
CMPT 373
Software Development Methods

Nick Sumner
wsumner@sfu.ca

Types, Polymorphisms,
& Composition

Why do we care about types?

● They have detractors

Why do we care about types?

● They have detractors
– Many languages got by without them: Python, Ruby, JavaScript, ...
– Some languages are pretty flexible about them: C
– They may involve extra typing
– They limit what a program can do

Why do we care about types?

● They have detractors
– Many languages got by without them: Python, Ruby, JavaScript, ...
– Some languages are pretty flexible about them: C
– They may involve extra typing
– They limit what a program can do

● But there are benefits

Why do we care about types?

● They have detractors
– Many languages got by without them: Python, Ruby, JavaScript, ...
– Some languages are pretty flexible about them: C
– They may involve extra typing
– They limit what a program can do

● But there are benefits
– Fewer bugs
– Easier readability
– Better toolability
– Many languages have incorporated them: Python, Ruby, JavaScript, ...
– They limit what a program can do

Why do we care about types?

● They have detractors
– Many languages got by without them: Python, Ruby, JavaScript, ...
– Some languages are pretty flexible about them: C
– They may involve extra typing
– They limit what a program can do

● But there are benefits
– Fewer bugs
– Easier readability
– Better toolability
– Many languages have incorporated them: Python, Ruby, JavaScript, ...
– They limit what a program can do

● To understand why the last point is good, let us consider what a type is

What are types?

● A type comprises
– a set of values and
– how those values may be used

What are types?

● A type comprises
– a set of values and
– how those values may be used

int x; 4,294,967,296 values
+, -, /, %, =, ==

What are types?

● A type comprises
– a set of values and
– how those values may be used

int x; 4,294,967,296 values
+, -, /, %, =, ==

std::string x; ∞ values
+, =, ==, []

empty, reserve, substr, ...

What are types?

● A type comprises
– a set of values and
– how those values may be used

● By limiting the values/operations possible at a program point,
we make it easier to prove a program correct, at least to a degree

int x; 4,294,967,296 values
+, -, /, %, =, ==

std::string x; ∞ values
+, =, ==, []

empty, reserve, substr, ...

What are types?

● A type comprises
– a set of values and
– how those values may be used

● By limiting the values/operations possible at a program point,
we make it easier to prove a program correct, at least to a degree
– Superficially this is obvious but maybe unconvincing.

We shall explore stronger arguments & examples over the rest of the term.

int x; 4,294,967,296 values
+, -, /, %, =, ==

std::string x; ∞ values
+, =, ==, []

empty, reserve, substr, ...

What are types?

● A type comprises
– a set of values and
– how those values may be used

● By limiting the values/operations possible at a program point,
we make it easier to prove a program correct, at least to a degree
– Superficially this is obvious but maybe unconvincing.

We shall explore stronger arguments & examples over the rest of the term.
● In a statically typed language, we can describe the set of values ahead

of time, without running the code

int x; 4,294,967,296 values
+, -, /, %, =, ==

std::string x; ∞ values
+, =, ==, []

empty, reserve, substr, ...

What are types?

● A type comprises
– a set of values and
– how those values may be used

● By limiting the values/operations possible at a program point,
we make it easier to prove a program correct, at least to a degree
– Superficially this is obvious but maybe unconvincing.

We shall explore stronger arguments & examples over the rest of the term.
● In a statically typed language, we can describe the set of values ahead

of time, without running the code
– This enables problems to be found in advance
– It also enables tools to provide better assistance

int x; 4,294,967,296 values
+, -, /, %, =, ==

std::string x; ∞ values
+, =, ==, []

empty, reserve, substr, ...

Goals & trade offs

● Writing out types can be complex

Goals & trade offs

● Writing out types can be complex
– There could be extra typing
– Type inference helps significantly in modern Java, C++, C#, ...

Goals & trade offs

● Writing out types can be complex
– There could be extra typing
– Type inference helps significantly in modern Java, C++, C#, ...
– Capturing all valid & only valid types can be tricky
– Fair point. We will see more design trade offs for an engineer

Goals & trade offs

● Writing out types can be complex
– There could be extra typing
– Type inference helps significantly in modern Java, C++, C#, ...
– Capturing all valid & only valid types can be tricky
– Fair point. We will see more design trade offs for an engineer

● Expressing static types can be limiting
– Only defining each function for a single type limits reuse & extensibility

Goals & trade offs

● Writing out types can be complex
– There could be extra typing
– Type inference helps significantly in modern Java, C++, C#, ...
– Capturing all valid & only valid types can be tricky
– Fair point. We will see more design trade offs for an engineer

● Expressing static types can be limiting
– Only defining each function for a single type limits reuse & extensibility

min(3,5)
min("aardvark"s, "easyvark"s)

...

Goals & trade offs

● Writing out types can be complex
– There could be extra typing
– Type inference helps significantly in modern Java, C++, C#, ...
– Capturing all valid & only valid types can be tricky
– Fair point. We will see more design trade offs for an engineer

● Expressing static types can be limiting
– Only defining each function for a single type limits reuse & extensibility

– One solution was through polymorphism – types comprising sets of types

min(3,5)
min("aardvark"s, "easyvark"s)

...

Polymorphisms

● We have seen 2 forms, but at least 4 major forms are classic & common

Polymorphisms

● We have seen 2 forms, but at least 4 major forms are classic & common
– Runtime polymorphism (subtyping & inheritance)
– Parametric polymorphism (templates, generics, ...)

Polymorphisms

● We have seen 2 forms, but at least 4 major forms are classic & common
– Runtime polymorphism (subtyping & inheritance)
– Parametric polymorphism (templates, generics, ...)
– Overloading
– Coercion

There are more,
but we won’t discuss them

Polymorphisms

● We have seen 2 forms, but at least 4 major forms are classic & common
– Runtime polymorphism (subtyping & inheritance)
– Parametric polymorphism (templates, generics, ...)
– Overloading
– Coercion

Universal

Ad hoc

Polymorphisms

● We have seen 2 forms, but at least 4 major forms are classic & common
– Runtime polymorphism (subtyping & inheritance)
– Parametric polymorphism (templates, generics, ...)
– Overloading
– Coercion

● Universal polymorphisms define types that can comprise
an infinite number of other types with a common structure

Universal

Ad hoc

Polymorphisms

● We have seen 2 forms, but at least 4 major forms are classic & common
– Runtime polymorphism (subtyping & inheritance)
– Parametric polymorphism (templates, generics, ...)
– Overloading
– Coercion

● Universal polymorphisms define types that can comprise
an infinite number of other types with a common structure

Universal

Ad hoc

template<typename T>
T&
min(T& first, T& second) {
 return (first < second)

? first : second;
}

common structure

Polymorphisms

● We have seen 2 forms, but at least 4 major forms are classic & common
– Runtime polymorphism (subtyping & inheritance)
– Parametric polymorphism (templates, generics, ...)
– Overloading
– Coercion

● Universal polymorphisms define types that can comprise
an infinite number of other types with a common structure

Universal

Ad hoc

template<typename T>
T&
min(T& first, T& second) {
 return (first < second)

? first : second;
}

public class Cat
 extends Comparable<Cat> {
 ...
 @Override
 boolean compareTo(Cat other)
 ...
}

public static <T extends Comparable<T>>
T
min(T first, T second) {
 return (first.compareTo(second) < 0)

? first : second;
}

common structure

common structure

Polymorphisms

● We have seen 2 forms, but at least 4 major forms are classic & common
– Runtime polymorphism (subtyping & inheritance)
– Parametric polymorphism (templates, generics, ...)
– Overloading
– Coercion

● Universal polymorphisms define types that can comprise
an infinite number of other types with a common structure

● Ad hoc polymorphisms define types that can comprise
a finite set of explicitly specified types with even disparate structure

Universal

Ad hoc

Polymorphisms

● We have seen 2 forms, but at least 4 major forms are classic & common
– Runtime polymorphism (subtyping & inheritance)
– Parametric polymorphism (templates, generics, ...)
– Overloading
– Coercion

● Universal polymorphisms define types that can comprise
an infinite number of other types with a common structure

● Ad hoc polymorphisms define types that can comprise
a finite set of explicitly specified types with even disparate structure

Universal

Ad hoc

int
add(int first, int second) {
 return first + second;
}

String
add(const String& s1,
 const String& s2) {
 String result{s1};
 result.append(s2);
 return result;
}

Polymorphisms

● We have seen 2 forms, but at least 4 major forms are classic & common
– Runtime polymorphism (subtyping & inheritance)
– Parametric polymorphism (templates, generics, ...)
– Overloading
– Coercion

● Universal polymorphisms define types that can comprise
an infinite number of other types with a common structure

● Ad hoc polymorphisms define types that can comprise
a finite set of explicitly specified types with even disparate structure

Universal

Ad hoc

int
add(int first, int second) {
 return first + second;
}

String
add(const String& s1,
 const String& s2) {
 String result{s1};
 result.append(s2);
 return result;
}disparate structure

auto x = add(1, 2);
auto y = add(“hello”, “ world”);

Polymorphisms

● We have seen 2 forms, but at least 4 major forms are classic & common
– Runtime polymorphism (subtyping & inheritance)
– Parametric polymorphism (templates, generics, ...)
– Overloading
– Coercion

● Universal polymorphisms define types that can comprise
an infinite number of other types with a common structure

● Ad hoc polymorphisms define types that can comprise
a finite set of explicitly specified types with even disparate structure

Universal

Ad hoc
class string_view {
 string_view(const char *);
 string_view(const std::string&);
 template <size_t N>
 string_view(const char[N]);
 template <size_t N>
 string_view(const std::array<char,N>&);
 ...

Polymorphisms

● We have seen 2 forms, but at least 4 major forms are classic & common
– Runtime polymorphism (subtyping & inheritance)
– Parametric polymorphism (templates, generics, ...)
– Overloading
– Coercion

● Universal polymorphisms define types that can comprise
an infinite number of other types with a common structure

● Ad hoc polymorphisms define types that can comprise
a finite set of explicitly specified types with even disparate structure

Universal

Ad hoc
class string_view {
 string_view(const char *);
 string_view(const std::string&);
 template <size_t N>
 string_view(const char[N]);
 template <size_t N>
 string_view(const std::array<char,N>&);
 ...

bool
endsInING(string_view view) {
 return view.ends_with(“ing”);
}

Polymorphisms

● We have seen 2 forms, but at least 4 major forms are classic & common
– Runtime polymorphism (subtyping & inheritance)
– Parametric polymorphism (templates, generics, ...)
– Overloading
– Coercion

● Universal polymorphisms define types that can comprise
an infinite number of other types with a common structure

● Ad hoc polymorphisms define types that can comprise
a finite set of explicitly specified types with even disparate structure

Universal

Ad hoc
class string_view {
 string_view(const char *);
 string_view(const std::string&);
 template <size_t N>
 string_view(const char[N]);
 template <size_t N>
 string_view(const std::array<char,N>&);
 ...

bool
endsInING(string_view view) {
 return view.ends_with(“ing”);
}

endsInING(“reading”);
endsInING(std::string{“writing”});
std::array act = {‘a’,’c’,’t’,’i’,’n’,’g’};
endsInING(acting);

One implementation,
coercion at the call site

Polymorphisms

● We have seen 2 forms, but at least 4 major forms are classic & common
– Runtime polymorphism (subtyping & inheritance)
– Parametric polymorphism (templates, generics, ...)
– Overloading
– Coercion

● Universal polymorphisms define types that can comprise
an infinite number of other types with a common structure

● Ad hoc polymorphisms define types that can comprise
a finite set of explicitly specified types with even disparate structure

● All forms of polymorphism have benefits & costs,
but junior developers often struggle with inheritance vs parametricity

Universal

Ad hoc

Runtime vs Parametric Polymorphism (commonly)

● Parametric polymorphism
– Defines a fresh type for new parameters std::array<int,5> != std::array<int,6>

Runtime vs Parametric Polymorphism (commonly)

● Parametric polymorphism
– Defines a fresh type for new parameters std::array<int,5> != std::array<int,6>

This means:
They may have different sizes.
They cannot be stored in a single collection.
...

Runtime vs Parametric Polymorphism (commonly)

● Parametric polymorphism
– Defines a fresh type for new parameters
– Statically type checked & bound

std::array<int,5> != std::array<int,6>

Runtime vs Parametric Polymorphism (commonly)

● Parametric polymorphism
– Defines a fresh type for new parameters
– Statically type checked & bound

● More errors can be found at compile time

std::array<int,5> != std::array<int,6>

Runtime vs Parametric Polymorphism (commonly)

● Parametric polymorphism
– Defines a fresh type for new parameters
– Statically type checked & bound

● More errors can be found at compile time
● The parameters must be resolved at compile time (not dynamically linked in)

std::array<int,5> != std::array<int,6>

Runtime vs Parametric Polymorphism (commonly)

● Parametric polymorphism
– Defines a fresh type for new parameters
– Statically type checked & bound

● More errors can be found at compile time
● The parameters must be resolved at compile time (not dynamically linked in)
● Significant performance gains are achievable

std::array<int,5> != std::array<int,6>

Runtime vs Parametric Polymorphism (commonly)

● Parametric polymorphism
– Defines a fresh type for new parameters
– Statically type checked & bound

● More errors can be found at compile time
● The parameters must be resolved at compile time (not dynamically linked in)
● Significant performance gains are achievable

● Runtime polymorphism
– Resolves operations dynamically (at runtime) through indirection

● Indirection supports more flexibility & provides a uniform view

std::array<int,5> != std::array<int,6>

Runtime vs Parametric Polymorphism (commonly)

● Parametric polymorphism
– Defines a fresh type for new parameters
– Statically type checked & bound

● More errors can be found at compile time
● The parameters must be resolved at compile time (not dynamically linked in)
● Significant performance gains are achievable

● Runtime polymorphism
– Resolves operations dynamically (at runtime) through indirection

● Indirection supports more flexibility & provides a uniform view
– Hides the specific type from users of that type (decoupling)

std::array<int,5> != std::array<int,6>

void foo(Base&); Derived1 d1;
foo(d1);

Derived2 d2;
foo(d2);

Runtime vs Parametric Polymorphism (commonly)

● Parametric polymorphism
– Defines a fresh type for new parameters
– Statically type checked & bound

● More errors can be found at compile time
● The parameters must be resolved at compile time (not dynamically linked in)
● Significant performance gains are achievable

● Runtime polymorphism
– Resolves operations dynamically (at runtime) through indirection

● Indirection supports more flexibility & provides a uniform view
– Hides the specific type from users of that type (decoupling)
– Subtypes can be compiled separately (dynamically loaded, plug-in based, ...)

std::array<int,5> != std::array<int,6>

Runtime & Parametric Polymorphism

● Combining them carefully leads to powerful results
– Done well, you get the strengths of both (powerful good)
– Done poorly, you get the weaknesses of both (powerful bad)

Runtime & Parametric Polymorphism

● Combining them carefully leads to powerful results
– Done well, you get the strengths of both (powerful good)
– Done poorly, you get the weaknesses of both (powerful bad)

● Parametric derived classes create a family of types satisfying an interface

class Base {
 virtual void foo() = 0;
};

template<typename T>
class Derived : public Base {
 void foo() override { ... }
};

Runtime & Parametric Polymorphism

● Combining them carefully leads to powerful results
– Done well, you get the strengths of both (powerful good)
– Done poorly, you get the weaknesses of both (powerful bad)

● Parametric derived classes create a family of types satisfying an interface

class Base {
 virtual void foo() = 0;
};

template<typename T>
class Derived : public Base {
 void foo() override { ... }
};

Base

Derived<int>
Derived<string> Derived<Cat>

Runtime & Parametric Polymorphism

● Combining them carefully leads to powerful results
– Done well, you get the strengths of both (powerful good)
– Done poorly, you get the weaknesses of both (powerful bad)

● Parametric derived classes create a family of types satisfying an interface
● Parametric base classes support passing information from derived to

based to improve safety & performance

This was just CRTP!

Runtime & Parametric Polymorphism

● Combining them carefully leads to powerful results
– Done well, you get the strengths of both (powerful good)
– Done poorly, you get the weaknesses of both (powerful bad)

● Parametric derived classes create a family of types satisfying an interface
● Parametric base classes support passing information from derived to

based to improve safety & performance
template<typename Derived>
class Base {
 virtual void foo(Derived&) = 0;
};

class Base {
 virtual void foo(Base&) = 0;
};

Runtime & Parametric Polymorphism

● Combining them carefully leads to powerful results
– Done well, you get the strengths of both (powerful good)
– Done poorly, you get the weaknesses of both (powerful bad)

● Parametric derived classes create a family of types satisfying an interface
● Parametric base classes support passing information from derived to

based to improve safety & performance
template<typename Derived>
class Base {
 virtual void foo(Derived&) = 0;
};

class Base {
 virtual void foo(Base&) = 0;
};

What do the different sets of values mean?

Runtime & Parametric Polymorphism

● Combining them carefully leads to powerful results
– Done well, you get the strengths of both (powerful good)
– Done poorly, you get the weaknesses of both (powerful bad)

● Parametric derived classes create a family of types satisfying an interface
● Parametric base classes support passing information from derived to

based to improve safety & performance
● Hiding inheritance behind a parametric interface can provide

consistent usage while reducing complexity for a user

Runtime & Parametric Polymorphism

● Combining them carefully leads to powerful results
– Done well, you get the strengths of both (powerful good)
– Done poorly, you get the weaknesses of both (powerful bad)

● Parametric derived classes create a family of types satisfying an interface
● Parametric base classes support passing information from derived to

based to improve safety & performance
● Hiding inheritance behind a parametric interface can provide

consistent usage while reducing complexity for a user
● Problems with poor inheritance usage are exacerbated by

parametricity (significant additional overheads & complexity)

Runtime & Parametric Polymorphism

● Both enable the open/closed principle
– Code should be

open to extension (easy to customize)
closed to modification (original code should not need modification)

Runtime & Parametric Polymorphism

● Both enable the open/closed principle
– Code should be

open to extension (easy to customize)
closed to modification (original code should not need modification)

class CrosswordGenerator {
 CrosswordGenerator(... clues)
 : clues{std::move(clues)}
 { }
private:
 std::unique_ptr<Clues> clues;
};

auto englishClues = ...
CrosswordGenerator cg{englishClues};

auto frenchClues = ...
CrosswordGenerator cg{frenchClues};

Runtime & Parametric Polymorphism

● Both enable the open/closed principle
– Code should be

open to extension (easy to customize)
closed to modification (original code should not need modification)

template <typename WallCarver>
class MazeGenerator {
 MazeGenerator(WallCarver carver)
 : carver{std::move(carver)}
 { }
private:
 WallCarver carver;
};

Runtime & Parametric Polymorphism

● Both enable the open/closed principle
– Code should be

open to extension (easy to customize)
closed to modification (original code should not need modification)

● Both enable programs with holes [Meyer 1996]

– Portions of a design are abstracted out & meant to be filled by a user

http://se.ethz.ch/~meyer/publications/computer/reusability.pdf

Runtime & Parametric Polymorphism

● Both enable the open/closed principle
– Code should be

open to extension (easy to customize)
closed to modification (original code should not need modification)

● Both enable programs with holes [Meyer 1996]

– Portions of a design are abstracted out & meant to be filled by a user
– This allows you to defer some design decisions to a later point in time!

http://se.ethz.ch/~meyer/publications/computer/reusability.pdf

Runtime & Parametric Polymorphism

● Both enable the open/closed principle
– Code should be

open to extension (easy to customize)
closed to modification (original code should not need modification)

● Both enable programs with holes [Meyer 1996]

– Portions of a design are abstracted out & meant to be filled by a user
– This allows you to defer some design decisions to a later point in time!

Polymorphism makes designing
around decisions easier!

http://se.ethz.ch/~meyer/publications/computer/reusability.pdf

Runtime & Parametric Polymorphism

● Both enable the open/closed principle
– Code should be

open to extension (easy to customize)
closed to modification (original code should not need modification)

● Both enable programs with holes [Meyer 1996]

– Portions of a design are abstracted out & meant to be filled by a user
– This allows you to defer some design decisions to a later point in time!
– This is one form of inversion of control

http://se.ethz.ch/~meyer/publications/computer/reusability.pdf

Runtime & Parametric Polymorphism

● Both enable the open/closed principle
– Code should be

open to extension (easy to customize)
closed to modification (original code should not need modification)

● Both enable programs with holes [Meyer 1996]

– Portions of a design are abstracted out & meant to be filled by a user
– This allows you to defer some design decisions to a later point in time!
– This is one form of inversion of control
– We have seen this before with higher order functions & lambdas!

http://se.ethz.ch/~meyer/publications/computer/reusability.pdf

Runtime & Parametric Polymorphism

● Both enable the open/closed principle
– Code should be

open to extension (easy to customize)
closed to modification (original code should not need modification)

● Both enable programs with holes [Meyer 1996]

– Portions of a design are abstracted out & meant to be filled by a user
– This allows you to defer some design decisions to a later point in time!
– This is one form of inversion of control
– We have seen this before with higher order functions & lambdas!

bool
contains3(const Collection& c) {
 for (const auto& element : c) {
 if (c == 3) {
 return true;
 }
 }
 return false;
}

http://se.ethz.ch/~meyer/publications/computer/reusability.pdf

Runtime & Parametric Polymorphism

● Both enable the open/closed principle
– Code should be

open to extension (easy to customize)
closed to modification (original code should not need modification)

● Both enable programs with holes [Meyer 1996]

– Portions of a design are abstracted out & meant to be filled by a user
– This allows you to defer some design decisions to a later point in time!
– This is one form of inversion of control
– We have seen this before with higher order functions & lambdas!

template <typename Collection,
 typename Predicate>
bool
any_of(const Collection& c, Predicate p) {
 for (const auto& element : c) {
 if (p(c)) {
 return true;
 }
 }
 return false;
}

bool
contains3(const Collection& c) {
 for (const auto& element : c) {
 if (c == 3) {
 return true;
 }
 }
 return false;
}

http://se.ethz.ch/~meyer/publications/computer/reusability.pdf

Runtime & Parametric Polymorphism

● Both enable the open/closed principle
– Code should be

open to extension (easy to customize)
closed to modification (original code should not need modification)

● Both enable programs with holes [Meyer 1996]

– Portions of a design are abstracted out & meant to be filled by a user
– This allows you to defer some design decisions to a later point in time!
– This is one form of inversion of control
– We have seen this before with higher order functions & lambdas!

template <typename Collection,
 typename Predicate>
bool
any_of(const Collection& c, Predicate p) {
 for (const auto& element : c) {
 if (p(c)) {
 return true;
 }
 }
 return false;
}

any_of(elements,
 [](const auto& e) { return e == 3; });

bool
contains3(const Collection& c) {
 for (const auto& element : c) {
 if (c == 3) {
 return true;
 }
 }
 return false;
}

http://se.ethz.ch/~meyer/publications/computer/reusability.pdf

Composition

● Plain composition is still simpler than polymorphism,
but it makes satisfying the open/closed principle harder

Composition

● Plain composition is still simpler than polymorphism,
but it makes satisfying the open/closed principle harder

● By thinking of types as sets of values it still offers some tactics

Composition

● Plain composition is still simpler than polymorphism,
but it makes satisfying the open/closed principle harder

● By thinking of types as sets of values it still offers some tactics

char
256 values

Composition

● Plain composition is still simpler than polymorphism,
but it makes satisfying the open/closed principle harder

● By thinking of types as sets of values it still offers some tactics

char
256 values

class Base {
 virtual void foo() = 0;
};

∞ values

Composition

● Plain composition is still simpler than polymorphism,
but it makes satisfying the open/closed principle harder

● By thinking of types as sets of values it still offers some tactics

char
256 values

class Base {
 virtual void foo() = 0;
};

∞ values

struct Pair {
 char a;
 char b;
};
2562 =65536 values

Composition

● Plain composition is still simpler than polymorphism,
but it makes satisfying the open/closed principle harder

● By thinking of types as sets of values it still offers some tactics

char
256 values

class Base {
 virtual void foo() = 0;
};

∞ values

enum Colors {
 RED,ORANGE,YELLOW,
 GREEN,BLUE,PURPLE
};

6 values

struct Pair {
 char a;
 char b;
};
2562 =65536 values

Composition

● Plain composition is still simpler than polymorphism,
but it makes satisfying the open/closed principle harder

● By thinking of types as sets of values it still offers some tactics

char
256 values

class Base {
 virtual void foo() = 0;
};

∞ values

enum Colors {
 RED,ORANGE,YELLOW,
 GREEN,BLUE,PURPLE
};

6 values

struct Pair {
 char a;
 char b;
};
2562 =65536 values

OR → + AND → *

Composition

● Plain composition is still simpler than polymorphism,
but it makes satisfying the open/closed principle harder

● By thinking of types as sets of values it still offers some tactics
● Algebraic data types can be constructed through basic

relational compositions of values

Composition

● Plain composition is still simpler than polymorphism,
but it makes satisfying the open/closed principle harder

● By thinking of types as sets of values it still offers some tactics
● Algebraic data types can be constructed through basic

relational compositions of values
– product types are records

struct Pair {
 char a;
 char b;
};

Composition

● Plain composition is still simpler than polymorphism,
but it makes satisfying the open/closed principle harder

● By thinking of types as sets of values it still offers some tactics
● Algebraic data types can be constructed through basic

relational compositions of values
– product types are records
– sum types are discriminated unions

struct Pair {
 char a;
 char b;
};

enum Colors {
 RED,ORANGE,YELLOW,
 GREEN,BLUE,PURPLE
};

Composition

● Plain composition is still simpler than polymorphism,
but it makes satisfying the open/closed principle harder

● By thinking of types as sets of values it still offers some tactics
● Algebraic data types can be constructed through basic

relational compositions of values
– product types are records
– sum types are discriminated unions

struct Pair {
 char a;
 char b;
};

enum Colors {
 RED,ORANGE,YELLOW,
 GREEN,BLUE,PURPLE
};

enum Message {
 Quit,
 Move { x: i32, y: i32 },
 Write(String)
}

[From the Rust Book]

Composition

● Plain composition is still simpler than polymorphism,
but it makes satisfying the open/closed principle harder

● By thinking of types as sets of values it still offers some tactics
● Algebraic data types can be constructed through basic

relational compositions of values
– product types are records
– sum types are discriminated unions

● Operations on sum types use pattern matching
to require that all possible values are handled
– This is even enforced by the compiler!

Composition

enum Message {
 Quit,
 Move { x: i32, y: i32 },
 Write(String)
}
let msg = Message::Quit;
match msg {
 Message::Quit => {
 println!("The Quit variant has no data to destructure.")
 },
 Message::Move { x, y } => {
 println!("Move {} and {}", x, y);
 },
 Message::Write(text) => println!("Text message: {}", text),
}

[From the Rust Book]

Composition

enum Message {
 Quit,
 Move { x: i32, y: i32 },
 Write(String)
}
let msg = Message::Quit;
match msg {
 Message::Quit => {
 println!("The Quit variant has no data to destructure.")
 },
 Message::Move { x, y } => {
 println!("Move {} and {}", x, y);
 },
 Message::Write(text) => println!("Text message: {}", text),
}

[From the Rust Book]

Composition

enum Message {
 Quit,
 Move { x: i32, y: i32 },
 Write(String)
}
let msg = Message::Quit;
match msg {
 Message::Quit => {
 println!("The Quit variant has no data to destructure.")
 },
 Message::Move { x, y } => {
 println!("Move {} and {}", x, y);
 },
 Message::Write(text) => println!("Text message: {}", text),
}

[From the Rust Book]

Composition

enum Message {
 Quit,
 Move { x: i32, y: i32 },
 Write(String)
}
let msg = Message::Quit;
match msg {
 Message::Quit => {
 println!("The Quit variant has no data to destructure.")
 },
 Message::Move { x, y } => {
 println!("Move {} and {}", x, y);
 },
 Message::Write(text) => println!("Text message: {}", text),
}

[From the Rust Book]

Composition

● What do sum types look like in e.g. C++ or Java?

using Message =
 std::variant<Quit, Move, Write>;
struct Action {
 void operator()(const Quit&) {...}
 void operator()(const Move&) {...}
 void operator()(const Write&) {...}
};
...
 Message m = Quit{};
 std::visit(Action{}, m);

Composition

● What do sum types look like in e.g. C++ or Java?

using Message =
 std::variant<Quit, Move, Write>;

public enum Message {
 QUIT,
 MOVE,
 WRITE {
 void bar() {...}
 @Override
 void foo() {...}
 };
 Message() {...}
 ...
 public void foo() {}
}

struct Action {
 void operator()(const Quit&) {...}
 void operator()(const Move&) {...}
 void operator()(const Write&) {...}
};
...
 Message m = Quit{};
 std::visit(Action{}, m);

Composition

● What do sum types look like in e.g. C++ or Java?

using Message =
 std::variant<Quit, Move, Write>;

public enum Message {
 QUIT,
 MOVE,
 WRITE {
 void bar() {...}
 @Override
 void foo() {...}
 };
 Message() {...}
 ...
 public void foo() {}
}

struct Action {
 void operator()(const Quit&) {...}
 void operator()(const Move&) {...}
 void operator()(const Write&) {...}
};
...
 Message m = Quit{};
 std::visit(Action{}, m);

But both languages are moving
toward full pattern matching!

Composition

● What may pattern matching look like in e.g. C++ or Java?
int
get_area(const Shape& shape) {
 return inspect (shape) {
 <Circle> [r] => 3.14 * r * r,
 <Rectangle> [w, h] => w * h
 }
}

[Pattern Matching, p1371r0]

Message m = ...
inspect (m) {
 <Quit> q: ...;
 <Move> o: ...;
 <Write> w: ...;
}

Composition

● What may pattern matching look like in e.g. C++ or Java?
int
get_area(const Shape& shape) {
 return inspect (shape) {
 <Circle> [r] => 3.14 * r * r,
 <Rectangle> [w, h] => w * h
 }
}

[Pattern Matching, p1371r0]

Message m = ...
inspect (m) {
 <Quit> q: ...;
 <Move> o: ...;
 <Write> w: ...;
}

Message m = ...
Result r = switch (m) {
 case QUIT q -> ...;
 case MOVE o -> ...;
 case WRITE w -> ...;
};
[Pattern Matching for Java]

https://openjdk.org/projects/amber/design-notes/patterns/pattern-matching-for-java

Summary

● By thinking of types as sets of values,
we can carefully design types that help ensure
correctness, flexibility, & performance

Summary

● By thinking of types as sets of values,
we can carefully design types that help ensure
correctness, flexibility, & performance

● Four(!) major forms of polymorphism have been in use for decades
that give us significant power when designing our types

Summary

● By thinking of types as sets of values,
we can carefully design types that help ensure
correctness, flexibility, & performance

● Four(!) major forms of polymorphism have been in use for decades
that give us significant power when designing our types

● Algebraic data types use composition of types to provide safe and
convenient handling of finite sets of types

Summary

● By thinking of types as sets of values,
we can carefully design types that help ensure
correctness, flexibility, & performance

● Four(!) major forms of polymorphism have been in use for decades
that give us significant power when designing our types

● Algebraic data types use composition of types to provide safe and
convenient handling of finite sets of types

● All of these approaches have tradeoffs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86

