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Why do we care about types?

● They have detractors
– Many languages got by without them: Python, Ruby, JavaScript, ...
– Some languages are pretty flexible about them: C
– They may involve extra typing
– They limit what a program can do

● But there are benefits
– Fewer bugs
– Easier readability
– Better toolability
– Many languages have incorporated them: Python, Ruby, JavaScript, ...
– They limit what a program can do

● To understand why the last point is good, let us consider what a type is
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What are types?

● A type comprises
– a set of values and
– how those values may be used

● By limiting the values/operations possible at a program point,
we make it easier to prove a program correct, at least to a degree
– Superficially this is obvious but maybe unconvincing.

We shall explore stronger arguments & examples over the rest of the term.
● In a statically typed language, we can describe the set of values ahead 

of time, without running the code
– This enables problems to be found in advance
– It also enables tools to provide better assistance

int x; 4,294,967,296 values
+, -, /, %, =, ==

std::string x; ∞ values
+, =, ==, [ ]

empty, reserve, substr, ...
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Goals & trade offs

● Writing out types can be complex
– There could be extra typing
– Type inference helps significantly in modern Java, C++, C#, ...
– Capturing all valid & only valid types can be tricky
– Fair point. We will see more design trade offs for an engineer

● Expressing static types can be limiting
– Only defining each function for a single type limits reuse & extensibility

– One solution was through polymorphism – types comprising sets of types

min(3,5)
min("aardvark"s, "easyvark"s)

...
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– Overloading
– Coercion

There are more,
but we won’t discuss them
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Polymorphisms

● We have seen 2 forms, but at least 4 major forms are classic & common
– Runtime polymorphism (subtyping & inheritance)
– Parametric polymorphism (templates, generics, ...)
– Overloading
– Coercion

● Universal polymorphisms define types that can comprise
an infinite number of other types with a common structure

Universal

Ad hoc

template<typename T>
T&
min(T& first, T& second) {
  return (first < second)

? first : second;
}

public class Cat
  extends Comparable<Cat> {
  ...
  @Override
  boolean compareTo(Cat other)
  ...
}

public static <T extends Comparable<T>>
T
min(T first, T second) {
  return (first.compareTo(second) < 0)

? first : second;
}

common structure

common structure
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– Overloading
– Coercion

● Universal polymorphisms define types that can comprise
an infinite number of other types with a common structure

● Ad hoc polymorphisms define types that can comprise
a finite set of explicitly specified types with even disparate structure

Universal

Ad hoc

int
add(int first, int second) {
  return first + second;
}

String
add(const String& s1,
    const String& s2) {
  String result{s1};
  result.append(s2);
  return result;
}



  

Polymorphisms

● We have seen 2 forms, but at least 4 major forms are classic & common
– Runtime polymorphism (subtyping & inheritance)
– Parametric polymorphism (templates, generics, ...)
– Overloading
– Coercion

● Universal polymorphisms define types that can comprise
an infinite number of other types with a common structure

● Ad hoc polymorphisms define types that can comprise
a finite set of explicitly specified types with even disparate structure

Universal

Ad hoc

int
add(int first, int second) {
  return first + second;
}

String
add(const String& s1,
    const String& s2) {
  String result{s1};
  result.append(s2);
  return result;
}disparate structure

auto x = add(1, 2);
auto y = add(“hello”, “ world”);
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Polymorphisms

● We have seen 2 forms, but at least 4 major forms are classic & common
– Runtime polymorphism (subtyping & inheritance)
– Parametric polymorphism (templates, generics, ...)
– Overloading
– Coercion

● Universal polymorphisms define types that can comprise
an infinite number of other types with a common structure

● Ad hoc polymorphisms define types that can comprise
a finite set of explicitly specified types with even disparate structure

Universal

Ad hoc
class string_view {
  string_view(const char *);
  string_view(const std::string&);
  template <size_t N>
  string_view(const char[N]);
  template <size_t N>
  string_view(const std::array<char,N>&);
  ...

bool
endsInING(string_view view) {
  return view.ends_with(“ing”);
}

endsInING(“reading”);
endsInING(std::string{“writing”});
std::array act = {‘a’,’c’,’t’,’i’,’n’,’g’};
endsInING(acting);

One implementation,
coercion at the call site



  

Polymorphisms

● We have seen 2 forms, but at least 4 major forms are classic & common
– Runtime polymorphism (subtyping & inheritance)
– Parametric polymorphism (templates, generics, ...)
– Overloading
– Coercion

● Universal polymorphisms define types that can comprise
an infinite number of other types with a common structure

● Ad hoc polymorphisms define types that can comprise
a finite set of explicitly specified types with even disparate structure

● All forms of polymorphism have benefits & costs,
but junior developers often struggle with inheritance vs parametricity

Universal

Ad hoc
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● Parametric polymorphism
– Defines a fresh type for new parameters std::array<int,5> != std::array<int,6>

This means:
They may have different sizes.
They cannot be stored in a single collection.
...
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Runtime vs Parametric Polymorphism (commonly)

● Parametric polymorphism
– Defines a fresh type for new parameters
– Statically type checked & bound

● More errors can be found at compile time
● The parameters must be resolved at compile time (not dynamically linked in)
● Significant performance gains are achievable

● Runtime polymorphism
– Resolves operations dynamically (at runtime) through indirection

● Indirection supports more flexibility & provides a uniform view
– Hides the specific type from users of that type (decoupling)

std::array<int,5> != std::array<int,6>

void foo(Base&); Derived1 d1;
foo(d1);

Derived2 d2;
foo(d2);



  

Runtime vs Parametric Polymorphism (commonly)

● Parametric polymorphism
– Defines a fresh type for new parameters
– Statically type checked & bound

● More errors can be found at compile time
● The parameters must be resolved at compile time (not dynamically linked in)
● Significant performance gains are achievable

● Runtime polymorphism
– Resolves operations dynamically (at runtime) through indirection

● Indirection supports more flexibility & provides a uniform view
– Hides the specific type from users of that type (decoupling)
– Subtypes can be compiled separately (dynamically loaded, plug-in based, ...)

std::array<int,5> != std::array<int,6>
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Runtime & Parametric Polymorphism

● Combining them carefully leads to powerful results
– Done well, you get the strengths of both (powerful good)
– Done poorly, you get the weaknesses of both (powerful bad)

● Parametric derived classes create a family of types satisfying an interface

class Base {
  virtual void foo() = 0;
};

template<typename T>
class Derived : public Base {
  void foo() override { ... }
};

Base

Derived<int>
Derived<string> Derived<Cat>
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● Combining them carefully leads to powerful results
– Done well, you get the strengths of both (powerful good)
– Done poorly, you get the weaknesses of both (powerful bad)

● Parametric derived classes create a family of types satisfying an interface
● Parametric base classes support passing information from derived to 

based to improve safety & performance

This was just CRTP!
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● Parametric derived classes create a family of types satisfying an interface
● Parametric base classes support passing information from derived to 

based to improve safety & performance
template<typename Derived>
class Base {
  virtual void foo(Derived&) = 0;
};

class Base {
  virtual void foo(Base&) = 0;
};



  

Runtime & Parametric Polymorphism

● Combining them carefully leads to powerful results
– Done well, you get the strengths of both (powerful good)
– Done poorly, you get the weaknesses of both (powerful bad)

● Parametric derived classes create a family of types satisfying an interface
● Parametric base classes support passing information from derived to 

based to improve safety & performance
template<typename Derived>
class Base {
  virtual void foo(Derived&) = 0;
};

class Base {
  virtual void foo(Base&) = 0;
};

What do the different sets of values mean?
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Runtime & Parametric Polymorphism

● Combining them carefully leads to powerful results
– Done well, you get the strengths of both (powerful good)
– Done poorly, you get the weaknesses of both (powerful bad)

● Parametric derived classes create a family of types satisfying an interface
● Parametric base classes support passing information from derived to 

based to improve safety & performance
● Hiding inheritance behind a parametric interface can provide

consistent usage while reducing complexity for a user
● Problems with poor inheritance usage are exacerbated by

parametricity (significant additional overheads & complexity) 
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● Both enable the open/closed principle
– Code should be

open to extension (easy to customize)
closed to modification (original code should not need modification)

class CrosswordGenerator {
  CrosswordGenerator(... clues)
    : clues{std::move(clues)}
      { }
private:
  std::unique_ptr<Clues> clues;
};

auto englishClues = ...
CrosswordGenerator cg{englishClues};

auto frenchClues = ...
CrosswordGenerator cg{frenchClues};



  

Runtime & Parametric Polymorphism

● Both enable the open/closed principle
– Code should be

open to extension (easy to customize)
closed to modification (original code should not need modification)

template <typename WallCarver>
class MazeGenerator {
  MazeGenerator(WallCarver carver)
    : carver{std::move(carver)}
      { }
private:
  WallCarver carver;
};
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● Both enable programs with holes [Meyer 1996]

– Portions of a design are abstracted out & meant to be filled by a user
– This allows you to defer some design decisions to a later point in time!

Polymorphism makes designing 
around decisions easier!

http://se.ethz.ch/~meyer/publications/computer/reusability.pdf


  

Runtime & Parametric Polymorphism

● Both enable the open/closed principle
– Code should be

open to extension (easy to customize)
closed to modification (original code should not need modification)

● Both enable programs with holes [Meyer 1996]

– Portions of a design are abstracted out & meant to be filled by a user
– This allows you to defer some design decisions to a later point in time!
– This is one form of inversion of control

http://se.ethz.ch/~meyer/publications/computer/reusability.pdf


  

Runtime & Parametric Polymorphism

● Both enable the open/closed principle
– Code should be

open to extension (easy to customize)
closed to modification (original code should not need modification)

● Both enable programs with holes [Meyer 1996]

– Portions of a design are abstracted out & meant to be filled by a user
– This allows you to defer some design decisions to a later point in time!
– This is one form of inversion of control
– We have seen this before with higher order functions & lambdas!

http://se.ethz.ch/~meyer/publications/computer/reusability.pdf


  

Runtime & Parametric Polymorphism

● Both enable the open/closed principle
– Code should be

open to extension (easy to customize)
closed to modification (original code should not need modification)

● Both enable programs with holes [Meyer 1996]
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Runtime & Parametric Polymorphism

● Both enable the open/closed principle
– Code should be

open to extension (easy to customize)
closed to modification (original code should not need modification)

● Both enable programs with holes [Meyer 1996]

– Portions of a design are abstracted out & meant to be filled by a user
– This allows you to defer some design decisions to a later point in time!
– This is one form of inversion of control
– We have seen this before with higher order functions & lambdas!

template <typename Collection,
          typename Predicate>
bool
any_of(const Collection& c, Predicate p) {
  for (const auto& element : c) {
    if (p(c)) {
      return true;
    }
  }
  return false;
}

bool
contains3(const Collection& c) {
  for (const auto& element : c) {
    if (c == 3) {
      return true;
    }
  }
  return false;
}
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Runtime & Parametric Polymorphism

● Both enable the open/closed principle
– Code should be

open to extension (easy to customize)
closed to modification (original code should not need modification)

● Both enable programs with holes [Meyer 1996]

– Portions of a design are abstracted out & meant to be filled by a user
– This allows you to defer some design decisions to a later point in time!
– This is one form of inversion of control
– We have seen this before with higher order functions & lambdas!

template <typename Collection,
          typename Predicate>
bool
any_of(const Collection& c, Predicate p) {
  for (const auto& element : c) {
    if (p(c)) {
      return true;
    }
  }
  return false;
}

any_of(elements,
  [](const auto& e) { return e == 3; });

bool
contains3(const Collection& c) {
  for (const auto& element : c) {
    if (c == 3) {
      return true;
    }
  }
  return false;
}

http://se.ethz.ch/~meyer/publications/computer/reusability.pdf
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class Base {
  virtual void foo() = 0;
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Composition

● Plain composition is still simpler than polymorphism,
but it makes satisfying the open/closed principle harder

● By thinking of types as sets of values it still offers some tactics

char
256 values

class Base {
  virtual void foo() = 0;
};

∞ values

enum Colors {
  RED,ORANGE,YELLOW,
  GREEN,BLUE,PURPLE
};

6 values

struct Pair {
  char a;
  char b;
};
2562 =65536 values

OR → + AND → *
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Composition

● Plain composition is still simpler than polymorphism,
but it makes satisfying the open/closed principle harder

● By thinking of types as sets of values it still offers some tactics
● Algebraic data types can be constructed through basic

relational compositions of values
– product types are records
– sum types are discriminated unions

struct Pair {
  char a;
  char b;
};

enum Colors {
  RED,ORANGE,YELLOW,
  GREEN,BLUE,PURPLE
};

enum Message {
  Quit,
  Move { x: i32, y: i32 },
  Write(String)
}

[From the Rust Book]



  

Composition

● Plain composition is still simpler than polymorphism,
but it makes satisfying the open/closed principle harder

● By thinking of types as sets of values it still offers some tactics
● Algebraic data types can be constructed through basic

relational compositions of values
– product types are records
– sum types are discriminated unions

● Operations on sum types use pattern matching
to require that all possible values are handled
– This is even enforced by the compiler!



  

Composition

enum Message {
    Quit,
    Move { x: i32, y: i32 },
    Write(String)
}
let msg = Message::Quit;
match msg {
    Message::Quit => {
        println!("The Quit variant has no data to destructure.")
    },
    Message::Move { x, y } => {
        println!("Move {} and {}", x, y);
    },
    Message::Write(text) => println!("Text message: {}", text),
}

[From the Rust Book]
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}

[From the Rust Book]



  

Composition

● What do sum types look like in e.g. C++ or Java?

using Message =
  std::variant<Quit, Move, Write>;
struct Action {
  void operator()(const Quit&) {...}
  void operator()(const Move&) {...}
  void operator()(const Write&) {...}
};
...
  Message m = Quit{};
  std::visit(Action{}, m); 
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using Message =
  std::variant<Quit, Move, Write>;

public enum Message {
  QUIT,
  MOVE,
  WRITE {
    void bar() {...}
    @Override
    void foo() {...}
  };
  Message() {...}
  ...
  public void foo() {}
}

struct Action {
  void operator()(const Quit&) {...}
  void operator()(const Move&) {...}
  void operator()(const Write&) {...}
};
...
  Message m = Quit{};
  std::visit(Action{}, m); 



  

Composition

● What do sum types look like in e.g. C++ or Java?

using Message =
  std::variant<Quit, Move, Write>;

public enum Message {
  QUIT,
  MOVE,
  WRITE {
    void bar() {...}
    @Override
    void foo() {...}
  };
  Message() {...}
  ...
  public void foo() {}
}

struct Action {
  void operator()(const Quit&) {...}
  void operator()(const Move&) {...}
  void operator()(const Write&) {...}
};
...
  Message m = Quit{};
  std::visit(Action{}, m); 

But both languages are moving
toward full pattern matching!



  

Composition

● What may pattern matching look like in e.g. C++ or Java?
int
get_area(const Shape& shape) {
  return inspect (shape) {
    <Circle>    [r]    => 3.14 * r * r,
    <Rectangle> [w, h] => w * h
  }
}

[Pattern Matching, p1371r0]

Message m = ...
inspect (m) {
 <Quit> q:  ...;
 <Move> o:  ...;
 <Write> w: ...;
}



  

Composition

● What may pattern matching look like in e.g. C++ or Java?
int
get_area(const Shape& shape) {
  return inspect (shape) {
    <Circle>    [r]    => 3.14 * r * r,
    <Rectangle> [w, h] => w * h
  }
}

[Pattern Matching, p1371r0]

Message m = ...
inspect (m) {
 <Quit> q:  ...;
 <Move> o:  ...;
 <Write> w: ...;
}

Message m = ...
Result r = switch (m) {
  case QUIT q  -> ...; 
  case MOVE o  -> ...; 
  case WRITE w -> ...; 
};
[Pattern Matching for Java]

https://openjdk.org/projects/amber/design-notes/patterns/pattern-matching-for-java
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we can carefully design types that help ensure
correctness, flexibility, & performance



  

Summary

● By thinking of types as sets of values,
we can carefully design types that help ensure
correctness, flexibility, & performance

● Four(!) major forms of polymorphism have been in use for decades 
that give us significant power when designing our types



  

Summary

● By thinking of types as sets of values,
we can carefully design types that help ensure
correctness, flexibility, & performance

● Four(!) major forms of polymorphism have been in use for decades 
that give us significant power when designing our types

● Algebraic data types use composition of types to provide safe and 
convenient handling of finite sets of types



  

Summary

● By thinking of types as sets of values,
we can carefully design types that help ensure
correctness, flexibility, & performance

● Four(!) major forms of polymorphism have been in use for decades 
that give us significant power when designing our types

● Algebraic data types use composition of types to provide safe and 
convenient handling of finite sets of types

● All of these approaches have tradeoffs
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