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Recall: Design Patterns

● Capture programming idioms (not solutions)

● Exploit polymorphism in well understood ways

● 3 classic categories
– Creational – provide flexibility in creating objects
– Structural – compose classes to add new behavior
– Behavioral – focus on communication between entities

● We have seen prototype, decorator, command, ...
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Manager manager;
manager.serialize();

Underling underling;
underling.serialize();
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● Different classes can perform the same action differently

● Sometimes you want to add a new kind of action to a set of related 
classes

● There may be many different types of actions to add

updatePay
serialize
printPerformanceReview

Operations for Employees
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Problem: Add new behaviors to a set of types

● Different classes can perform the same action differently

● Sometimes you want to add a new kind of action to a set of related 
classes

● There may be many different types of actions to add

● Sometimes, you can't even know all of the actions in advance!

Why are these problems?
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Solutions

● We need to find a better way

– What are the tools at our disposal?
● Classes
● Polymorphism

– How can we use them to attack the problem?
● Group related behaviors into classes
● Invoke them when desired



  

Grouping Related Behavior

● How should we group related behaviors?

What does SRP dictate?
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Grouping Related Behavior

● How should we group related behaviors?
– Each offending method becomes a new class

class EmployeeSerializer {
public:
  void serialize(Manager &manager);
  void serialize(Underling &underling);
};

class PerformanceReviewPrinter {
public:
  void printReview(Manager &manager);
  void printReview(Underling &underling);
};
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How Do We Invoke It?

● Problem:
– We want to call a method based on multiple dynamic types

– Multiple Dispatch (or double dispatch in this case)

serializer.serialize(*employee);

EmployeeSerializer Manager/Underling

for (auto* employee : employees) {
  serializer.serialize(*employee);
}

But we only know that employee is an Employee*



  

How Do We Invoke It?

● Problem:
– We want to call a method based on multiple dynamic types

– Multiple Dispatch (or double dispatch in this case)

serializer.serialize(*employee);

EmployeeSerializer Manager/Underling

How can we resolve the issue?

But we only know that employee is an Employee*
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How Do We Invoke It?

● Problem:
– We want to call a method based on multiple dynamic types

– Multiple Dispatch (or double dispatch in this case)

● Solution:
– The Visitor Pattern

– Goal

serializer.serialize(*employee);

base->xxxxx(xxxxx);

Invoke the correct behavior regardless of the dynamic type!
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class EmployeeSerializer : public Visitor {
public:
  void visit(Manager &manager) override;
  void visit(Underling &underling) override;
};

Abstract away the added behaviors:



  

The Visitor Pattern

class EmployeeSerializer : public Visitor {
public:
  void visit(Manager &manager) override;
  void visit(Underling &underling) override;
};

Abstract away the added behaviors:

Giving behaviors a common API
allows us to use all behaviors in the same way



  

The Visitor Pattern

class Employee {
public:
  virtual void accept(Visitor &v) = 0;
}
class Manager : public Employee {
  ...
  void accept(Visitor &v) override {
    v.visit(*this);
  }
};

Change the original classes:



  

class Employee {
public:
  virtual void accept(Visitor &v) = 0;
}
class Manager : public Employee {
  ...
  void accept(Visitor &v) override {
    v.visit(*this);
  }
};

The Visitor Pattern

Change the original classes:

The dynamic type of Employee is known!

Calls visit(Manager &manager) here.



  

The Visitor Pattern

Use the new behaviors through their classes:

EmployeeSerializer serializer;
PerformanceReviewPrinter reviewer;
std::deque<Employee*> employees;

for (auto *employee : employees) {
  employee->accept(serializer);
  employee->accept(reviewer);
}



  

The Visitor Pattern

Use the new behaviors through their classes:

EmployeeSerializer serializer;
PerformanceReviewPrinter reviewer;
std::deque<Employee*> employees;

for (auto *employee : employees) {
  employee->accept(serializer);
  employee->accept(reviewer);
}

What if we want a return value?
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● A behavioral pattern

● Useful for adding new behaviors to a collection of related classes
– It also keeps those behaviors isolated!

– Useful for designing APIs open to extension (infinite set of new behaviors)



  

The Visitor Pattern

● A behavioral pattern

● Useful for adding new behaviors to a collection of related classes

● But what are the downsides?
– Can we overcome them?
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● The visitor pattern
– makes adding new behaviors trivial

– can leave adding new types challenging

● What if we expect adding new types to be more common?
– A similar pattern called the interpreter emerges

– Each behavior is just a method of the type involved

● Choose between them by likelihood of change & maintainability

You can help or hurt
an open/closed design



  

Making tradoffs

● The visitor pattern
– makes adding new behaviors trivial

– can leave adding new types challenging

● What if we expect adding new types to be more common?
– A similar pattern called the interpreter emerges

– Each behavior is just a method of the type involved

● Choose between them by likelihood of change & maintainability

● Adding new types vs adding new behaviors is a common tension
when designing maintainable software
– This is classically known as the expression problem.
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Summary

● The visitor pattern enables adding new behaviors to a set of types

● Types can assist in choosing behavior based on when/where
the type is known

● Trade offs must still be managed
– Over-engineering is a serious risk
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