
CMPT 373
Software Development Methods

Nick Sumner
wsumner@sfu.ca

Thinking in Sequences:
Find, Filter, Map, & Reduce

Operations on Collections

● Programs usually work with collections of data

Operations on Collections

● Programs usually work with collections of data
– Choose some subset of data to work with

Operations on Collections

● Programs usually work with collections of data
– Choose some subset of data to work with
– Use the values of selected data

Operations on Collections

● Programs usually work with collections of data
– Choose some subset of data to work with
– Use the values of selected data
– Create new values based based those seen

Operations on Collections

● Programs usually work with collections of data
– Choose some subset of data to work with
– Use the values of selected data
– Create new values based based those seen
– Maybe even update the existing collection

Operations on Collections

● Programs usually work with collections of data
– Choose some subset of data to work with
– Use the values of selected data
– Create new values based based those seen
– Maybe even update the existing collection

● This is pervasive at all levels
– Data structures
– Databases
– Distributed stores
– ...

Operations on Collections

● Programs usually work with collections of data
– Choose some subset of data to work with
– Use the values of selected data
– Create new values based based those seen
– Maybe even update the existing collection

● This is pervasive at all levels
– Data structures
– Databases
– Distributed stores
– ...

● And it is error prone and easy to overcomplicate

Guidance on Collections

● From the very first year (ideally, semester)
you are told to break a problem into smaller parts.

Guidance on Collections

● From the very first year (ideally, semester)
you are told to break a problem into smaller parts.
– But how do you go about doing that?
– What are the primary parts to consider?

Guidance on Collections

● From the very first year (ideally, semester)
you are told to break a problem into smaller parts.
– But how do you go about doing that?
– What are the primary parts to consider?

Given a collection of students,
for all students in year 3+,
determine their average enrollment date offset
grouped by GPA in 0.5 increments.

Guidance on Collections

● From the very first year (ideally, semester)
you are told to break a problem into smaller parts.
– But how do you go about doing that?
– What are the primary parts to consider?

Given a collection of students,
for all students in year 3+,
determine their average enrollment date offset
grouped by GPA in 0.5 increments.

struct EnrollmentData { int offset; int count; };
std::array<EnrollmentData,9> buckets;
buckets.fill(EnrollmentData{0, 0});
for (unsigned i = 0; i < students.size(); ++i) {
 if (students[i].year >= 3) {
 int bucket = int(students[i].gpa / 0.5);
 buckets[bucket].offset += students[i].enrollment;
 buckets[bucket].count += 1;
 }
}

Guidance on Collections

● From the very first year (ideally, semester)
you are told to break a problem into smaller parts.
– But how do you go about doing that?
– What are the primary parts to consider?

Given a collection of students,
for all students in year 3+,
determine their average enrollment date offset
grouped by GPA in 0.5 increments.

struct EnrollmentData { int offset; int count; };
std::array<EnrollmentData,9> buckets;
buckets.fill(EnrollmentData{0, 0});
for (unsigned i = 0; i < students.size(); ++i) {
 if (students[i].year >= 3) {
 int bucket = int(students[i].gpa / 0.5);
 buckets[bucket].offset += students[i].enrollment;
 buckets[bucket].count += 1;
 }
}

What can go wrong?
What is challenging?

There is at least 1
rare bug in this code!

Guidance on Collections

● From the very first year (ideally, semester)
you are told to break a problem into smaller parts.
– But how do you go about doing that?
– What are the primary parts to consider?

Given a collection of students,
for all students in year 3+,
determine their average enrollment date offset
grouped by GPA in 0.5 increments.

struct EnrollmentData { int offset; int count; };
std::array<EnrollmentData,9> buckets;
buckets.fill(EnrollmentData{0, 0});
for (unsigned i = 0; i < students.size(); ++i) {
 if (students[i].year >= 3) {
 int bucket = int(students[i].gpa / 0.5);
 buckets[bucket].offset += students[i].enrollment;
 buckets[bucket].count += 1;
 }
}

What can go wrong?
What is challenging?

There is at least 1
rare bug in this code!

Guidance on Collections

● From the very first year (ideally, semester)
you are told to break a problem into smaller parts.
– But how do you go about doing that?
– What are the primary parts to consider?

Given a collection of students,
for all students in year 3+,
determine their average enrollment date offset
grouped by GPA in 0.5 increments.

struct EnrollmentData { int offset; int count; };
std::array<EnrollmentData,9> buckets;
buckets.fill(EnrollmentData{0, 0});
for (unsigned i = 0; i < students.size(); ++i) {
 if (students[i].year >= 3) {
 int bucket = int(students[i].gpa / 0.5);
 buckets[bucket].offset += students[i].enrollment;
 buckets[bucket].count += 1;
 }
}

What can go wrong?
What is challenging?

There is at least 1
rare bug in this code!

Guidance on Collections

● From the very first year (ideally, semester)
you are told to break a problem into smaller parts.
– But how do you go about doing that?
– What are the primary parts to consider?

Given a collection of students,
for all students in year 3+,
determine their average enrollment date offset
grouped by GPA in 0.5 increments.

struct EnrollmentData { int offset; int count; };
std::array<EnrollmentData,9> buckets;
buckets.fill(EnrollmentData{0, 0});
for (unsigned i = 0; i < students.size(); ++i) {
 if (students[i].year >= 3) {
 int bucket = int(students[i].gpa / 0.5);
 buckets[bucket].offset += students[i].enrollment;
 buckets[bucket].count += 1;
 }
}

What can go wrong?
What is challenging?

There is at least 1
rare bug in this code!

Guidance on Collections

● From the very first year (ideally, semester)
you are told to break a problem into smaller parts.
– But how do you go about doing that?
– What are the primary parts to consider?

Given a collection of students,
for all students in year 3+,
determine their average enrollment date offset
grouped by GPA in 0.5 increments.

struct EnrollmentData { int offset; int count; };
std::array<EnrollmentData,9> buckets;
buckets.fill(EnrollmentData{0, 0});
for (unsigned i = 0; i < students.size(); ++i) {
 if (students[i].year >= 3) {
 int bucket = int(students[i].gpa / 0.5);
 buckets[bucket].offset += students[i].enrollment;
 buckets[bucket].count += 1;
 }
}

What can go wrong?
What is challenging?

There is at least 1
rare bug in this code!

Guidance on Collections

● From the very first year (ideally, semester)
you are told to break a problem into smaller parts.
– But how do you go about doing that?
– What are the primary parts to consider?

Given a collection of students,
for all students in year 3+,
determine their average enrollment date offset
grouped by GPA in 0.5 increments.

struct EnrollmentData { int offset; int count; };
std::array<EnrollmentData,9> buckets;
buckets.fill(EnrollmentData{0, 0});
for (unsigned i = 0; i < students.size(); ++i) {
 if (students[i].year >= 3) {
 int bucket = int(students[i].gpa / 0.5);
 buckets[bucket].offset += students[i].enrollment;
 buckets[bucket].count += 1;
 }
}

What can go wrong?
What is challenging?

There is at least 1
rare bug in this code!

Guidance on Collections

● From the very first year (ideally, semester)
you are told to break a problem into smaller parts.
– But how do you go about doing that?
– What are the primary parts to consider?

● The smaller implementation details get in the way of
what exactly is going on
why you believe it is correct

Guidance on Collections

● From the very first year (ideally, semester)
you are told to break a problem into smaller parts.
– But how do you go about doing that?
– What are the primary parts to consider?

● The smaller implementation details get in the way of
what exactly is going on
why you believe it is correct

● Significant effort is spent on handling
common corner cases of collections instead of goal oriented logic

Guidance on Collections

● From the very first year (ideally, semester)
you are told to break a problem into smaller parts.
– But how do you go about doing that?
– What are the primary parts to consider?

● The smaller implementation details get in the way of
what exactly is going on
why you believe it is correct

● Significant effort is spent on handling
common corner cases of collections instead of goal oriented logic

● Breaking the problem apart into pieces helps clarify these steps

Slight Improvements
struct EnrollmentData { int offset; int count; };
std::array<EnrollmentData,9> buckets;
buckets.fill(EnrollmentData{0, 0});
for (unsigned i = 0; i < students.size(); ++i) {
 if (students[i].year >= 3) {
 int bucket = int(students[i].gpa / 0.5);
 buckets[bucket].offset += students[i].enrollment;
 buckets[bucket].count += 1;
 }
} struct EnrollmentData { int offset; int count; };

std::array<EnrollmentData,9> buckets;
buckets.fill(EnrollmentData{0, 0});
for (unsigned i = 0; i < students.size(); ++i) {
 if (students[i].year >= 3) {
 int bucket = int(students[i].gpa / 0.5);
 buckets[bucket].offset += students[i].enrollment;
 buckets[bucket].count += 1;
 }
}

Slight Improvements
struct EnrollmentData { int offset; int count; };
std::array<EnrollmentData,9> buckets;
buckets.fill(EnrollmentData{0, 0});
for (unsigned i = 0; i < students.size(); ++i) {
 if (students[i].year >= 3) {
 int bucket = int(students[i].gpa / 0.5);
 buckets[bucket].offset += students[i].enrollment;
 buckets[bucket].count += 1;
 }
}

Some library & language features
raise the level of abstraction.

struct EnrollmentData { int offset; int count; };
std::array<EnrollmentData,9> buckets;
buckets.fill(EnrollmentData{0, 0});
for (unsigned i = 0; i < students.size(); ++i) {
 if (students[i].year >= 3) {
 int bucket = int(students[i].gpa / 0.5);
 buckets[bucket].offset += students[i].enrollment;
 buckets[bucket].count += 1;
 }
}

Slight Improvements
struct EnrollmentData { int offset; int count; };
std::array<EnrollmentData,9> buckets;
buckets.fill(EnrollmentData{0, 0});
for (unsigned i = 0; i < students.size(); ++i) {
 if (students[i].year >= 3) {
 int bucket = int(students[i].gpa / 0.5);
 buckets[bucket].offset += students[i].enrollment;
 buckets[bucket].count += 1;
 }
}

Some library & language features
raise the level of abstraction.

What is the simplest
(and maybe not most effective)

way we can improve this?

struct EnrollmentData { int offset; int count; };
std::array<EnrollmentData,9> buckets;
buckets.fill(EnrollmentData{0, 0});
for (unsigned i = 0; i < students.size(); ++i) {
 if (students[i].year >= 3) {
 int bucket = int(students[i].gpa / 0.5);
 buckets[bucket].offset += students[i].enrollment;
 buckets[bucket].count += 1;
 }
}

Slight Improvements
struct EnrollmentData { int offset; int count; };
std::array<EnrollmentData,9> buckets;
buckets.fill(EnrollmentData{0, 0});
for (unsigned i = 0; i < students.size(); ++i) {
 if (students[i].year >= 3) {
 int bucket = int(students[i].gpa / 0.5);
 buckets[bucket].offset += students[i].enrollment;
 buckets[bucket].count += 1;
 }
} struct EnrollmentData { int offset; int count; };

std::array<EnrollmentData,9> buckets;
buckets.fill(EnrollmentData{0, 0});
for (const Student& student : students) {
 if (student.year >= 3) {
 int bucket = int(student.gpa / 0.5);
 buckets[bucket].offset += student.enrollment;
 buckets[bucket].count += 1;
 }
}

Some library & language features
raise the level of abstraction.

What is the simplest
(and maybe not most effective)

way we can improve this?

Slight Improvements
struct EnrollmentData { int offset; int count; };
std::array<EnrollmentData,9> buckets;
buckets.fill(EnrollmentData{0, 0});
for (unsigned i = 0; i < students.size(); ++i) {
 if (students[i].year >= 3) {
 int bucket = int(students[i].gpa / 0.5);
 buckets[bucket].offset += students[i].enrollment;
 buckets[bucket].count += 1;
 }
}

Some library & language features
raise the level of abstraction.

struct EnrollmentData { int offset; int count; };
std::array<EnrollmentData,9> buckets;
buckets.fill(EnrollmentData{0, 0});
for (const Student& student : students) {
 if (student.year >= 3) {
 int bucket = int(student.gpa / 0.5);
 buckets[bucket].offset += student.enrollment;
 buckets[bucket].count += 1;
 }
}

If we want to do better,
we need to separate the
higher level operations

Slight Improvements

Slight Improvements
std::vector<Student> selected;
selected.reserve(students.size());
std::ranges::copy_if(students, std::back_inserter(selected),
 [](const Student& s) { return s.year >= 3; });

Slight Improvements
std::vector<Student> selected;
selected.reserve(students.size());
std::ranges::copy_if(students, std::back_inserter(selected),
 [](const Student& s) { return s.year >= 3; });
struct BucketData { int offset; int bucket; };
std::vector<BucketData> projected(selected.size());
std::ranges::transform(selected, projected.begin(),
 [] (const Student& s) { return BucketData{min(int(s.gpa / 0.5), 8), s.offset}; });

Slight Improvements
std::vector<Student> selected;
selected.reserve(students.size());
std::ranges::copy_if(students, std::back_inserter(selected),
 [](const Student& s) { return s.year >= 3; });
struct BucketData { int offset; int bucket; };
std::vector<BucketData> projected(selected.size());
std::ranges::transform(selected, projected.begin(),
 [] (const Student& s) { return BucketData{min(int(s.gpa / 0.5), 8), s.offset}; });
std::ranges::sort(projected, {}, &BucketData::bucket);

Slight Improvements
std::vector<Student> selected;
selected.reserve(students.size());
std::ranges::copy_if(students, std::back_inserter(selected),
 [](const Student& s) { return s.year >= 3; });
struct BucketData { int offset; int bucket; };
std::vector<BucketData> projected(selected.size());
std::ranges::transform(selected, projected.begin(),
 [] (const Student& s) { return BucketData{min(int(s.gpa / 0.5), 8), s.offset}; });
std::ranges::sort(projected, {}, &BucketData::bucket);
std::array<std::span<BucketData>,9> buckets;
auto remainder = std::span{projected};
while (!remainder.empty()) {
 auto foundEnd = std::ranges::find_if(remainder,
 [remainder](const auto& s) { return s.bucket != remainder.front().bucket; });
 buckets[remainder.front().bucket] = std::span{remainder.begin(), foundEnd};
 remainder = std::span{foundEnd, remainder.end()};
}

Slight Improvements
std::vector<Student> selected;
selected.reserve(students.size());
std::ranges::copy_if(students, std::back_inserter(selected),
 [](const Student& s) { return s.year >= 3; });
struct BucketData { int offset; int bucket; };
std::vector<BucketData> projected(selected.size());
std::ranges::transform(selected, projected.begin(),
 [] (const Student& s) { return BucketData{min(int(s.gpa / 0.5), 8), s.offset}; });
std::ranges::sort(projected, {}, &BucketData::bucket);
std::array<std::span<BucketData>,9> buckets;
auto remainder = std::span{projected};
while (!remainder.empty()) {
 auto foundEnd = std::ranges::find_if(remainder,
 [remainder](const auto& s) { return s.bucket != remainder.front().bucket; });
 buckets[remainder.front().bucket] = std::span{remainder.begin(), foundEnd};
 remainder = std::span{foundEnd, remainder.end()};
}

This code is even longer!
Was all that a waste?!

Slight Improvements
std::vector<Student> selected;
selected.reserve(students.size());
std::ranges::copy_if(students, std::back_inserter(selected),
 [](const Student& s) { return s.year >= 3; });
struct BucketData { int offset; int bucket; };
std::vector<BucketData> projected(selected.size());
std::ranges::transform(selected, projected.begin(),
 [] (const Student& s) { return BucketData{min(int(s.gpa / 0.5), 8), s.offset}; });
std::ranges::sort(projected, {}, &BucketData::bucket);
std::array<std::span<BucketData>,9> buckets;
auto remainder = std::span{projected};
while (!remainder.empty()) {
 auto foundEnd = std::ranges::find_if(remainder,
 [remainder](const auto& s) { return s.bucket != remainder.front().bucket; });
 buckets[remainder.front().bucket] = std::span{remainder.begin(), foundEnd};
 remainder = std::span{foundEnd, remainder.end()};
}

This code is even longer!
Was all that a waste?!

Filter

Map

Group

Slight Improvements
std::vector<Student> selected;
selected.reserve(students.size());
std::ranges::copy_if(students, std::back_inserter(selected),
 [](const Student& s) { return s.year >= 3; });
struct BucketData { int offset; int bucket; };
std::vector<BucketData> projected(selected.size());
std::ranges::transform(selected, projected.begin(),
 [] (const Student& s) { return BucketData{min(int(s.gpa / 0.5), 8), s.offset}; });
std::ranges::sort(projected, {}, &BucketData::bucket);
std::array<std::span<BucketData>,9> buckets;
auto remainder = std::span{projected};
while (!remainder.empty()) {
 auto foundEnd = std::ranges::find_if(remainder,
 [remainder](const auto& s) { return s.bucket != remainder.front().bucket; });
 buckets[remainder.front().bucket] = std::span{remainder.begin(), foundEnd};
 remainder = std::span{foundEnd, remainder.end()};
}

This code is even longer!
Was all that a waste?!

Filter

Map

Group

Separating these pieces makes code easier to maintain.
Most languages today make them simple & efficient.

Slight Improvements
std::vector<Student> selected;
selected.reserve(students.size());
std::ranges::copy_if(students, std::back_inserter(selected),
 [](const Student& s) { return s.year >= 3; });
struct BucketData { int offset; int bucket; };
std::vector<BucketData> projected(selected.size());
std::ranges::transform(selected, projected.begin(),
 [] (const Student& s) { return BucketData{min(int(s.gpa / 0.5), 8), s.offset}; });
std::ranges::sort(projected, {}, &BucketData::bucket);
std::array<std::span<BucketData>,9> buckets;
auto remainder = std::span{projected};
while (!remainder.empty()) {
 auto foundEnd = std::ranges::find_if(remainder,
 [remainder](const auto& s) { return s.bucket != remainder.front().bucket; });
 buckets[remainder.front().bucket] = std::span{remainder.begin(), foundEnd};
 remainder = std::span{foundEnd, remainder.end()};
}

This code is even longer!
Was all that a waste?!

Filter

Map

Group

Separating these pieces makes code easier to maintain.
Most languages today make them simple & efficient.

For simpler problems than this,
removing the bookkeeping alone is worth it.

Slight Improvements
std::vector<Student> selected;
selected.reserve(students.size());
std::ranges::copy_if(students, std::back_inserter(selected),
 [](const Student& s) { return s.year >= 3; });
struct BucketData { int offset; int bucket; };
std::vector<BucketData> projected(selected.size());
std::ranges::transform(selected, projected.begin(),
 [] (const Student& s) { return BucketData{min(int(s.gpa / 0.5), 8), s.offset}; });
std::ranges::sort(projected, {}, &BucketData::bucket);
std::array<std::span<BucketData>,9> buckets;
auto remainder = std::span{projected};
while (!remainder.empty()) {
 auto foundEnd = std::ranges::find_if(remainder,
 [remainder](const auto& s) { return s.bucket != remainder.front().bucket; });
 buckets[remainder.front().bucket] = std::span{remainder.begin(), foundEnd};
 remainder = std::span{foundEnd, remainder.end()};
}

This code is even longer!
Was all that a waste?!

Filter

Map

Group

Separating these pieces makes code easier to maintain.
Most languages today make them simple & efficient.

For simpler problems than this,
removing the bookkeeping alone is worth it.

We can actually break it down
in simpler ways, too.

Breaking Problems into Pieces

● Most problems on collections break down into operations on collections

Breaking Problems into Pieces

● Most problems on collections break down into operations on collections
– Filter – select a subset of data to work on

Breaking Problems into Pieces

● Most problems on collections break down into operations on collections
– Filter – select a subset of data to work on
– Map – transform each value into a new value

Breaking Problems into Pieces

● Most problems on collections break down into operations on collections
– Filter – select a subset of data to work on
– Map – transform each value into a new value
– Reduce – combine values into a result

Breaking Problems into Pieces

● Most problems on collections break down into operations on collections
– Filter – select a subset of data to work on
– Map – transform each value into a new value
– Reduce – combine values into a result
– Find – identify a useful location / boundary in data

Breaking Problems into Pieces

● Most problems on collections break down into operations on collections
– Filter – select a subset of data to work on
– Map – transform each value into a new value
– Reduce – combine values into a result
– Find – identify a useful location / boundary in data

Most things you do are a combination of these steps.
This shrinks the solution space!

Breaking Problems into Pieces

● Most problems on collections break down into operations on collections
– Filter – select a subset of data to work on
– Map – transform each value into a new value
– Reduce – combine values into a result
– Find – identify a useful location / boundary in data

● How these primitives are spelled varies (e.g. in classic C++)
– Filter – partition, stable_partition, copy_if
– Map – transform
– Reduce – accumulate, reduce
– Find – find, find_if

Breaking Problems into Pieces

● Most problems on collections break down into operations on collections
– Filter – select a subset of data to work on
– Map – transform each value into a new value
– Reduce – combine values into a result
– Find – identify a useful location / boundary in data

● How these primitives are spelled varies (e.g. in classic C++)
– Filter – partition, stable_partition, copy_if
– Map – transform
– Reduce – accumulate, reduce
– Find – find, find_if

● One of the first things you should do in a new language
is figure out how these are spelled
– Java (streams), C# (LINQ), Python (builtins+comprehensions), C++ (STL & ranges)

Filter

● Given a predicate p, identify & group the elements for which p is true
– std::partition, stable_partition, std::copy_if

Filter

● Given a predicate p, identify & group the elements for which p is true
– std::partition, stable_partition, std::copy_if

std::vector<Student> selected;
selected.reserve(students.size());
std::ranges::copy_if(students, std::back_inserter(selected),
 [](const Student& s) { return s.year >= 3; });

Filter

● Given a predicate p, identify & group the elements for which p is true
– std::partition, stable_partition, std::copy_if

std::vector<Student> selected;
selected.reserve(students.size());
std::ranges::copy_if(students, std::back_inserter(selected),
 [](const Student& s) { return s.year >= 3; });

ID: A
year:4
gpa:...

ID: B
year:3
gpa:...

ID: C
year:1
gpa:...

ID: D
year:3
gpa:...

ID: E
year:2
gpa:...

students

selected

Filter

● Given a predicate p, identify & group the elements for which p is true
– std::partition, stable_partition, std::copy_if

std::vector<Student> selected;
selected.reserve(students.size());
std::ranges::copy_if(students, std::back_inserter(selected),
 [](const Student& s) { return s.year >= 3; });

ID: A
year:4
gpa:...

ID: B
year:3
gpa:...

ID: C
year:1
gpa:...

ID: D
year:3
gpa:...

ID: E
year:2
gpa:...

ID: A
year:4
gpa:...

ID: B
year:3
gpa:...

ID: D
year:3
gpa:...

students

selected
copy_if

Filter

● Given a predicate p, identify & group the elements for which p is true
– std::partition, stable_partition, std::copy_if

std::vector<Student> selected;
selected.reserve(students.size());
std::ranges::copy_if(students, std::back_inserter(selected),
 [](const Student& s) { return s.year >= 3; });
auto subrange = std::ranges::partition(students,
 [](const Student& s) { return s.year >= 3; });

Filter

● Given a predicate p, identify & group the elements for which p is true
– std::partition, stable_partition, std::copy_if

std::vector<Student> selected;
selected.reserve(students.size());
std::ranges::copy_if(students, std::back_inserter(selected),
 [](const Student& s) { return s.year >= 3; });
auto subrange = std::ranges::partition(students,
 [](const Student& s) { return s.year >= 3; });

ID: A
year:4
gpa:...

ID: B
year:3
gpa:...

ID: C
year:1
gpa:...

ID: D
year:3
gpa:...

ID: E
year:2
gpa:...

students

Filter

● Given a predicate p, identify & group the elements for which p is true
– std::partition, stable_partition, std::copy_if

std::vector<Student> selected;
selected.reserve(students.size());
std::ranges::copy_if(students, std::back_inserter(selected),
 [](const Student& s) { return s.year >= 3; });
auto subrange = std::ranges::partition(students,
 [](const Student& s) { return s.year >= 3; });

ID: A
year:4
gpa:...

ID: B
year:3
gpa:...

ID: C
year:1
gpa:...

ID: D
year:3
gpa:...

ID: E
year:2
gpa:...

ID: A
year:4
gpa:...

ID: B
year:3
gpa:...

ID: D
year:3
gpa:...

ID: C
year:1
gpa:...

ID: E
year:2
gpa:...

students

students

partition

Filter

● Given a predicate p, identify & group the elements for which p is true
– std::partition, stable_partition, std::copy_if

std::vector<Student> selected;
selected.reserve(students.size());
std::ranges::copy_if(students, std::back_inserter(selected),
 [](const Student& s) { return s.year >= 3; });
auto subrange = std::ranges::partition(students,
 [](const Student& s) { return s.year >= 3; });

ID: A
year:4
gpa:...

ID: B
year:3
gpa:...

ID: C
year:1
gpa:...

ID: D
year:3
gpa:...

ID: E
year:2
gpa:...

ID: A
year:4
gpa:...

ID: B
year:3
gpa:...

ID: D
year:3
gpa:...

ID: C
year:1
gpa:...

ID: E
year:2
gpa:...

Returned as a range

students

students

partition

Filter

● Given a predicate p, identify & group the elements for which p is true
– std::partition, stable_partition, std::copy_if

std::vector<Student> selected;
selected.reserve(students.size());
std::ranges::copy_if(students, std::back_inserter(selected),
 [](const Student& s) { return s.year >= 3; });
auto subrange = std::ranges::partition(students,
 [](const Student& s) { return s.year >= 3; });

Mutability makes it one line

ID: A
year:4
gpa:...

ID: B
year:3
gpa:...

ID: C
year:1
gpa:...

ID: D
year:3
gpa:...

ID: E
year:2
gpa:...

ID: A
year:4
gpa:...

ID: B
year:3
gpa:...

ID: D
year:3
gpa:...

ID: C
year:1
gpa:...

ID: E
year:2
gpa:...

Returned as a range

students

students

partition

Map

● Apply a function to each element of a collection and store the result
as desired
– std::transform

std::vector<BucketData> projected(selected.size());
std::ranges::transform(selected, projected.begin(),
 [] (const Student& s) {
 return BucketData{min(int(s.gpa / 0.5), 8), s.offset};
});

Map

● Apply a function to each element of a collection and store the result
as desired
– std::transform

std::vector<BucketData> projected(selected.size());
std::ranges::transform(selected, projected.begin(),
 [] (const Student& s) {
 return BucketData{min(int(s.gpa / 0.5), 8), s.offset};
});

ID: A
year:4
gpa:...

ID: B
year:3
gpa:...

ID: D
year:3
gpa:...

selected

projected

Map

● Apply a function to each element of a collection and store the result
as desired
– std::transform

std::vector<BucketData> projected(selected.size());
std::ranges::transform(selected, projected.begin(),
 [] (const Student& s) {
 return BucketData{min(int(s.gpa / 0.5), 8), s.offset};
});

ID: A
year:4
gpa:...

ID: B
year:3
gpa:...

ID: D
year:3
gpa:...

selected

projected

transform

Map

● Apply a function to each element of a collection and store the result
as desired
– std::transform

std::vector<BucketData> projected(selected.size());
std::ranges::transform(selected, projected.begin(),
 [] (const Student& s) {
 return BucketData{min(int(s.gpa / 0.5), 8), s.offset};
});

ID: A
year:4
gpa:...

ID: B
year:3
gpa:...

ID: D
year:3
gpa:...

ID: A
offset:4
bucket:6

selected

projected

transform

Map

● Apply a function to each element of a collection and store the result
as desired
– std::transform

std::vector<BucketData> projected(selected.size());
std::ranges::transform(selected, projected.begin(),
 [] (const Student& s) {
 return BucketData{min(int(s.gpa / 0.5), 8), s.offset};
});

ID: A
year:4
gpa:...

ID: B
year:3
gpa:...

ID: D
year:3
gpa:...

ID: A
offset:4
bucket:6

ID: B
offset:3
bucket:5

selected

projected

transform

Map

● Apply a function to each element of a collection and store the result
as desired
– std::transform

std::vector<BucketData> projected(selected.size());
std::ranges::transform(selected, projected.begin(),
 [] (const Student& s) {
 return BucketData{min(int(s.gpa / 0.5), 8), s.offset};
});

ID: A
year:4
gpa:...

ID: B
year:3
gpa:...

ID: D
year:3
gpa:...

ID: A
offset:4
bucket:6

ID: B
offset:3
bucket:5

ID: D
offset:3
bucket:6

selected

projected

transform

Map

● Apply a function to each element of a collection and store the result
as desired
– std::transform

std::vector<BucketData> projected(selected.size());
std::ranges::transform(selected, projected.begin(),
 [] (const Student& s) {
 return BucketData{min(int(s.gpa / 0.5), 8), s.offset};
});

ID: A
year:4
gpa:...

ID: B
year:3
gpa:...

ID: D
year:3
gpa:...

ID: A
offset:4
bucket:6

ID: B
offset:3
bucket:5

ID: D
offset:3
bucket:6

selected

projected

transform
The resulting type can be different,

but this is not required

Reduce

● Combine results of processing different elements
– std::accumulate, std::reduce

std::vector numbers = { 0, 1, 2, 3, 4, 5, 6, 7 };
auto sum = ...

Reduce

● Combine results of processing different elements
– std::accumulate, std::reduce

std::vector numbers = { 0, 1, 2, 3, 4, 5, 6, 7 };
auto sum = std::accumulate(numbers.begin(), numbers.end());

Reduce

● Combine results of processing different elements
– std::accumulate, std::reduce

std::vector numbers = { 0, 1, 2, 3, 4, 5, 6, 7 };
auto sum = std::accumulate(numbers.begin(), numbers.end());
auto product = std::accumulate(numbers.begin(), numbers.end(),

...

Reduce

● Combine results of processing different elements
– std::accumulate, std::reduce

std::vector numbers = { 0, 1, 2, 3, 4, 5, 6, 7 };
auto sum = std::accumulate(numbers.begin(), numbers.end());
auto product = std::accumulate(numbers.begin(), numbers.end(),

1, std::multiplies{});

Reduce

● Combine results of processing different elements
– std::accumulate, std::reduce

● Reduce operations take
– An initial value

std::vector numbers = { 0, 1, 2, 3, 4, 5, 6, 7 };
auto sum = std::accumulate(numbers.begin(), numbers.end());
auto product = std::accumulate(numbers.begin(), numbers.end(),

1, std::multiplies{});

Reduce

● Combine results of processing different elements
– std::accumulate, std::reduce

● Reduce operations take
– An initial value
– A function consuming the value computed so far & current element

to compute a new value

std::vector numbers = { 0, 1, 2, 3, 4, 5, 6, 7 };
auto sum = std::accumulate(numbers.begin(), numbers.end());
auto product = std::accumulate(numbers.begin(), numbers.end(),

1, std::multiplies{});

Reduce
std::vector numbers = { 3, 5, 1, 2 };
auto product = std::accumulate(numbers.begin(), numbers.end(),

1, std::multiplies{});

So far: 1

3 5 1 2

Reduce

So far: 1 3

3 5 1 2*

std::vector numbers = { 3, 5, 1, 2 };
auto product = std::accumulate(numbers.begin(), numbers.end(),

1, std::multiplies{});

Reduce

So far: 1 3 15

3 5 1 2*

std::vector numbers = { 3, 5, 1, 2 };
auto product = std::accumulate(numbers.begin(), numbers.end(),

1, std::multiplies{});

Reduce

So far: 1 3 15 15

3 5 1 2*

std::vector numbers = { 3, 5, 1, 2 };
auto product = std::accumulate(numbers.begin(), numbers.end(),

1, std::multiplies{});

Reduce

So far: 1 3 15 15 30

3 5 1 2*

std::vector numbers = { 3, 5, 1, 2 };
auto product = std::accumulate(numbers.begin(), numbers.end(),

1, std::multiplies{});

Reduce

So far: 1 3 15 15 30

3 5 1 2

std::vector numbers = { 3, 5, 1, 2 };
auto product = std::accumulate(numbers.begin(), numbers.end(),

1, std::multiplies{});

Reduce

● Reduce operations explicitly capture the inductive nature of loops

So far: 1 3 15 15 30

3 5 1 2

std::vector numbers = { 3, 5, 1, 2 };
auto product = std::accumulate(numbers.begin(), numbers.end(),

1, std::multiplies{});

Reduce

● Reduce operations explicitly capture the inductive nature of loops
– Start with a base case

std::vector numbers = { 3, 5, 1, 2 };
auto product = std::accumulate(numbers.begin(), numbers.end(),

1, std::multiplies{});

So far: 1 3 15 15 30

3 5 1 2

Reduce

● Reduce operations explicitly capture the inductive nature of loops
– Start with a base case
– Each iteration computes the state so far

So far: 1 3 15 15 30

3 5 1 2

std::vector numbers = { 3, 5, 1, 2 };
auto product = std::accumulate(numbers.begin(), numbers.end(),

1, std::multiplies{});

Reduce

● Reduce operations explicitly capture the inductive nature of loops
– Start with a base case
– Each iteration computes the state so far
– When all iterations have completed,

the final result should be the intended goal

So far: 1 3 15 15 30

3 5 1 2

std::vector numbers = { 3, 5, 1, 2 };
auto product = std::accumulate(numbers.begin(), numbers.end(),

1, std::multiplies{});

Reduce

● Note: The computed value can be a different type than the elements!

Reduce

● Note: The computed value can be a different type than the elements!
– Thus, given:

a collection of T
an initial value U
an operation (U,T) → U

reduce computes a value U from a collection

Reduce

● Note: The computed value can be a different type than the elements!
– Thus, given:

a collection of T
an initial value U
an operation (U,T) → U

reduce computes a value U from a collection

reduce: ([T], U, (U,T)→U) → U

Reduce

● Note: The computed value can be a different type than the elements!
– Thus, given:

a collection of T
an initial value U
an operation (U,T) → U

reduce computes a value U from a collection
std::vector numbers = { 3, 5, 1, 2 };
auto asString = std::accumulate(numbers.begin(), numbers.end(),std::string{},
 [](std::string sofar, int i) { return sofar + std::to_string(i); });

reduce: ([T], U, (U,T)→U) → U

Reduce

● Note: The computed value can be a different type than the elements!
– Thus, given:

a collection of T
an initial value U
an operation (U,T) → U

reduce computes a value U from a collection
std::vector numbers = { 3, 5, 1, 2 };
auto asString = std::accumulate(numbers.begin(), numbers.end(),std::string{},
 [](std::string sofar, int i) { return sofar + std::to_string(i); });

So far:

3 5 1 2

""

reduce: ([T], U, (U,T)→U) → U

Reduce

● Note: The computed value can be a different type than the elements!
– Thus, given:

a collection of T
an initial value U
an operation (U,T) → U

reduce computes a value U from a collection
std::vector numbers = { 3, 5, 1, 2 };
auto asString = std::accumulate(numbers.begin(), numbers.end(),std::string{},
 [](std::string sofar, int i) { return sofar + std::to_string(i); });

So far:

3 5 1 2

"" "3"+

reduce: ([T], U, (U,T)→U) → U

Reduce

● Note: The computed value can be a different type than the elements!
– Thus, given:

a collection of T
an initial value U
an operation (U,T) → U

reduce computes a value U from a collection
std::vector numbers = { 3, 5, 1, 2 };
auto asString = std::accumulate(numbers.begin(), numbers.end(),std::string{},
 [](std::string sofar, int i) { return sofar + std::to_string(i); });

So far:

3 5 1 2

"" "3" "35"+

reduce: ([T], U, (U,T)→U) → U

Reduce

● Note: The computed value can be a different type than the elements!
– Thus, given:

a collection of T
an initial value U
an operation (U,T) → U

reduce computes a value U from a collection
std::vector numbers = { 3, 5, 1, 2 };
auto asString = std::accumulate(numbers.begin(), numbers.end(),std::string{},
 [](std::string sofar, int i) { return sofar + std::to_string(i); });

So far:

3 5 1 2

"" "3" "35" "351"+

reduce: ([T], U, (U,T)→U) → U

Reduce

● Note: The computed value can be a different type than the elements!
– Thus, given:

a collection of T
an initial value U
an operation (U,T) → U

reduce computes a value U from a collection
std::vector numbers = { 3, 5, 1, 2 };
auto asString = std::accumulate(numbers.begin(), numbers.end(),std::string{},
 [](std::string sofar, int i) { return sofar + std::to_string(i); });

So far:

3 5 1 2

"" "3" "35" "351" "3512"+

reduce: ([T], U, (U,T)→U) → U

Reduce

● Note: The computed value can be a different type than the elements!
– Thus, given:

a collection of T
an initial value U
an operation (U,T) → U

reduce computes a value U from a collection

● The computed state so far can be anything needed to capture
the progress made toward the goal

std::vector numbers = { 3, 5, 1, 2 };
auto asString = std::accumulate(numbers.begin(), numbers.end(),std::string{},
 [](std::string sofar, int i) { return sofar + std::to_string(i); });

So far:

3 5 1 2

"" "3" "35" "351" "3512"

reduce: ([T], U, (U,T)→U) → U

Reduce

● Note: The computed value can be a different type than the elements!
– Thus, given:

a collection of T
an initial value U
an operation (U,T) → U

reduce computes a value U from a collection

● The computed state so far can be anything needed to capture
the progress made toward the goal

std::vector numbers = { 3, 5, 1, 2 };
auto asString = std::accumulate(numbers.begin(), numbers.end(),std::string{},
 [](std::string sofar, int i) { return sofar + std::to_string(i); });

So far:

3 5 1 2

"" "3" "35" "351" "3512"

reduce: ([T], U, (U,T)→U) → U

But do remember,
concatenating strings like this

is a poor goal.

Generality of Reduce

● In fact, this means most functions on loops can be written via a reduce!

Generality of Reduce

● In fact, this means most functions on loops can be written via a reduce!
bool
any_of(auto& collection, auto predicate) {
 return std::accumulate(collection.begin() collection.end(), false,
 [](bool sofar, auto& element) { return sofar || predicate(element); });
}

Generality of Reduce

● In fact, this means most functions on loops can be written via a reduce!
bool
any_of(auto& collection, auto predicate) {
 return std::accumulate(collection.begin() collection.end(), false,
 [](bool sofar, auto& element) { return sofar || predicate(element); });
} auto
max(auto& collection, auto minimum) {
 return std::accumulate(collection.begin() collection.end(), minimum,
 [](auto sofar, auto& element) {
 return (element > sofar) ? element : sofar;
 });
}

Generality of Reduce

● In fact, this means most functions on loops can be written via a reduce!
bool
any_of(auto& collection, auto predicate) {
 return std::accumulate(collection.begin() collection.end(), false,
 [](bool sofar, auto& element) { return sofar || predicate(element); });
} auto
max(auto& collection, auto minimum) {
 return std::accumulate(collection.begin() collection.end(), minimum,
 [](auto sofar, auto& element) {
 return (element > sofar) ? element : sofar;
 });
} auto
count_if(auto& collection, auto predicate) {
 return std::accumulate(collection.begin() collection.end(), 0,
 [predicate](auto sofar, auto& element) {
 return sofar + (predicate(element) ? 1 : 0);
 });
}

Find

● Find clearly doesn’t give us the ability to compute anything new

Find

● Find clearly doesn’t give us the ability to compute anything new
– Some schools prefer to teach just filter, map, and reduce

Find

● Find clearly doesn’t give us the ability to compute anything new
– Some schools prefer to teach just filter, map, and reduce
– But it can add efficiency

Find

● Find clearly doesn’t give us the ability to compute anything new
– Some schools prefer to teach just filter, map, and reduce
– But it can add efficiency

● Note: map, filter, & reduce will consider an entire collection

Find

● Find clearly doesn’t give us the ability to compute anything new
– Some schools prefer to teach just filter, map, and reduce
– But it can add efficiency

● Note: map, filter, & reduce will consider an entire collection
● Find gives us the ability to short-circuit operations

Find

● Find clearly doesn’t give us the ability to compute anything new
– Some schools prefer to teach just filter, map, and reduce
– But it can add efficiency

● Note: map, filter, & reduce will consider an entire collection
● Find gives us the ability to short-circuit operations
bool
any_of(auto& collection, auto predicate) {
 return std::ranges::find_if(collection, predicate) != collection.end();
}

Find

● Find clearly doesn’t give us the ability to compute anything new
– Some schools prefer to teach just filter, map, and reduce
– But it can add efficiency

● Note: map, filter, & reduce will consider an entire collection
● Find gives us the ability to short-circuit operations
bool
any_of(auto& collection, auto predicate) {
 return std::ranges::find_if(collection, predicate) != collection.end();
}

While reduce processes the entire list,
this stops at the first match

Can we now make this clearer? (a bit)

Mutability & selection of how
to connect the core ingredients

affects the simplicity

Can we now make this clearer? (a bit)
auto selected = std::ranges::partition(students,
 [](const Student& s) { return s.year >= 3; });

Mutability & selection of how
to connect the core ingredients

affects the simplicity

Can we now make this clearer? (a bit)
auto selected = std::ranges::partition(students,
 [](const Student& s) { return s.year >= 3; });
auto getBucket = [] (const Student& s) {
 return BucketData{min(int(s.gpa / 0.5), 8), s.offset};
};

Mutability & selection of how
to connect the core ingredients

affects the simplicity

Can we now make this clearer? (a bit)
auto selected = std::ranges::partition(students,
 [](const Student& s) { return s.year >= 3; });
auto getBucket = [] (const Student& s) {
 return BucketData{min(int(s.gpa / 0.5), 8), s.offset};
};
std::ranges::sort(selected, {}, getBucket); Mutability & selection of how

to connect the core ingredients
affects the simplicity

Can we now make this clearer? (a bit)
auto selected = std::ranges::partition(students,
 [](const Student& s) { return s.year >= 3; });
auto getBucket = [] (const Student& s) {
 return BucketData{min(int(s.gpa / 0.5), 8), s.offset};
};
std::ranges::sort(selected, {}, getBucket);
std::array<std::span<BucketData>,9> buckets;
auto remainder = std::span{projected};
while (!remainder.empty()) {
 auto foundEnd = std::ranges::find_if(remainder,
 [remainder](const auto& s) { return s.bucket != remainder.front().bucket; });
 buckets[remainder.front().bucket] = std::span{remainder.begin(), foundEnd};
 remainder = std::span{foundEnd, remainder.end()};
}

Mutability & selection of how
to connect the core ingredients

affects the simplicity

Can we now make this clearer? (a bit)
auto selected = std::ranges::partition(students,
 [](const Student& s) { return s.year >= 3; });
auto getBucket = [] (const Student& s) {
 return BucketData{min(int(s.gpa / 0.5), 8), s.offset};
};
std::ranges::sort(selected, {}, getBucket);
std::array<std::span<BucketData>,9> buckets;
auto remainder = std::span{projected};
while (!remainder.empty()) {
 auto foundEnd = std::ranges::find_if(remainder,
 [remainder](const auto& s) { return s.bucket != remainder.front().bucket; });
 buckets[remainder.front().bucket] = std::span{remainder.begin(), foundEnd};
 remainder = std::span{foundEnd, remainder.end()};
}
std::array<float,9> averages;
std::ranges::transform(buckets, averages.begin(), [](auto& bucket) {
 return std::accumulate(bucket.begin(), bucket.end(), 0.0f,
 [](float sofar, const auto& student) { return sofar + student.offset; })
 / (bucket.empty() ? 1 : bucket.size()); });

Mutability & selection of how
to connect the core ingredients

affects the simplicity

So why was the “improvement” complicated

● Operating eagerly requires (e.g.)
– First selecting all data and storing it
– Then mapping all data and storing it
– Then grouping all data and storing it
– Then analyzing all data and storing it

std::vector<Student> selected;
selected.reserve(students.size());
std::ranges::copy_if(students, std::back_inserter(selected),
 [](const Student& s) { return s.year >= 3; });
struct BucketData { int offset; int bucket; };
std::vector<BucketData> projected(selected.size());
std::ranges::transform(selected, projected.begin(),
 [] (const Student& s) { return BucketData{min(int(s.gpa / 0.5), 8), s.offset}; });
std::ranges::sort(projected, {}, &BucketData::bucket);
std::array<std::span<BucketData>,9> buckets;
auto remainder = std::span{projected};
while (!remainder.empty()) {
 auto foundEnd = std::ranges::find_if(remainder,
 [remainder](const auto& s) { return s.bucket != remainder.front().bucket; });
 buckets[remainder.front().bucket] = std::span{remainder.begin(), foundEnd};
 remainder = std::span{foundEnd, remainder.end()};
}
std::array<float,9> averages;
std::ranges::transform(buckets, averages.begin(), [](auto& bucket) {
 return std::accumulate(bucket.begin(), bucket.end(), 0.0f,
 [](float sofar, const auto& student) { return sofar + student.offset; })
 / (bucket.empty() ? 1 : bucket.size()); });

So why was the “improvement” complicated

● Operating eagerly requires (e.g.)
– First selecting all data and storing it
– Then mapping all data and storing it
– Then grouping all data and storing it
– Then analyzing all data and storing it

● Instead, most languages compose operations lazily

So why was the “improvement” complicated

● Operating eagerly requires (e.g.)
– First selecting all data and storing it
– Then mapping all data and storing it
– Then grouping all data and storing it
– Then analyzing all data and storing it

● Instead, most languages compose operations lazily
– Look at one element

● Select it, map it, group it, & store it as necessary

So why was the “improvement” complicated

● Operating eagerly requires (e.g.)
– First selecting all data and storing it
– Then mapping all data and storing it
– Then grouping all data and storing it
– Then analyzing all data and storing it

● Instead, most languages compose operations lazily
– Look at one element

● Select it, map it, group it, & store it as necessary
– Proceed to the next element

So why was the “improvement” complicated

● Operating eagerly requires (e.g.)
– First selecting all data and storing it
– Then mapping all data and storing it
– Then grouping all data and storing it
– Then analyzing all data and storing it

● Instead, most languages compose operations lazily
– Look at one element

● Select it, map it, group it, & store it as necessary
– Proceed to the next element

● The APIs express operations to construct these lazy operations,
removing this boilerplate!

Streaming Collections APIs

● Streaming APIs work lazily on potentially infinite sequences of data
auto whichStudents = [](const Student& s) { return s.year >= 3; };
auto getBucket = [] (const Student& s) { return min(int(s.gpa / 0.5), 8); };
auto average = [] (auto range) {
 if (range.empty()) { return 0; } else {
 return ranges::fold(range, 0.0f,
 [](auto sofar, auto& datum) { return sofar + datum.offset; }) / range.size();
 }
};
auto bucketable =

Streaming Collections APIs

● Streaming APIs work lazily on potentially infinite sequences of data
auto whichStudents = [](const Student& s) { return s.year >= 3; };
auto getBucket = [] (const Student& s) { return min(int(s.gpa / 0.5), 8); };
auto average = [] (auto range) {
 if (range.empty()) { return 0; } else {
 return ranges::fold(range, 0.0f,
 [](auto sofar, auto& datum) { return sofar + datum.offset; }) / range.size();
 }
};
auto bucketable = students

Streaming Collections APIs

● Streaming APIs work lazily on potentially infinite sequences of data
auto whichStudents = [](const Student& s) { return s.year >= 3; };
auto getBucket = [] (const Student& s) { return min(int(s.gpa / 0.5), 8); };
auto average = [] (auto range) {
 if (range.empty()) { return 0; } else {
 return ranges::fold(range, 0.0f,
 [](auto sofar, auto& datum) { return sofar + datum.offset; }) / range.size();
 }
};
auto bucketable = students
 | std::ranges::views::filter(whichStudents)

Streaming Collections APIs

● Streaming APIs work lazily on potentially infinite sequences of data
auto whichStudents = [](const Student& s) { return s.year >= 3; };
auto getBucket = [] (const Student& s) { return min(int(s.gpa / 0.5), 8); };
auto average = [] (auto range) {
 if (range.empty()) { return 0; } else {
 return ranges::fold(range, 0.0f,
 [](auto sofar, auto& datum) { return sofar + datum.offset; }) / range.size();
 }
};
auto bucketable = students
 | std::ranges::views::filter(whichStudents)
 | to<std::vector>();
std::ranges::sort(bucketable, {}, getBucket);
auto averages = bucketable

Streaming Collections APIs

● Streaming APIs work lazily on potentially infinite sequences of data
auto whichStudents = [](const Student& s) { return s.year >= 3; };
auto getBucket = [] (const Student& s) { return min(int(s.gpa / 0.5), 8); };
auto average = [] (auto range) {
 if (range.empty()) { return 0; } else {
 return ranges::fold(range, 0.0f,
 [](auto sofar, auto& datum) { return sofar + datum.offset; }) / range.size();
 }
};
auto bucketable = students
 | std::ranges::views::filter(whichStudents)
 | to<std::vector>();
std::ranges::sort(bucketable, {}, getBucket);
auto averages = bucketable
 | views::group_by([] (const auto& s1, const auto& s2) {
 return s1.bucket == s2.bucket;
 })

Streaming Collections APIs

● Streaming APIs work lazily on potentially infinite sequences of data
auto whichStudents = [](const Student& s) { return s.year >= 3; };
auto getBucket = [] (const Student& s) { return min(int(s.gpa / 0.5), 8); };
auto average = [] (auto range) {
 if (range.empty()) { return 0; } else {
 return ranges::fold(range, 0.0f,
 [](auto sofar, auto& datum) { return sofar + datum.offset; }) / range.size();
 }
};
auto bucketable = students
 | std::ranges::views::filter(whichStudents)
 | to<std::vector>();
std::ranges::sort(bucketable, {}, getBucket);
auto averages = bucketable
 | views::group_by([] (const auto& s1, const auto& s2) {
 return s1.bucket == s2.bucket;
 })
 | std::ranges::views::transform(average);

Streaming Collections APIs

● Streaming APIs work lazily on potentially infinite sequences of data
auto whichStudents = [](const Student& s) { return s.year >= 3; };
auto getBucket = [] (const Student& s) { return min(int(s.gpa / 0.5), 8); };
auto average = [] (auto range) {
 if (range.empty()) { return 0; } else {
 return ranges::fold(range, 0.0f,
 [](auto sofar, auto& datum) { return sofar + datum.offset; }) / range.size();
 }
};
auto averages = students
 | std::ranges::views::filter(whichStudents)
 | actions::group_by_key(getBucket);
 | std::ranges::views::transform(average);

Or eventually.
Do you see why this is not already the default?

Streaming Collections APIs

● Comparing again

Streaming Collections APIs

● Comparing again
auto whichStudents = [](const Student& s) { return s.year >= 3; };
auto getBucket = [] (const Student& s) { return min(int(s.gpa / 0.5), 8); };
auto average = [] (auto range) {
 if (range.empty()) {
 return 0;
 } else {
 return ranges::fold(range, 0.0f,
 [](auto sofar, auto& datum) { return sofar + datum.offset; })
 / range.size();
 }
};
auto averages = students
 | std::ranges::views::filter(whichStudents)
 | actions::group_by_key(getBucket);
 | std::ranges::views::transform(average);

Streaming Collections APIs

● Comparing again
auto whichStudents = [](const Student& s) { return s.year >= 3; };
auto getBucket = [] (const Student& s) { return min(int(s.gpa / 0.5), 8); };
auto average = [] (auto range) {
 if (range.empty()) {
 return 0;
 } else {
 return ranges::fold(range, 0.0f,
 [](auto sofar, auto& datum) { return sofar + datum.offset; })
 / range.size();
 }
};
auto averages = students
 | std::ranges::views::filter(whichStudents)
 | actions::group_by_key(getBucket);
 | std::ranges::views::transform(average);

struct EnrollmentData { int offset; int count; };
std::array<EnrollmentData,9> buckets;
buckets.fill(EnrollmentData{0, 0});
for (unsigned i = 0; i < students.size(); ++i) {
 if (students[i].year >= 3) {
 int bucket = int(students[i].gpa / 0.5);
 buckets[bucket].offset += students[i].enrollment;
 buckets[bucket].count += 1;
 }
}
std::array<float> averages;
for (unsigned bucket = 0; bucket < buckets.size(); ++bucket) {
 averages[bucket] = buckets[bucket].offset /
 float(buckets[bucket].count ? buckets[bucket].count : 0);
}

Benefits of streaming APIs

● The most obvious benefit is clarity & maintainability

Benefits of streaming APIs

● The most obvious benefit is clarity & maintainability
● It turns out that they are also easily parallelizable!

Benefits of streaming APIs

● The most obvious benefit is clarity & maintainability
● It turns out that they are also easily parallelizable!

– map & filter are trivially parallelizable

Benefits of streaming APIs

● The most obvious benefit is clarity & maintainability
● It turns out that they are also easily parallelizable!

– map & filter are trivially parallelizable
– reduce is easily parallel when

the operation is associative & commutative

Benefits of streaming APIs

● The most obvious benefit is clarity & maintainability
● It turns out that they are also easily parallelizable!

– map & filter are trivially parallelizable
– reduce is easily parallel when

the operation is associative & commutative

3 5 1 2

15 2

30

Summary

● Avoid performing high level operations on loops yourself

Summary

● Avoid performing high level operations on loops yourself
● Break your problems down into sequences of

find, filter, map, and reduce operations

Summary

● Avoid performing high level operations on loops yourself
● Break your problems down into sequences of

find, filter, map, and reduce operations
● When possible, use streaming APIs for these operations

for even better clarity & performance

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127

