CMPT 373
Software Development Methods

Generic Programming
& Templates

Nick Sumner
wsumner@sfu.ca

Generic Programming

e Recall: Generic programming is the idea that an algorithm should be
written only once.

Generic Programming

e Recall: Generic programming is the idea that an algorithm should be
written only once.

— Elements of an algorithm that vary should be abstracted away.

Generic Programming

e Recall: Generic programming is the idea that an algorithm should be
written only once.

— Elements of an algorithm that vary should be abstracted away.
— An algorithm can be instantiated by filling in these parameters later

Generic Programming

e Recall: Generic programming is the idea that an algorithm should be
written only once.

— Elements of an algorithm that vary should be abstracted away.

— An algorithm can be instantiated by filling in these parameters later
e This should immediately make you think: “Polymorphism”

— We already called this parametric polymorphism

Generic Programming

o Recall: Generic programming is the idea that an algorithm should be
written only once.

— Elements of an algorithm that vary should be abstracted away.
— An algorithm can be instantiated by filling in these parameters later

e This should immediately make you think: “Polymorphism”
— We already called this parametric polymorphism

e In C++, this is done through templates

Generic Programming

o Recall: Generic programming is the idea that an algorithm should be
written only once.
— Elements of an algorithm that vary should be abstracted away.

— An algorithm can be instantiated by filling in these parameters later
e This should immediately make you think: “Polymorphism”
— We already called this parametric polymorphism

e In C++, this is done through templates
— Generics in Java, C#, TypeScript, Swift, Python, ...
— Parameterized types in ML, Haskell, (Python again), ...

Variable, Type, & Function Templates

o Several different constructs can be templated...

Variable, Type, & Function Templates

Variable, Type, & Function Templates

<typename T>

Variable, Type, & Function Templates

Variable, Type, & Function Templates

PI<float>

Variable, Type, & Function Templates

Variable, Type, & Function Templates

Variable, Type, & Function Templates

Variable, Type, & Function Templates

Variable, Type, & Function Templates

But something about this should feel odd!
(Apart from min already existing)

Variable, Type, & Function Templates

o Several different constructs can be templated...

— Variables
— Classes
— Functions

Variable, Type, & Function Templates

o Several different constructs can be templated...

— Variables
— Classes
— Functions

- Type aliases (using)

Variable, Type, & Function Templates

o Several different constructs can be templated...

— Variables
— Classes
— Functions

= Typealiases(USing)
— Member functions

Variable, Type, & Function Templates

o Several different constructs can be templated...

— Variables
— Classes
— Functions

— Type aliases (U Sing)
— Member functions
— All of the above inside another template...

Template Argument Deduction

e In many places, template arguments can be deduced from context.

Template Argument Deduction

e In many places, template arguments can be deduced from context.

Template Argument Deduction

e In many places, template arguments can be deduced from context.

pair moreKittens

Requires C++17

Template Argument Deduction

e In many places, template arguments can be deduced from context.

e Uses the constructor as a guide for deduction.

Requires C++17

Template Argument Deduction

e In many places, template arguments can be deduced from context.

Requires C++17

e Can only deduce based on function arguments

Template Argument Deduction

e In many places, template arguments can be deduced from context.

Requires C++17

min(1,2);

e Can only deduce based on function arguments

Template Argument Deduction

e In many places, template arguments can be deduced from context.

Requires C++17

Template Argument Deduction

e In many places, template arguments can be deduced from context.

Requires C++17

e If types cannot be exactly deduced, they must be given

Parameters: Types, Literals, Templates

e Templates may parameterized on more than types!

Parameters: Types, Literals, Templates

e Templates may parameterized on more than types!
— Literals: integers, (function) pointers, references, enums

Parameters: Types, Literals, Templates

e Templates may parameterized on more than types!
— Literals: integers, (function) pointers, references, enums

tuple<Kitten, Age,Lethality>

Parameters: Types, Literals, Templates

e Templates may parameterized on more than types!
— Literals: integers, (function) pointers, references, enums

get<2>(kittenRecord)

Parameters: Types, Literals, Templates

e Templates may parameterized on more than types!
— Literals: integers, (function) pointers, references, enums

array<Kitten, 10>

Parameters: Types, Literals, Templates

e Templates may parameterized on more than types!
— Literals: integers, (function) pointers, references, enums

What do you think the declaration
of std::array looks like?

Parameters: Types, Literals, Templates

e Templates may parameterized on more than types!
— Literals: integers, (function) pointers, references, enums

template<class T, std::size_t N>

N

Parameters: Types, Literals, Templates

e Templates may parameterized on more than types!

— Literals: integers, (function) pointers, references, enums
— Templates (less common in practice)

template <class> class CreationPolic

Parameters: Types, Literals, Templates

e Templates may parameterized on more than types!

— Literals: integers, (function) pointers, references, enums
— Templates (less common in practice)

Suppose WidgetLab uses & creates Widgets.
Why is the CreationPolicy a template?

Parameters: Types, Literals, Templates

o Templates may parameterized on more than types!

— Literals: integers, (function) pointers, references, enums
— Templates (less common in practice)

e Thought experiment:
How do | write a function that takes a lambda?

Pragmatic Usage Issues

« The complete definition of a template must be available before a
template is instantiated.

Pragmatic Usage Issues

« The complete definition of a template must be available before a
template is instantiated.

o Templates are not type checked until instantiated.
— Having uses of your templates to test them is important

Pragmatic Usage Issues

« The complete definition of a template must be available before a
template is instantiated.

o Templates are not type checked until instantiated.
— Having uses of your templates to test them is important

e Templates can have default arguments

Pragmatic Usage Issues

 The complete definition of a template must be available before a
template is instantiated.

e Templates are not type checked until instantiated.
— Having uses of your templates to test them is important

e Templates can have default arguments

Pragmatic Usage Issues

 The complete definition of a template must be available before a
template is instantiated.

e Templates are not type checked until instantiated.
— Having uses of your templates to test them is important

e Templates can have default arguments

SmallRoster<Kitten> teamKittens;
SmallRoster<> teamStrings;

Pragmatic Usage Issues

« The complete definition of a template must be available before a
template is instantiated.

o Templates are not type checked until instantiated.
— Having uses of your templates to test them is important

o Templates can have default arguments

e Methods (& constructors) can be templated
— You saw this on the first day!

Pragmatic Usage Issues

 The complete definition of a template must be available before a
template is instantiated.

e Templates are not type checked until instantiated.
— Having uses of your templates to test them is important

» Templates can have default arguments

e Methods (& constructors) can be templated

— You saw this on the first day!
— You may need to specify explicit templates

Pragmatic Usage Issues

 The complete definition of a template must be available before a
template is instantiated.

e Templates are not type checked until instantiated.
— Having uses of your templates to test them is important

» Templates can have default arguments

e Methods (& constructors) can be templated

— You saw this on the first day!
— You may need to specify explicit templates

e Some ambiguous nested types must be specified w/ typename

typename

Specialization

e Sometimes you want a type to behave differently for different
parameters

Specialization

e Sometimes you want a type to behave differently for different
parameters

— Generic implementation with guides where necessary

Specialization

e Sometimes you want a type to behave differently for different
parameters

— Generic implementation with guides where necessary
— Optimization (e.g. operation X on a Matrix can be ...)

Specialization

e Sometimes you want a type to behave differently for different
parameters

— Generic implementation with guides where necessary
— Optimization (e.g. operation X on a Matrix can be ...)
— Correctness constraints

Specialization

e Sometimes you want a type to behave differently for different
parameters

— Generic implementation with guides where necessary
— Optimization (e.g. operation X on a Matrix can be ...)

— Correctness constraints
— Strongly decoupled interfaces

Specialization

« Sometimes you want a type to behave differently for different
parameters

— Generic implementation with guides where necessary
— Optimization (e.g. operation X on a Matrix can be ...)

— Correctness constraints
— Strongly decoupled interfaces

e This is achieved through template specialization

Specialization

« Sometimes you want a type to behave differently for different
parameters

— Generic implementation with guides where necessary
— Optimization (e.g. operation X on a Matrix can be ...)

— Correctness constraints
— Strongly decoupled interfaces

e This is achieved through template specialization
— Declaring a special variant of a template for known parameters

Specialization

« Sometimes you want a type to behave differently for different
parameters

— Generic implementation with guides where necessary
— Optimization (e.g. operation X on a Matrix can be ...)

— Correctness constraints
— Strongly decoupled interfaces

e This is achieved through template specialization
— Declaring a special variant of a template for known parameters

Consider having std: :hash
do the right thing custom types.

Specialization

<functional>

Specialization

<functional>

This doesn’t implement hashing for custom types.
What if | want to add a Cat to an unordered set?

Specialization

<functional> <unordered_set>

class Hash = std: :hash<Key>

This doesn’t implement hashing for custom types.
What if | want to add a Cat to an unordered set?

Specialization

<functional>

<Cats.h>

template<>
struct hash<Cat> {

Specialization

<functional>

<Cats.h>

std: :unordered_set<Cat> bigBagOfCats;

Specialization

e Things start to get strange.

Specialization

e Things start to get strange.

Specialization

e Things start to get strange.

Specialization

e Things start to get strange.

This prints 13.
The value is computed at compile time!

Specialization

» Things start to get strange. This prints 13.

The value is computed at compile time!

Fib<N-1>::value + Fib<N-2>::value

truct Fib<6> {
value =...

I

struct Fib<5> {
value =...

}:

Specialization

e Things start to get strange.

The value is computed at compile time!

This prints 13.

Fib<N-1>::value + Fib<N-2>::value

struct Fib<4> {
value =...

}i

struct Fib<6> {
value

}:

struct Fib<5> {
value =...

}:

Specialization

e Things start to get strange.

This prints 13.
The value is computed at compile time!

Fib<N-1>::value + Fib<N-2>::value

struct Fib<3> {
value =...

}i

struct Fib<6> {
value

}:

struct Fib<4> {
value =...

}i

struct Fib<5> {
value =...

}:

Specialization

e Things start to get strange. |

struct Fib<2> {

value =... 1e is computed at compile time!

This prints 13.

},
Fib<N-1>::value + Fib<N-2>::value

struct Fib<3® {
value =...
},

struct Fib<4> {
value =...

}i

struct Fib<6> {
value =...

}:

struct Fib<5> {
value =...

}:

Specialization

e Things start to get strange. |

struct Fib<2> { . This prints 13. o
value =... 1e is computed at compile time!

},
Fib<N-1>::value + Fib<N-2>::value

struct Fib<
value =...

}i

struct Fib<1>

struct Fib<6> {
value

}:

struct Fib<4> {
value =...

}i

struct Fib<5> {
value =...

}:

Specialization

e Things start to get strange. |

struct Fib<2> { . This prints 13. o
value =... 1e is computed at compile time!

Fib<N-1>::value + Fip€N-25>::

struct Fib<
value

}i

struct Fib<1>

struct Fib<6> {
value

}:

struct Fib<4> {
value =...

}i

struct Fib<0>

struct Fib<5> {
value =...

}:

Specialization

e Things start to get strange. |

struct Fib<2> { . This prints 13. o
value =... 1e is computed at compile time!

}
struct Fib<6> {

strugy Fib<3> {
valgle =...
},
value =...

ct Fib<4> { }:

Specialization

e Things start to get strange.

This prints 13.
The value is computed at compile time!

constexpr functions
make this less common.

Specialization

e Things start to get strange.

constexpr unsigned This prints 13.
fibonacci(unsigned target) The value is computed at compile time!

constexpr functions
make this less common.

r auto result = fibonacci(40);

Specialization

e Things start to get strange.

constexpr unsigned

fibonacci(unsigned target) {

if (target < 2) {
return target;

}

unsigned fib_back_2 = 0;

unsigned fib_back_1 = 1;

for (unsigned pos = 2; pos <= target; ++pos) { constexpr functions
unsigned latest = fib_back 2 + fib_back_1; c
fib back 2 = fib_back 1: make this less common.
fib_back 1 = latest;

}

return fib_back _1;

This prints 13.
The value is computed at compile time!

cout << Fib<7>::value << "\n":

tconstexpr auto result = fibonacci(40);J

Where would you use it?
look up tables, efficient data structures, bare metal,

Specialization

e Specialization can help build efficient, decoupled interfaces through
type traits.

Specialization

e Specialization can help build efficient, decoupled interfaces through
type traits.

template<typename GraphKind>
struct GraphTraits {

Specialization

e Specialization can help build efficient, decoupled interfaces through
type traits.

template<typename GraphKind>
struct GraphTraits {
static_assert(false, "Not specialized");

}i

template<>
struct GraphTraits<SocialNetwork> {

Specialization

e Specialization can help build efficient, decoupled interfaces through
type traits.

template<typename GraphKind>
struct GraphTraits {
static_assert(false, "Not specialized");

}i

SocialNetwor
using NodeRef = ...;
using ChildIterator = ...;
NodeRef getEntryNode(SocialNetwork&) {...}
ChildIterator child begin(NodeRef&) {...}
ChildIterator child_end(NodeRef&) {...}

We can define custom types & behavior
related to the type parameter.

Specialization

e Specialization can help build efficient, decoupled interfaces through
type traits.

template<typename GraphKind>
struct GraphTraits {
static_assert(false, "Not specialized");

}i

SocialNetwork

Specialization

Specialization can help
type traits.

template<typename GraphKind>
struct GraphTraits {
static_assert(false, "Not

};

template<>
struct GraphTraits<SocialNetwork> {

template<c1ass Kind, class GT=GraphTraits<Kind>>

template<>
struct GraphTra1ts<RoadMap> {
u51ng NodeRef = ...;
using ChildIterator = ...,
NodeRef getEntryNode(RoadMap&) {...}

ChildIterator child begln(NodeRef&) {..

ChildIterator child_end(NodeRef&) {..

.}

.}

template<c1ass Kind, class GT=GraphTraits<Kind>>

Specialization

We can use GT to provide a graph

e Specialization can help interface to an arbitrary Kind
type traits. and write the function only once.

template<typename GraphKind>
struct GraphTraits {
static_assert(false, "Not s

iz template<>

struct GraphTraits<SocialNetwork> {

template<>
struct GraphTra1ts<RoadMap> {
u51ng NodeRef = ...;
using ChildIterator = ...,
NodeRef getEntryNode(RoadMap&) {...}
}i ChildIterator child begln(NodeRef&) {...}
ChildIterator child_end(NodeRef&) {...}

Specialization

e Specialization can help
type traits.

template<typename GraphKind>
struct GraphTraits {
static_assert(false, "Not

};

template<>
struct GraphTraits<Social rintGraph<SocialNetwork, CustomView>(socialGraph
template<> And we can even customize

struct Graphiraits=Roadiap= { how the interface is bound if so desired.
u51ng NodeRef = ...;

using ChildIterator = ...,

NodeRef getEntryNode(RoadMap&) {...}

}i ChildIterator child begln(NodeRef&) {...}
ChildIterator child_end(NodeRef&) {...}

Specialization

e Specialization can help
type traits.

template<typename GraphKind>
struct GraphTraits {
static_assert(false, "Not

};

template<>
struct GraphTraits<Social

template<>

struct GraphTraits<RoadMap> {

using NodeRef = ...;
using ChildIterator = ..
NodeRef getEntryNode(Roa¢

Regardless of the actual graph data structure,
or even its API,

ChildIterator child_begi

ChildIterator child_end(NodeRef&) {...}

traits allow generic algorithms to work!

LA NLAR A B R N Y 4 T A J

Let’s see it in action...

Specialization

e Specialization can help build efficient, decoupled interfaces through
type traits.

o Type traits in C++ are deeply related to type classes in Haskell.

Specialization

e Specialization can help build efficient, decoupled interfaces through
type traits.

o Type traits in C++ are deeply related to type classes in Haskell.
o Concepts in the next version of C++ make that clearer & cleaner

Specialization

e Specialization can help build efficient, decoupled interfaces through
type traits.

o Type traits in C++ are deeply related to type classes in Haskell.
o Concepts in the next version of C++ make that clearer & cleaner

How does this relate to coupling?

Specialization

e Specialization can help build efficient, decoupled interfaces through
type traits.

o Type traits in C++ are deeply related to type classes in Haskell.
o Concepts in the next version of C++ make that clearer & cleaner

SocialNetwork ‘
RoadMap ‘

How does this relate to coupling?

Specialization

e Specialization can help build efficient, decoupled interfaces through
type traits.

o Type traits in C++ are deeply related to type classes in Haskell.
o Concepts in the next version of C++ make that clearer & cleaner

SocialNetwork ‘ . printGraph()

. shortestPath()
RoadMap ‘
. findCliques()

How does this relate to coupling?

Specialization

e Specialization can help build efficient, decoupled interfaces through
type traits.

o Type traits in C++ are deeply related to type classes in Haskell.
o Concepts in the next version of C++ make that clearer & cleaner

SocialNetwork printGraph()

shortestPath()

RoadMap

GraphTraits findCliques()

How does this relate to coupling?

Specialization

e Specialization can help build efficient, decoupled interfaces through
type traits.

o Type traits in C++ are deeply related to type classes in Haskell.
o Concepts in the next version of C++ make that clearer & cleaner

SocialNetwork printGraph()

shortestPath()

RoadMap

GraphTraits findCliques()

Information & behavior can be added
to data types regardless of original APIs

Partial Specialization

e Maybe you do not want to fully specialize the type
— A set of types behave similarly but not all

Partial Specialization

e Maybe you do not want to fully specialize the type

— A set of types behave similarly but not all
— We already saw this with default arguments!

Partial Specialization

e Maybe you do not want to fully specialize the type

— A set of types behave similarly but not all
— We already saw this with default arguments!

Em

CRTP

e Sometimes information needs to flow from a derived class to a base
class.

CRTP

e Sometimes information needs to flow from a derived class to a base
class.

ENE

CRTP

e Sometimes information needs to flow from a derived class to a base
class.

ENE

CRTP

e Sometimes information needs to flow from a derived class to a base
class.

T& getDerived() { return *static_cast<T*>(this); }

CRTP

e Sometimes information needs to flow from a derived class to a base
class.

getDerived().printImpl();

Base

void printImpl() { printf("Yo\n"); }

CRTP

e Sometimes information needs to flow from a derived class to a base
class.

Base

What other approaches could we have used?
What are the trade offs?

CRTP

e Sometimes information needs to flow from a derived class to a base
class.

Base

What other approaches could we have used?
What are the trade offs?

Flexibility vs Efficiency

Policy Based Design

o All of these tools we'’ve seen led to policy based design in the 2000’s.

Policy Based Design

o All of these tools we’ve seen led to policy based design in the 2000'’s.

— Identify all of the design decisions in an algorithm & turn them into
template parameters.

Policy Based Design

o All of these tools we’ve seen led to policy based design in the 2000'’s.

— Identify all of the design decisions in an algorithm & turn them into
template parameters.

Policy Based Design

o All of these tools we’ve seen led to policy based design in the 2000'’s.

— Identify all of the design decisions in an algorithm & turn them into
template parameters.
— Invert control so that the user of the algorithm can pass in new policies.

Policy Based Design

« All of these tools we've seen led to policy based design in the 2000’s.

— Identify all of the design decisions in an algorithm & turn them into
template parameters.
— Invert control so that the user of the algorithm can pass in new policies.

This is essentially dependency injection
at the template level!

Policy Based Design

o All of these tools we've seen led to policy based design in the 2000'’s.

— Identify all of the design decisions in an algorithm & turn them into
template parameters.
— Invert control so that the user of the algorithm can pass in new policies.

class Allocator = std::allocator<T>

Policy Based Design

o All of these tools we've seen led to policy based design in the 2000'’s.

— Identify all of the design decisions in an algorithm & turn them into
template parameters.
— Invert control so that the user of the algorithm can pass in new policies.

This addresses the combinatorial explosion of hand written types.
We shall see this again in design patterns.

<LeakyReluOp,
OpTrait: :0OneResult,
OpTrait: :HasNoSideEffect, S.
OpTrait: :SameOperandsAndResultT
OneO

policies.

kshop, CGO 2019

Policy Based Design

« All of these tools we've seen led to policy based design in the 2000’s.

— Identify all of the design decisions in an algorithm & turn them into
template parameters.
— Invert control so that the user of the algorithm can pass in new policies.

e Originally, policy based design

Policy Based Design

« All of these tools we've seen led to policy based design in the 2000’s.

— Identify all of the design decisions in an algorithm & turn them into
template parameters.
— Invert control so that the user of the algorithm can pass in new policies.

e Originally, policy based design
— focused on ad hoc, implicit interfaces amongst policies

Policy Based Design

« All of these tools we've seen led to policy based design in the 2000’s.

— Identify all of the design decisions in an algorithm & turn them into
template parameters.
— Invert control so that the user of the algorithm can pass in new policies.

e Originally, policy based design

— focused on ad hoc, implicit interfaces amongst policies
— Used multiple inheritance for mixins and flexible policy coordination.

Policy Based Design

« All of these tools we've seen led to policy based design in the 2000’s.

— Identify all of the design decisions in an algorithm & turn them into
template parameters.
— Invert control so that the user of the algorithm can pass in new policies.
e Originally, policy based design
— focused on ad hoc, implicit interfaces amongst policies
— Used multiple inheritance for mixins and flexible policy coordination.

e Lately people have wanted more assurances;
it can be easy to make an interface too flexible.

SFINAE & Correctness

[Eli Bendersky, 2014]

What is printed by foo(42)?

https://eli.thegreenplace.net/2014/sfinae-and-enable_if/

SFINAE & Correctness

[Eli Bendersky, 2014]

What is printed by foo(42)?
"template 42"
Why?

https://eli.thegreenplace.net/2014/sfinae-and-enable_if/

SFINAE & Correctness

[Eli Bendersky, 2014]

What is printed by foo(42)?
"template 42"
Why?

What we want is a way to bound where our templates apply...

https://eli.thegreenplace.net/2014/sfinae-and-enable_if/

SFINAE & Correctness

e SFINAE is one approach to bounded static polymorphism in C++

SFINAE & Correctness

e SFINAE is one approach to bounded static polymorphism in C++
e Substitution Failure Is Not An Error

SFINAE & Correctness

e SFINAE is one approach to bounded static polymorphism in C++

e Substitution Failure Is Not An Error

— When trying to substitute into the template or function signature, skip
errors & keep looking.

SFINAE & Correctness

e SFINAE is one approach to bounded static polymorphism in C++

e Substitution Failure Is Not An Error

— When trying to substitute into the template or function signature, skip
errors & keep looking.

U=T: :value_type

SFINAE & Correctness

e SFINAE is one approach to bounded static polymorphism in C++

e Substitution Failure Is Not An Error

— When trying to substitute into the template or function signature, skip
errors & keep looking.

U=T: :value_type

What happens if we try to match an integer?

SFINAE & Correctness

e template enable_if{...};

— Using the same techniques we’ve seen, enable_if allows arbitrary condition
checking.

SFINAE & Correctness

e template enable_if{...};

— Using the same techniques we’ve seen, enable_if allows arbitrary condition
checking.

pename=std: :enable_if_t<std::is_class_v<T>>

SFINAE & Correctness

e template enable_if{...};

— Using the same techniques we’ve seen, enable_if allows arbitrary condition
checking.

pename=std: :enable_if_t<std::is_class_v<T>>

How would we implement that?

SFINAE & Correctness

e This can also be attacked with if constexpr:

if constexpr (std::is_class_v<T>)

if constexpr (std::is_unsigned_v<T>)

But this may not be exactly the same!

SFINAE & Correctness

e NOTE: Going forward in C++20(+),
much of this will be simplified via “Concepts”

Sequence auto& s

SFINAE & Correctness

e NOTE: Going forward in C++20(+),
much of this will be simplified via “Concepts”

std::list<int> aslLinkedList
asLinkedList

std: :vector<int> asVector
asVector

SFINAE & Correctness

e Provide rich predicates and clear error messages,
while templates & SFINAE alone create notorious error messages

SFINAE & Correctness

e« NOTE: Going forward in C++20(+),
much of this will be simplified via “Concepts”

e Provide rich predicates and clear error messages,
while templates & SFINAE alone create notorious error messages

concept Hashable = requires(T a)

[cppreference.com]

https://en.cppreference.com/w/cpp/language/constraints

SFINAE & Correctness

e« NOTE: Going forward in C++20(+),
much of this will be simplified via “Concepts”

e Provide rich predicates and clear error messages,
while templates & SFINAE alone create notorious error messages

{ std::hash<T>{}(a) } -> std::convertible_to<std::size_t>;

[cppreference.com]

https://en.cppreference.com/w/cpp/language/constraints

SFINAE & Correctness

e« NOTE: Going forward in C++20(+),
much of this will be simplified via “Concepts”

e Provide rich predicates and clear error messages,
while templates & SFINAE alone create notorious error messages

template<typename T>
concept Hashable = requires(T a) {
{ std::hash<T>{}(a) } -> std::convertible_to<std::size_t>;

template<Hashable T>

},

void foo(const T& hashable);

https://en.cppreference.com/w/cpp/language/constraints

SFINAE & Correctness

e« NOTE: Going forward in C++20(+),
much of this will be simplified via “Concepts”

e Provide rich predicates and clear error messages,
while templates & SFINAE alone create notorious error messages

template<typename T>
concept Hashable = requires(T a) {

{ std::hash<T>{}(a) } -> std::convertible_to<std::size_t>;
b

void bar(const Hashable auto& hashable);

https://en.cppreference.com/w/cpp/language/constraints

SFINAE & Correctness

e« NOTE: Going forward in C++20(+),
much of this will be simplified via “Concepts”

e Provide rich predicates and clear error messages,
while templates & SFINAE alone create notorious error messages

template<typename T>
concept Hashable = requires(T a) {
{ std::hash<T>{}(a) } -> std::convertible_to<std::

} template<Hashable T>

void foo(const T& hashable);

void bar(const Hashable auto& hashable);

https://en.cppreference.com/w/cpp/language/constraints

SFINAE & Correctness

NOTE: Going forward in C++20(+),
much of this will be simplified via “Concepts”

Provide rich predicates and clear error messages,
while templates & SFINAE alone create notorious error messages

template<typename T>
concept Hashable = requires(T a) {

},

foo("Oh bother."s);
bar("Oh bother."s);

{ std::hash<T>{}(a) } -> std::convertible_to<std::
template<Hashable T>

foo(32);
bar(32);

void foo(const T& hashable);
; Cat kitten;
void bar(const Hashable auto& hashable);®par(kitten);

https://en.cppreference.com/w/cpp/language/constraints

SFINAE & Correctness

e« NOTE: Going forward in C++20(+),
much of this will be simplified via “Concepts”

e Provide rich predicates and clear error messages,
while templates & SFINAE alone create notorious error messages

template<typename T>
concept Hashable = requires(T a) {
{ std::hash<T>{}(a) } -> std::convertible_to<std::

} template<Hashable T>

void foo(const T& hashable);

void bar(const Hashable auto& hashable);

Dog doggo;
bar (doggo);

https://en.cppreference.com/w/cpp/language/constraints

SFINAE & Correctness

<source>: In function 'int main()':
<source>:49:12: error: use of function 'void bar (const auto:11&)
with unsatisfied constraints

49 | bar (doggo) ;
I A
<source>:10:9: required for the satisfaction of 'Hashable<auto:11>'
<source>:10:20: in requirements with 'const T& a' [with Tp = Dog; T = Dog]
<source>:11:21: note: the required expression 'std::hash< Tp>{}(a)' is invalid
11 | { std::hash<T>{} (a) } -> std::convertible to<std::size t>;
{ std::hash<T>{}(a) } -> std::convertible_to<std::
y: foo(32);
' template<Hashable T> bar(32):
void foo(const T& hashable);
_ Cat kitten;
void bar(const Hashable auto& hashable); par(kitten):

https://en.cppreference.com/w/cpp/language/constraints

SFINAE & Correctness

<source>: In function 'int main()':
<source>:49:12: error: use of function 'void bar (const auto:11&)
with unsatisfied constraints

49 | bar (doggo) ;
I A
<source>:10:9: required for the satisfaction of 'Hashable<auto:11>'
<source>:10:20: in requirements with 'const T& a' [with Tp = Dog; T = Dog]
<source>:11:21: note: the required expression 'std::hash< Tp>{}(a)' is invalid
11 | { std::hash<T>{} (a) } -> std::convertible to<std::size t>;
{ std::hash<T>{}(a) } -> std::convertible_to<std::
y: foo(32);
' template<Hashable T> bar(32):
void foo(const T& hashable);
_ Cat kitten;
void bar(const Hashable auto& hashable); par(kitten):

https://en.cppreference.com/w/cpp/language/constraints

SFINAE & Correctness

<source>: In function 'int main()':
<source>:49:12: error: use of function 'void bar (const auto:11&)
with unsatisfied constraints

49 | bar (doggo) ;
I A
<source>:10:9: required for the satisfaction of 'Hashable<auto:11>'
<source>:10:20: in requirements with 'const T& a' [with Tp = Dog; T = Dog]
<source>:11:21: note: the required expression 'std::hash< Tp>{}(a)' is invalid
11 | { std::hash<T>{}(a) } -> std::convertible to<std::size t>;
{ std::hash<T>{}(a) } -> std::convertible_to<std::
y: foo(32);
' template<Hashable T> bar(32):
void foo(const T& hashable);
_ Cat kitten;
void bar(const Hashable auto& hashable); par(kitten):

https://en.cppreference.com/w/cpp/language/constraints

Templates

e Enable efficient generic programming in C++

Templates

e Enable efficient generic programming in C++
e Can be (partially) specialized to refine behavior

Templates

e Enable efficient generic programming in C++
e Can be (partially) specialized to refine behavior
e Can be used in traits for highly efficient decoupling

Templates

Enable efficient generic programming in C++
Can be (partially) specialized to refine behavior

Can be used in traits for highly efficient decoupling
Can be made safer using SFINAE and now Concepts based bounds

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141

