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Generic Programming

o Recall: Generic programming is the idea that an algorithm should be
written only once.
— Elements of an algorithm that vary should be abstracted away.

— An algorithm can be instantiated by filling in these parameters later
e This should immediately make you think: “Polymorphism”
— We already called this parametric polymorphism

e In C++, this is done through templates
— Generics in Java, C#, TypeScript, Swift, Python, ...
— Parameterized types in ML, Haskell, (Python again), ...
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PI<float>
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Variable, Type, & Function Templates

But something about this should feel odd!
(Apart from min already existing)
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Variable, Type, & Function Templates

o Several different constructs can be templated...

— Variables
— Classes
— Functions

— Type aliases (U Sing)
— Member functions
— All of the above inside another template...
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min(1,2);

e Can only deduce based on function arguments
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Template Argument Deduction

e In many places, template arguments can be deduced from context.

Requires C++17

e If types cannot be exactly deduced, they must be given
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e Templates may parameterized on more than types!
— Literals: integers, (function) pointers, references, enums

tuple<Kitten, Age,Lethality>
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e Templates may parameterized on more than types!
— Literals: integers, (function) pointers, references, enums

get<2>(kittenRecord)
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e Templates may parameterized on more than types!
— Literals: integers, (function) pointers, references, enums

array<Kitten, 10>




Parameters: Types, Literals, Templates

e Templates may parameterized on more than types!
— Literals: integers, (function) pointers, references, enums

What do you think the declaration
of std::array looks like?
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e Templates may parameterized on more than types!
— Literals: integers, (function) pointers, references, enums

template<class T, std::size_t N>

N
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e Templates may parameterized on more than types!
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Parameters: Types, Literals, Templates

e Templates may parameterized on more than types!

— Literals: integers, (function) pointers, references, enums
— Templates (less common in practice)

Suppose WidgetLab uses & creates Widgets.
Why is the CreationPolicy a template?




Parameters: Types, Literals, Templates

o Templates may parameterized on more than types!

— Literals: integers, (function) pointers, references, enums
— Templates (less common in practice)

e Thought experiment:
How do | write a function that takes a lambda?
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SmallRoster<Kitten> teamKittens;
SmallRoster<> teamStrings;
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Pragmatic Usage Issues

 The complete definition of a template must be available before a
template is instantiated.

e Templates are not type checked until instantiated.
— Having uses of your templates to test them is important

» Templates can have default arguments

e Methods (& constructors) can be templated

— You saw this on the first day!
— You may need to specify explicit templates

e Some ambiguous nested types must be specified w/ typename

typename
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Specialization

« Sometimes you want a type to behave differently for different
parameters

— Generic implementation with guides where necessary
— Optimization (e.g. operation X on a Matrix can be ...)

— Correctness constraints
— Strongly decoupled interfaces

e This is achieved through template specialization
— Declaring a special variant of a template for known parameters

Consider having std: :hash
do the right thing custom types.
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Specialization

<functional> <unordered_set>

class Hash = std: :hash<Key>

This doesn’t implement hashing for custom types.
What if | want to add a Cat to an unordered set?




Specialization

<functional>

<Cats.h>

template<>
struct hash<Cat> {




Specialization

<functional>

<Cats.h>

std: :unordered_set<Cat> bigBagOfCats;
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e Things start to get strange.

This prints 13.
The value is computed at compile time!

Fib<N-1>::value + Fib<N-2>::value

struct Fib<3> {
value =...

}i

struct Fib<6> {
value

}:

struct Fib<4> {
value =...

}i

struct Fib<5> {
value =...

}:
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value =...
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}i

struct Fib<1>

struct Fib<6> {
value

}:

struct Fib<4> {
value =...

}i

struct Fib<5> {
value =...

}:




Specialization

e Things start to get strange. |

struct Fib<2> { . This prints 13. o
value =... 1e is computed at compile time!

Fib<N-1>::value + Fip€N-25>::

struct Fib<
value

}i

struct Fib<1>

struct Fib<6> {
value

}:

struct Fib<4> {
value =...

}i

struct Fib<0>

struct Fib<5> {
value =...

}:




Specialization

e Things start to get strange. |

struct Fib<2> { . This prints 13. o
value =... 1e is computed at compile time!

}
struct Fib<6> {

strugy Fib<3> {
valgle =...
},
value =...

ct Fib<4> { }:
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Specialization

e Things start to get strange.

constexpr unsigned

fibonacci(unsigned target) {

if (target < 2) {
return target;

}

unsigned fib_back_2 = 0;

unsigned fib_back_1 = 1;

for (unsigned pos = 2; pos <= target; ++pos) { constexpr functions
unsigned latest = fib_back 2 + fib_back_1; c
fib back 2 = fib_back 1: make this less common.
fib_back 1 = latest;

}

return fib_back _1;

This prints 13.
The value is computed at compile time!

cout << Fib<7>::value << "\n":

tconstexpr auto result = fibonacci(40);J

Where would you use it?
look up tables, efficient data structures, bare metal,
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type traits.

template<typename GraphKind>
struct GraphTraits {
static_assert(false, "Not specialized");

}i

SocialNetwor
using NodeRef = ...;
using ChildIterator = ...;
NodeRef getEntryNode(SocialNetwork&) {...}
ChildIterator child begin(NodeRef&) {...}
ChildIterator child_end(NodeRef&) {...}

We can define custom types & behavior
related to the type parameter.
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e Specialization can help build efficient, decoupled interfaces through
type traits.

template<typename GraphKind>
struct GraphTraits {
static_assert(false, "Not specialized");

}i

SocialNetwork



Specialization

Specialization can help
type traits.

template<typename GraphKind>
struct GraphTraits {
static_assert(false, "Not

};

template<>
struct GraphTraits<SocialNetwork> {

template<c1ass Kind, class GT=GraphTraits<Kind>>

template<>
struct GraphTra1ts<RoadMap> {
u51ng NodeRef = ...;
using ChildIterator = ...,
NodeRef getEntryNode(RoadMap&) {...}

ChildIterator child begln(NodeRef&) {..

ChildIterator child_end(NodeRef&) {..

.}

.}




template<c1ass Kind, class GT=GraphTraits<Kind>>

Specialization

We can use GT to provide a graph

e Specialization can help interface to an arbitrary Kind
type traits. and write the function only once.

template<typename GraphKind>
struct GraphTraits {
static_assert(false, "Not s

iz template<>

struct GraphTraits<SocialNetwork> {

template<>
struct GraphTra1ts<RoadMap> {
u51ng NodeRef = ...;
using ChildIterator = ...,
NodeRef getEntryNode(RoadMap&) {...}
}i ChildIterator child begln(NodeRef&) {...}
ChildIterator child_end(NodeRef&) {...}




Specialization

e Specialization can help
type traits.

template<typename GraphKind>
struct GraphTraits {
static_assert(false, "Not

};

template<>
struct GraphTraits<Social rintGraph<SocialNetwork, CustomView>(socialGraph
template<> And we can even customize

struct Graphiraits=Roadiap= {  how the interface is bound if so desired.
u51ng NodeRef = ...;

using ChildIterator = ...,

NodeRef getEntryNode(RoadMap&) {...}

}i ChildIterator child begln(NodeRef&) {...}
ChildIterator child_end(NodeRef&) {...}




Specialization

e Specialization can help
type traits.

template<typename GraphKind>
struct GraphTraits {
static_assert(false, "Not

};

template<>
struct GraphTraits<Social

template<>

struct GraphTraits<RoadMap> {

using NodeRef = ...;
using ChildIterator = ..
NodeRef getEntryNode(Roa¢

Regardless of the actual graph data structure,
or even its API,

ChildIterator child_begi

ChildIterator child_end(NodeRef&) {...}

traits allow generic algorithms to work!

LA NLAR A B R N Y 4 T A J

Let’s see it in action...
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e Specialization can help build efficient, decoupled interfaces through
type traits.

o Type traits in C++ are deeply related to type classes in Haskell.
o Concepts in the next version of C++ make that clearer & cleaner

SocialNetwork printGraph()

shortestPath()

RoadMap

GraphTraits findCliques()

How does this relate to coupling?




Specialization

e Specialization can help build efficient, decoupled interfaces through
type traits.

o Type traits in C++ are deeply related to type classes in Haskell.
o Concepts in the next version of C++ make that clearer & cleaner

SocialNetwork printGraph()

shortestPath()

RoadMap

GraphTraits findCliques()

Information & behavior can be added
to data types regardless of original APIs
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e Maybe you do not want to fully specialize the type

— A set of types behave similarly but not all
— We already saw this with default arguments!

Em
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CRTP

e Sometimes information needs to flow from a derived class to a base
class.

T& getDerived() { return *static_cast<T*>(this); }




CRTP

e Sometimes information needs to flow from a derived class to a base
class.

getDerived().printImpl();

Base

void printImpl() { printf("Yo\n"); }
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CRTP

e Sometimes information needs to flow from a derived class to a base
class.

Base

What other approaches could we have used?
What are the trade offs?

Flexibility vs Efficiency
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« All of these tools we've seen led to policy based design in the 2000’s.

— Identify all of the design decisions in an algorithm & turn them into
template parameters.
— Invert control so that the user of the algorithm can pass in new policies.

This is essentially dependency injection
at the template level!




Policy Based Design

o All of these tools we've seen led to policy based design in the 2000'’s.

— Identify all of the design decisions in an algorithm & turn them into
template parameters.
— Invert control so that the user of the algorithm can pass in new policies.

class Allocator = std::allocator<T>




Policy Based Design

o All of these tools we've seen led to policy based design in the 2000'’s.

— Identify all of the design decisions in an algorithm & turn them into
template parameters.
— Invert control so that the user of the algorithm can pass in new policies.

This addresses the combinatorial explosion of hand written types.
We shall see this again in design patterns.




<LeakyReluOp,
OpTrait: :0OneResult,
OpTrait: :HasNoSideEffect, S.
OpTrait: :SameOperandsAndResultT
OneO

policies.

kshop, CGO 2019
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Policy Based Design

« All of these tools we've seen led to policy based design in the 2000’s.

— Identify all of the design decisions in an algorithm & turn them into
template parameters.
— Invert control so that the user of the algorithm can pass in new policies.
e Originally, policy based design
— focused on ad hoc, implicit interfaces amongst policies
— Used multiple inheritance for mixins and flexible policy coordination.

e Lately people have wanted more assurances;
it can be easy to make an interface too flexible.
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SFINAE & Correctness

[Eli Bendersky, 2014]

What is printed by foo(42)?
"template 42"
Why?

What we want is a way to bound where our templates apply...


https://eli.thegreenplace.net/2014/sfinae-and-enable_if/

SFINAE & Correctness

e SFINAE is one approach to bounded static polymorphism in C++



SFINAE & Correctness

e SFINAE is one approach to bounded static polymorphism in C++
e Substitution Failure Is Not An Error



SFINAE & Correctness

e SFINAE is one approach to bounded static polymorphism in C++

e Substitution Failure Is Not An Error

— When trying to substitute into the template or function signature, skip
errors & keep looking.



SFINAE & Correctness

e SFINAE is one approach to bounded static polymorphism in C++

e Substitution Failure Is Not An Error

— When trying to substitute into the template or function signature, skip
errors & keep looking.

U=T: :value_type




SFINAE & Correctness

e SFINAE is one approach to bounded static polymorphism in C++

e Substitution Failure Is Not An Error

— When trying to substitute into the template or function signature, skip
errors & keep looking.

U=T: :value_type

What happens if we try to match an integer?
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SFINAE & Correctness

e template<B> enable_if{...};

— Using the same techniques we’ve seen, enable_if allows arbitrary condition
checking.

pename=std: :enable_if_t<std::is_class_v<T>>

How would we implement that?




SFINAE & Correctness

e This can also be attacked with if constexpr:

if constexpr (std::is_class_v<T>)

if constexpr (std::is_unsigned_v<T>)

But this may not be exactly the same!
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Sequence auto& s




SFINAE & Correctness

e NOTE: Going forward in C++20(+),
much of this will be simplified via “Concepts”

std::list<int> aslLinkedList
asLinkedList

std: :vector<int> asVector
asVector
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SFINAE & Correctness

e« NOTE: Going forward in C++20(+),
much of this will be simplified via “Concepts”

e Provide rich predicates and clear error messages,
while templates & SFINAE alone create notorious error messages

template<typename T>
concept Hashable = requires(T a) {
{ std::hash<T>{}(a) } -> std::convertible_to<std::size_t>;

template<Hashable T>

},

void foo(const T& hashable);
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SFINAE & Correctness

e« NOTE: Going forward in C++20(+),
much of this will be simplified via “Concepts”

e Provide rich predicates and clear error messages,
while templates & SFINAE alone create notorious error messages

template<typename T>
concept Hashable = requires(T a) {

{ std::hash<T>{}(a) } -> std::convertible_to<std::size_t>;
b

void bar(const Hashable auto& hashable);
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SFINAE & Correctness

e« NOTE: Going forward in C++20(+),
much of this will be simplified via “Concepts”

e Provide rich predicates and clear error messages,
while templates & SFINAE alone create notorious error messages

template<typename T>
concept Hashable = requires(T a) {
{ std::hash<T>{}(a) } -> std::convertible_to<std::

} template<Hashable T>

void foo(const T& hashable);

void bar(const Hashable auto& hashable);
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SFINAE & Correctness

NOTE: Going forward in C++20(+),
much of this will be simplified via “Concepts”

Provide rich predicates and clear error messages,
while templates & SFINAE alone create notorious error messages

template<typename T>
concept Hashable = requires(T a) {

},

foo("Oh bother."s);
bar("Oh bother."s);

{ std::hash<T>{}(a) } -> std::convertible_to<std::
template<Hashable T>

foo(32);
bar(32);

void foo(const T& hashable);
; Cat kitten;
void bar(const Hashable auto& hashable);®par(kitten);



https://en.cppreference.com/w/cpp/language/constraints

SFINAE & Correctness

e« NOTE: Going forward in C++20(+),
much of this will be simplified via “Concepts”

e Provide rich predicates and clear error messages,
while templates & SFINAE alone create notorious error messages

template<typename T>
concept Hashable = requires(T a) {
{ std::hash<T>{}(a) } -> std::convertible_to<std::

} template<Hashable T>

void foo(const T& hashable);

void bar(const Hashable auto& hashable);

Dog doggo;
bar (doggo);



https://en.cppreference.com/w/cpp/language/constraints

SFINAE & Correctness

<source>: In function 'int main()':
<source>:49:12: error: use of function 'void bar (const auto:11&)
with unsatisfied constraints

49 | bar (doggo) ;
I A
<source>:10:9: required for the satisfaction of 'Hashable<auto:11>'
<source>:10:20: in requirements with 'const T& a' [with Tp = Dog; T = Dog]
<source>:11:21: note: the required expression 'std::hash< Tp>{}(a)' is invalid
11 | { std::hash<T>{} (a) } -> std::convertible to<std::size t>;
{ std::hash<T>{}(a) } -> std::convertible_to<std::
y: foo(32);
' template<Hashable T> bar(32):
void foo(const T& hashable);
_ Cat kitten;
void bar(const Hashable auto& hashable); par(kitten):
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Templates

Enable efficient generic programming in C++
Can be (partially) specialized to refine behavior

Can be used in traits for highly efficient decoupling
Can be made safer using SFINAE and now Concepts based bounds
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