collection

● The computed state so far can be anything needed to capture
the progress made toward the goal

std::vector numbers = { 3, 5, 1, 2 };
auto asString = std::accumulate(numbers.begin(), numbers.end(),std::string{},
  [](std::string sofar, int i) { return sofar + std::to_string(i); });

So far:

3 5 1 2

"" "3" "35" "351" "3512"

reduce: (  [T],  U,  (U,T)→U  )  →  U



  

Reduce

● Note: The computed value can be a different type than the elements!
– Thus, given:

a collection of T
an initial value U
an operation (U,T) → U

reduce computes a value U from a collection

● The computed state so far can be anything needed to capture
the progress made toward the goal

std::vector numbers = { 3, 5, 1, 2 };
auto asString = std::accumulate(numbers.begin(), numbers.end(),std::string{},
  [](std::string sofar, int i) { return sofar + std::to_string(i); });

So far:

3 5 1 2

"" "3" "35" "351" "3512"

reduce: (  [T],  U,  (U,T)→U  )  →  U

But do remember,
concatenating strings like this

is a poor goal.



  

Generality of Reduce

● In fact, this means most functions on loops can be written via a reduce!



  

Generality of Reduce

● In fact, this means most functions on loops can be written via a reduce!
bool
any_of(auto& collection, auto predicate) {
  return std::accumulate(collection.begin() collection.end(), false,
    [](bool sofar, auto& element) { return sofar || predicate(element); });
}



  

Generality of Reduce

● In fact, this means most functions on loops can be written via a reduce!
bool
any_of(auto& collection, auto predicate) {
  return std::accumulate(collection.begin() collection.end(), false,
    [](bool sofar, auto& element) { return sofar || predicate(element); });
} auto
max(auto& collection, auto minimum) {
  return std::accumulate(collection.begin() collection.end(), minimum,
    [](auto sofar, auto& element) {
      return (element > sofar) ? element : sofar;
  });
}



  

Generality of Reduce

● In fact, this means most functions on loops can be written via a reduce!
bool
any_of(auto& collection, auto predicate) {
  return std::accumulate(collection.begin() collection.end(), false,
    [](bool sofar, auto& element) { return sofar || predicate(element); });
} auto
max(auto& collection, auto minimum) {
  return std::accumulate(collection.begin() collection.end(), minimum,
    [](auto sofar, auto& element) {
      return (element > sofar) ? element : sofar;
  });
} auto
count_if(auto& collection, auto predicate) {
  return std::accumulate(collection.begin() collection.end(), 0,
    [predicate](auto sofar, auto& element) {
      return sofar + (predicate(element) ? 1 : 0);
  });
}



  

Find

● Find clearly doesn’t give us the ability to compute anything new
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● Note: map, filter, & reduce will consider an entire collection
● Find gives us the ability to short-circuit operations



  

Find

● Find clearly doesn’t give us the ability to compute anything new
– Some schools prefer to teach just filter, map, and reduce
– But it can add efficiency

● Note: map, filter, & reduce will consider an entire collection
● Find gives us the ability to short-circuit operations
bool
any_of(auto& collection, auto predicate) {
  return std::ranges::find_if(collection, predicate) != collection.end();
}



  

Find

● Find clearly doesn’t give us the ability to compute anything new
– Some schools prefer to teach just filter, map, and reduce
– But it can add efficiency

● Note: map, filter, & reduce will consider an entire collection
● Find gives us the ability to short-circuit operations
bool
any_of(auto& collection, auto predicate) {
  return std::ranges::find_if(collection, predicate) != collection.end();
}

While reduce processes the entire list,
this stops at the first match



  

Can we now make this clearer? (a bit)

Mutability & selection of how
to connect the core ingredients

affects the simplicity
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auto selected = std::ranges::partition(students,
  [](const Student& s) { return s.year >= 3; });

Mutability & selection of how
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affects the simplicity



  

Can we now make this clearer? (a bit)
auto selected = std::ranges::partition(students,
  [](const Student& s) { return s.year >= 3; });
auto getBucket = [] (const Student& s) {
  return BucketData{min(int(s.gpa / 0.5), 8), s.offset};
};

Mutability & selection of how
to connect the core ingredients

affects the simplicity



  

Can we now make this clearer? (a bit)
auto selected = std::ranges::partition(students,
  [](const Student& s) { return s.year >= 3; });
auto getBucket = [] (const Student& s) {
  return BucketData{min(int(s.gpa / 0.5), 8), s.offset};
};
std::ranges::sort(selected, {}, getBucket); Mutability & selection of how

to connect the core ingredients
affects the simplicity



  

Can we now make this clearer? (a bit)
auto selected = std::ranges::partition(students,
  [](const Student& s) { return s.year >= 3; });
auto getBucket = [] (const Student& s) {
  return BucketData{min(int(s.gpa / 0.5), 8), s.offset};
};
std::ranges::sort(selected, {}, getBucket);
std::array<std::span<BucketData>,9> buckets;
auto remainder = std::span{projected};
while (!remainder.empty()) {
  auto foundEnd = std::ranges::find_if(remainder,
    [remainder](const auto& s) { return s.bucket != remainder.front().bucket; });
  buckets[remainder.front().bucket] = std::span{remainder.begin(), foundEnd};
  remainder = std::span{foundEnd, remainder.end()};
}

Mutability & selection of how
to connect the core ingredients

affects the simplicity



  

Can we now make this clearer? (a bit)
auto selected = std::ranges::partition(students,
  [](const Student& s) { return s.year >= 3; });
auto getBucket = [] (const Student& s) {
  return BucketData{min(int(s.gpa / 0.5), 8), s.offset};
};
std::ranges::sort(selected, {}, getBucket);
std::array<std::span<BucketData>,9> buckets;
auto remainder = std::span{projected};
while (!remainder.empty()) {
  auto foundEnd = std::ranges::find_if(remainder,
    [remainder](const auto& s) { return s.bucket != remainder.front().bucket; });
  buckets[remainder.front().bucket] = std::span{remainder.begin(), foundEnd};
  remainder = std::span{foundEnd, remainder.end()};
}
std::array<float,9> averages;
std::ranges::transform(buckets, averages.begin(), [](auto& bucket) {
  return std::accumulate(bucket.begin(), bucket.end(), 0.0f,
                   [](float sofar, const auto& student) { return sofar + student.offset; })
      / (bucket.empty() ? 1 : bucket.size()); });

Mutability & selection of how
to connect the core ingredients

affects the simplicity



  

So why was the “improvement” complicated

● Operating eagerly requires (e.g.)
– First selecting all data and storing it
– Then mapping all data and storing it
– Then grouping all data and storing it
– Then analyzing all data and storing it

std::vector<Student> selected;
selected.reserve(students.size());
std::ranges::copy_if(students, std::back_inserter(selected),
  [](const Student& s) { return s.year >= 3; });
struct BucketData { int offset; int bucket; };
std::vector<BucketData> projected(selected.size());
std::ranges::transform(selected, projected.begin(),
  [] (const Student& s) { return BucketData{min(int(s.gpa / 0.5), 8), s.offset}; });
std::ranges::sort(projected, {}, &BucketData::bucket);
std::array<std::span<BucketData>,9> buckets;
auto remainder = std::span{projected};
while (!remainder.empty()) {
  auto foundEnd = std::ranges::find_if(remainder,
    [remainder](const auto& s) { return s.bucket != remainder.front().bucket; });
  buckets[remainder.front().bucket] = std::span{remainder.begin(), foundEnd};
  remainder = std::span{foundEnd, remainder.end()};
}
std::array<float,9> averages;
std::ranges::transform(buckets, averages.begin(), [](auto& bucket) {
  return std::accumulate(bucket.begin(), bucket.end(), 0.0f,
                   [](float sofar, const auto& student) { return sofar + student.offset; })
      / (bucket.empty() ? 1 : bucket.size()); });
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– Then mapping all data and storing it
– Then grouping all data and storing it
– Then analyzing all data and storing it

● Instead, most languages compose operations lazily
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● Instead, most languages compose operations lazily
– Look at one element

● Select it, map it, group it, & store it as necessary
– Proceed to the next element



  

So why was the “improvement” complicated

● Operating eagerly requires (e.g.)
– First selecting all data and storing it
– Then mapping all data and storing it
– Then grouping all data and storing it
– Then analyzing all data and storing it

● Instead, most languages compose operations lazily
– Look at one element

● Select it, map it, group it, & store it as necessary
– Proceed to the next element

● The APIs express operations to construct these lazy operations,
removing this boilerplate!



  

Streaming Collections APIs

● Streaming APIs work lazily on potentially infinite sequences of data
auto whichStudents = [](const Student& s) { return s.year >= 3; };
auto getBucket = [] (const Student& s) { return min(int(s.gpa / 0.5), 8); };
auto average = [] (auto range) {
  if (range.empty()) { return 0; } else {
    return ranges::fold(range, 0.0f,
      [](auto sofar, auto& datum) { return sofar + datum.offset; }) / range.size();
  }
};
auto bucketable = 



  

Streaming Collections APIs

● Streaming APIs work lazily on potentially infinite sequences of data
auto whichStudents = [](const Student& s) { return s.year >= 3; };
auto getBucket = [] (const Student& s) { return min(int(s.gpa / 0.5), 8); };
auto average = [] (auto range) {
  if (range.empty()) { return 0; } else {
    return ranges::fold(range, 0.0f,
      [](auto sofar, auto& datum) { return sofar + datum.offset; }) / range.size();
  }
};
auto bucketable = students



  

Streaming Collections APIs

● Streaming APIs work lazily on potentially infinite sequences of data
auto whichStudents = [](const Student& s) { return s.year >= 3; };
auto getBucket = [] (const Student& s) { return min(int(s.gpa / 0.5), 8); };
auto average = [] (auto range) {
  if (range.empty()) { return 0; } else {
    return ranges::fold(range, 0.0f,
      [](auto sofar, auto& datum) { return sofar + datum.offset; }) / range.size();
  }
};
auto bucketable = students
  | std::ranges::views::filter(whichStudents)



  

Streaming Collections APIs

● Streaming APIs work lazily on potentially infinite sequences of data
auto whichStudents = [](const Student& s) { return s.year >= 3; };
auto getBucket = [] (const Student& s) { return min(int(s.gpa / 0.5), 8); };
auto average = [] (auto range) {
  if (range.empty()) { return 0; } else {
    return ranges::fold(range, 0.0f,
      [](auto sofar, auto& datum) { return sofar + datum.offset; }) / range.size();
  }
};
auto bucketable = students
  | std::ranges::views::filter(whichStudents)
  | to<std::vector>();
std::ranges::sort(bucketable, {}, getBucket);
auto averages = bucketable
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● Streaming APIs work lazily on potentially infinite sequences of data
auto whichStudents = [](const Student& s) { return s.year >= 3; };
auto getBucket = [] (const Student& s) { return min(int(s.gpa / 0.5), 8); };
auto average = [] (auto range) {
  if (range.empty()) { return 0; } else {
    return ranges::fold(range, 0.0f,
      [](auto sofar, auto& datum) { return sofar + datum.offset; }) / range.size();
  }
};
auto bucketable = students
  | std::ranges::views::filter(whichStudents)
  | to<std::vector>();
std::ranges::sort(bucketable, {}, getBucket);
auto averages = bucketable
  | views::group_by([] (const auto& s1, const auto& s2) {
      return s1.bucket == s2.bucket;
    })



  

Streaming Collections APIs

● Streaming APIs work lazily on potentially infinite sequences of data
auto whichStudents = [](const Student& s) { return s.year >= 3; };
auto getBucket = [] (const Student& s) { return min(int(s.gpa / 0.5), 8); };
auto average = [] (auto range) {
  if (range.empty()) { return 0; } else {
    return ranges::fold(range, 0.0f,
      [](auto sofar, auto& datum) { return sofar + datum.offset; }) / range.size();
  }
};
auto bucketable = students
  | std::ranges::views::filter(whichStudents)
  | to<std::vector>();
std::ranges::sort(bucketable, {}, getBucket);
auto averages = bucketable
  | views::group_by([] (const auto& s1, const auto& s2) {
      return s1.bucket == s2.bucket;
    })
  | std::ranges::views::transform(average);



  

Streaming Collections APIs

● Streaming APIs work lazily on potentially infinite sequences of data
auto whichStudents = [](const Student& s) { return s.year >= 3; };
auto getBucket = [] (const Student& s) { return min(int(s.gpa / 0.5), 8); };
auto average = [] (auto range) {
  if (range.empty()) { return 0; } else {
    return ranges::fold(range, 0.0f,
      [](auto sofar, auto& datum) { return sofar + datum.offset; }) / range.size();
  }
};
auto averages = students
  | std::ranges::views::filter(whichStudents)
  | actions::group_by_key(getBucket);
  | std::ranges::views::transform(average);

Or eventually.
Do you see why this is not already the default?
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Streaming Collections APIs

● Comparing again
auto whichStudents = [](const Student& s) { return s.year >= 3; };
auto getBucket = [] (const Student& s) { return min(int(s.gpa / 0.5), 8); };
auto average = [] (auto range) {
  if (range.empty()) {
    return 0;
  } else {
    return ranges::fold(range, 0.0f,
      [](auto sofar, auto& datum) { return sofar + datum.offset; })
      / range.size();
  }
};
auto averages = students
  | std::ranges::views::filter(whichStudents)
  | actions::group_by_key(getBucket);
  | std::ranges::views::transform(average);



  

Streaming Collections APIs

● Comparing again
auto whichStudents = [](const Student& s) { return s.year >= 3; };
auto getBucket = [] (const Student& s) { return min(int(s.gpa / 0.5), 8); };
auto average = [] (auto range) {
  if (range.empty()) {
    return 0;
  } else {
    return ranges::fold(range, 0.0f,
      [](auto sofar, auto& datum) { return sofar + datum.offset; })
      / range.size();
  }
};
auto averages = students
  | std::ranges::views::filter(whichStudents)
  | actions::group_by_key(getBucket);
  | std::ranges::views::transform(average);

struct EnrollmentData { int offset; int count; };
std::array<EnrollmentData,9> buckets;
buckets.fill(EnrollmentData{0, 0});
for (unsigned i = 0; i < students.size(); ++i) {
  if (students[i].year >= 3) {
    int bucket = int(students[i].gpa / 0.5);
    buckets[bucket].offset += students[i].enrollment;
    buckets[bucket].count  += 1;
  }
}
std::array<float> averages;
for (unsigned bucket = 0; bucket < buckets.size(); ++bucket) {
  averages[bucket] = buckets[bucket].offset / 
    float(buckets[bucket].count ? buckets[bucket].count : 0);
}
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Benefits of streaming APIs

● The most obvious benefit is clarity & maintainability
● It turns out that they are also easily parallelizable!

– map & filter are trivially parallelizable
– reduce is easily parallel when

the operation is associative & commutative

3 5 1 2

15 2

30
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Summary

● Avoid performing high level operations on loops yourself
● Break your problems down into sequences of

find, filter, map, and reduce operations
● When possible, use streaming APIs for these operations

for even better clarity & performance
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