
CMPT 373
Software Development Methods

Nick Sumner
wsumner@sfu.ca

Visitors

Recall: Design Patterns

● Capture programming idioms (not solutions)

Recall: Design Patterns

● Capture programming idioms (not solutions)

● Exploit polymorphism in well understood ways

Recall: Design Patterns

● Capture programming idioms (not solutions)

● Exploit polymorphism in well understood ways

● 3 classic categories
– Creational – provide flexibility in creating objects
– Structural – compose classes to add new behavior
– Behavioral – focus on communication between entities

Recall: Design Patterns

● Capture programming idioms (not solutions)

● Exploit polymorphism in well understood ways

● 3 classic categories
– Creational – provide flexibility in creating objects
– Structural – compose classes to add new behavior
– Behavioral – focus on communication between entities

● We have seen prototype, decorator, command, ...

Problem: Add new behaviors to a set of types

● Different classes can perform the same action differently

Problem: Add new behaviors to a set of types

● Different classes can perform the same action differently

Manager Underling

Employee

Problem: Add new behaviors to a set of types

● Different classes can perform the same action differently

Manager manager;
manager.updatePay();

Underling underling;
underling.updatePay();

Manager Underling

Employee

Problem: Add new behaviors to a set of types

● Different classes can perform the same action differently

● Sometimes you want to add a new kind of action to a set of related
classes

Problem: Add new behaviors to a set of types

● Different classes can perform the same action differently

● Sometimes you want to add a new kind of action to a set of related
classes

Manager manager;
manager.serialize();

Underling underling;
underling.serialize();

Problem: Add new behaviors to a set of types

● Different classes can perform the same action differently

● Sometimes you want to add a new kind of action to a set of related
classes

● There may be many different types of actions to add

Problem: Add new behaviors to a set of types

● Different classes can perform the same action differently

● Sometimes you want to add a new kind of action to a set of related
classes

● There may be many different types of actions to add

Operations for Employees
updatePay

Problem: Add new behaviors to a set of types

● Different classes can perform the same action differently

● Sometimes you want to add a new kind of action to a set of related
classes

● There may be many different types of actions to add

updatePay
serialize

Operations for Employees

Problem: Add new behaviors to a set of types

● Different classes can perform the same action differently

● Sometimes you want to add a new kind of action to a set of related
classes

● There may be many different types of actions to add

updatePay
serialize
printPerformanceReview

Operations for Employees

Problem: Add new behaviors to a set of types

● Different classes can perform the same action differently

● Sometimes you want to add a new kind of action to a set of related
classes

● There may be many different types of actions to add

updatePay
serialize
printPerformanceReview
...

Operations for Employees

Problem: Add new behaviors to a set of types

● Different classes can perform the same action differently

● Sometimes you want to add a new kind of action to a set of related
classes

● There may be many different types of actions to add

● Sometimes, you can't even know all of the actions in advance!

Problem: Add new behaviors to a set of types

● Different classes can perform the same action differently

● Sometimes you want to add a new kind of action to a set of related
classes

● There may be many different types of actions to add

● Sometimes, you can't even know all of the actions in advance!

Why are these problems?

Problem: Add new behaviors to a set of types

● Let us take a look at our Employee base class...

class Employee {
public:
 ...
 virtual void updatePay() = 0;
 virtual void performJob() = 0;
 virtual void serialize() = 0;
 virtual void displayAvatar() = 0;
 virtual void printPerformanceReview() = 0;
 virtual void findFavoriteOfficeMate() = 0;
 virtual void procrastinate() = 0;
};

Problem: Add new behaviors to a set of types

● Let us take a look at our Employee base class...

class Employee {
public:
 ...
 virtual void updatePay() = 0;
 virtual void performJob() = 0;
 virtual void serialize() = 0;
 virtual void displayAvatar() = 0;
 virtual void printPerformanceReview() = 0;
 virtual void findFavoriteOfficeMate() = 0;
 virtual void procrastinate() = 0;
};

Why does this feel so wrong?

Problem: Add new behaviors to a set of types

● Let us take a look at our Employee base class...

class Employee {
public:
 ...
 virtual void updatePay() = 0;
 virtual void performJob() = 0;
 virtual void serialize() = 0;
 virtual void displayAvatar() = 0;
 virtual void printPerformanceReview() = 0;
 virtual void findFavoriteOfficeMate() = 0;
 virtual void procrastinate() = 0;
};

Why does this feel so wrong?

Solutions

● We need to find a better way

– What are the tools at our disposal?

Solutions

● We need to find a better way

– What are the tools at our disposal?
● Classes
● Polymorphism

Solutions

● We need to find a better way

– What are the tools at our disposal?
● Classes
● Polymorphism

– How can we use them to attack the problem?

Solutions

● We need to find a better way

– What are the tools at our disposal?
● Classes
● Polymorphism

– How can we use them to attack the problem?
● Group related behaviors into classes
● Invoke them when desired

Grouping Related Behavior

● How should we group related behaviors?

What does SRP dictate?

Grouping Related Behavior

● How should we group related behaviors?
– Each offending method becomes a new class

Grouping Related Behavior

● How should we group related behaviors?
– Each offending method becomes a new class

class EmployeeSerializer {
public:
 void serialize(Manager &manager);
 void serialize(Underling &underling);
};

class PerformanceReviewPrinter {
public:
 void printReview(Manager &manager);
 void printReview(Underling &underling);
};

How Do We Invoke It?

How Do We Invoke It?

EmployeeSerializer serializer;
std::vector<Employee*> employees;

for (auto *employee : employees) {
 serializer.serialize(*employee);
}

EmployeeSerializer serializer;
std::vector<Employee*> employees;

for (auto *employee : employees) {
 serializer.serialize(*employee);
}

How Do We Invoke It?

?
Will this work? Why?

EmployeeSerializer serializer;
std::vector<Employee*> employees;

for (auto *employee : employees) {
 serializer.serialize(*employee);
}

How Do We Invoke It?

No!

EmployeeSerializer serializer;
std::vector<Employee*> employees;

for (auto *employee : employees) {
 serializer.serialize(*employee);
}

How Do We Invoke It?

No!
What is the core problem?

EmployeeSerializer serializer;
std::vector<Employee*> employees;

for (auto *employee : employees) {
 serializer.serialize(*employee);
}

How Do We Invoke It?

No!
What is the core problem?

How Do We Invoke It?

● Problem:
– We want to call a method based on multiple dynamic types

serializer.serialize(*employee);

How Do We Invoke It?

● Problem:
– We want to call a method based on multiple dynamic types

serializer.serialize(*employee);

EmployeeSerializer

How Do We Invoke It?

● Problem:
– We want to call a method based on multiple dynamic types

serializer.serialize(*employee);

EmployeeSerializer Manager/Underling

How Do We Invoke It?

● Problem:
– We want to call a method based on multiple dynamic types

– Multiple Dispatch (or double dispatch in this case)

serializer.serialize(*employee);

EmployeeSerializer Manager/Underling

How Do We Invoke It?

● Problem:
– We want to call a method based on multiple dynamic types

– Multiple Dispatch (or double dispatch in this case)

But we only know that employee is an Employee*

serializer.serialize(*employee);

EmployeeSerializer Manager/Underling

How Do We Invoke It?

● Problem:
– We want to call a method based on multiple dynamic types

– Multiple Dispatch (or double dispatch in this case)

serializer.serialize(*employee);

EmployeeSerializer Manager/Underling

for (auto* employee : employees) {
 serializer.serialize(*employee);
}

But we only know that employee is an Employee*

How Do We Invoke It?

● Problem:
– We want to call a method based on multiple dynamic types

– Multiple Dispatch (or double dispatch in this case)

serializer.serialize(*employee);

EmployeeSerializer Manager/Underling

How can we resolve the issue?

But we only know that employee is an Employee*

How Do We Invoke It?

● Problem:
– We want to call a method based on multiple dynamic types

– Multiple Dispatch (or double dispatch in this case)

● Solution:
– The Visitor Pattern

serializer.serialize(*employee);

How Do We Invoke It?

● Problem:
– We want to call a method based on multiple dynamic types

– Multiple Dispatch (or double dispatch in this case)

● Solution:
– The Visitor Pattern

– Goal

serializer.serialize(*employee);

base->xxxxx(xxxxx);

How Do We Invoke It?

● Problem:
– We want to call a method based on multiple dynamic types

– Multiple Dispatch (or double dispatch in this case)

● Solution:
– The Visitor Pattern

– Goal

serializer.serialize(*employee);

base->xxxxx(xxxxx);

Invoke the correct behavior regardless of the dynamic type!

The Visitor Pattern

class EmployeeSerializer : public Visitor {
public:
 void visit(Manager &manager) override;
 void visit(Underling &underling) override;
};

Abstract away the added behaviors:

The Visitor Pattern

class EmployeeSerializer : public Visitor {
public:
 void visit(Manager &manager) override;
 void visit(Underling &underling) override;
};

Abstract away the added behaviors:

Giving behaviors a common API
allows us to use all behaviors in the same way

The Visitor Pattern

class Employee {
public:
 virtual void accept(Visitor &v) = 0;
}
class Manager : public Employee {
 ...
 void accept(Visitor &v) override {
 v.visit(*this);
 }
};

Change the original classes:

class Employee {
public:
 virtual void accept(Visitor &v) = 0;
}
class Manager : public Employee {
 ...
 void accept(Visitor &v) override {
 v.visit(*this);
 }
};

The Visitor Pattern

Change the original classes:

The dynamic type of Employee is known!

Calls visit(Manager &manager) here.

The Visitor Pattern

Use the new behaviors through their classes:

EmployeeSerializer serializer;
PerformanceReviewPrinter reviewer;
std::deque<Employee*> employees;

for (auto *employee : employees) {
 employee->accept(serializer);
 employee->accept(reviewer);
}

The Visitor Pattern

Use the new behaviors through their classes:

EmployeeSerializer serializer;
PerformanceReviewPrinter reviewer;
std::deque<Employee*> employees;

for (auto *employee : employees) {
 employee->accept(serializer);
 employee->accept(reviewer);
}

What if we want a return value?

The Visitor Pattern

● A behavioral pattern

The Visitor Pattern

● A behavioral pattern

● Useful for adding new behaviors to a collection of related classes

The Visitor Pattern

● A behavioral pattern

● Useful for adding new behaviors to a collection of related classes
– It also keeps those behaviors isolated!

The Visitor Pattern

● A behavioral pattern

● Useful for adding new behaviors to a collection of related classes
– It also keeps those behaviors isolated!

– Useful for designing APIs open to extension (infinite set of new behaviors)

The Visitor Pattern

● A behavioral pattern

● Useful for adding new behaviors to a collection of related classes

● But what are the downsides?
– Can we overcome them?

Making tradoffs

● The visitor pattern
– makes adding new behaviors trivial

– can leave adding new types challenging

Making tradoffs

● The visitor pattern
– makes adding new behaviors trivial

– can leave adding new types challenging

● What if we expect adding new types to be more common?
– A similar pattern called the interpreter emerges

– Each behavior is just a method of the type involved

Making tradoffs

● The visitor pattern
– makes adding new behaviors trivial

– can leave adding new types challenging

● What if we expect adding new types to be more common?
– A similar pattern called the interpreter emerges

– Each behavior is just a method of the type involved

● Choose between them by likelihood of change & maintainability

Making tradoffs

● The visitor pattern
– makes adding new behaviors trivial

– can leave adding new types challenging

● What if we expect adding new types to be more common?
– A similar pattern called the interpreter emerges

– Each behavior is just a method of the type involved

● Choose between them by likelihood of change & maintainability

You can help or hurt
an open/closed design

Making tradoffs

● The visitor pattern
– makes adding new behaviors trivial

– can leave adding new types challenging

● What if we expect adding new types to be more common?
– A similar pattern called the interpreter emerges

– Each behavior is just a method of the type involved

● Choose between them by likelihood of change & maintainability

● Adding new types vs adding new behaviors is a common tension
when designing maintainable software
– This is classically known as the expression problem.

Summary

● The visitor pattern enables adding new behaviors to a set of types

Summary

● The visitor pattern enables adding new behaviors to a set of types

● Types can assist in choosing behavior based on when/where
the type is known

Summary

● The visitor pattern enables adding new behaviors to a set of types

● Types can assist in choosing behavior based on when/where
the type is known

● Trade offs must still be managed
– Over-engineering is a serious risk

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

