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The most fundamental issue in software development
is managing complexity

Complexity:

● Has many forms
● One broad notion is coupling

– Can one component be understood without others?
– Can one component be changed without changing others?

Solutions are built using:

● Abstraction
● Encapsulation
● Information hiding

Recall: Managing Complexity

Strive for components that:
● interact minimally
● know minimal information
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● discuss complex solutions more easily by name.

– Archetypes
● Their trade-offs are well understood
● New solutions can be modelled after them effectively

Note:
– As in literature, you do not copy the archetype directly.
– Adapt it to your specific needs & trade offs.
– Why a pattern exists is more important than just knowing that pattern!
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So what is their benefit?

● Design patterns...
– have clear formulations of the problems they attack

– enable efficient communication

– have well understood strengths & weaknesses

– provide anchor points in the design space that you can explore
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What are their risks?

● Solutions can be built around design patterns rather than informed by 
them.

● Emergent tradeoffs can be hidden by adopting a pattern too early.

Start simple and adopt or move toward 
design patterns as their utility becomes clear.
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What are the puzzle pieces?

● Design patterns are largely built around exploiting 
– composition
– polymorphism

● Polymorphism
– Using a common interface for many types

● 4 common types of polymorphism:
– Inheritance / Subtyping (at runtime)
– Parametric polymorphism (at compile time)
– Ad hoc polymorphism / overloading / type classes
– Coercion / casting

Choosing one form of polymorphism 
over another yields trade-offs
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3 classical categories

● Creational
– Support creation of objects within a program

● Structural
– Organize object composition for creating new behavior

● Behavioral
– Focus on communication between entities

Other categories exist for specific domains. 
These are general.
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Deriving Designs & Recognizing Patterns

● We will derive a handful of patterns in these categories

● I want us to try to construct them from first principles
– Identify goals
– Understand the constraints of a scenario
– Derive a design that does what you want

● I expect the patterns to be obvious in retrospect....
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Problem: Flexibly creating objects

● How would you normally create an instance of an object?

● What are the coupled constraints in this approach?

● What if you want to allow the user to define their own kinds of 
objects to create? (custom paintbrush for objects)

Animal animal{"Zebra", RunPolicy, WinnyPolicy};
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Problem: Flexibly creating objects

● Sometimes you want to create new objects patterned off another
– First instance might be costly to build
– First instance might be user created
– Actual type may need to change
– Might be created far from where arguments are known

How would you attack this?

Animal animal = maker.makeOne();

class ThingMaker{
  Animal toCopy;
public:
  Animal makeOne();
} maker;



  

Problem: Flexibly creating objects

● Sometimes you want to create new objects patterned off another
– First instance might be costly to build
– First instance might be user created
– Actual type may need to change
– Might be created far from where arguments are known

● Register an instance as a template & make clones
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e.g. Creational Pattern: Prototype

● Goal: Create new objects based on a configuration.

class Cloner
  std::unique_ptr<Clonable> toClone;

  std::unique_ptr<Clonable> create();

interface

class Instance
  : public Clonable
  ... clone();

An inheritance version:

What risks are there?
Can you see better ways?

class Clonable
  std::unique_ptr<Clonable>
  clone() = 0;
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e.g. Creational Pattern: Prototype

● Benefits:
– User defined objects become easier

● Downsides:
– Managing the cloning becomes critical

– Inheritance based approaches require clone implementations

– Deep copy vs shallow copy?
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Problem: Adding Behavior/State

class ByteStream {
public:
  Byte getNextByte();
  UT8Char getNextUTF8Char();
  UTF16Char getNextUTF16Char();
};

or

IOStream
+getNext()

ByteStream
+getNext()

UTF8CharStream
+getNext()

UTF16CharStream
+getNext()

● How do you normally add behaviors or state to an object?

– What issues do these solutions suffer from?

– What if you wanted the behavior to be
dynamic?

–
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Problem: Adding Behavior/State

● Let us consider another example:
– What if we want the ability to scale/resize frames?
– What if we want to add a banner ad?
– What if we want to log slow to acquire frames?
– And the combined behavior is chosen at runtime.

class VideoStream {
public:
  Frame getNextFrame();
};
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ScaledAdStream

Problem: Adding Behavior/State

● What if we use inheritance?

VideoStream

AdStream LoggedStream

LoggedAdStream
ScaledLoggedAdStream

● For k additions: 2k classes

– And you may not know which even make sense right away...

ScaledStream

ScaledLoggedStream
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Problem: Adding Behavior/State

● Goal:

– Decouple the addition of behavior from the VideoStream class

– But inheritance of implementation is strongly coupling!

– So what can we do instead?

VideoStream

AdStream

Let’s work through it 
on the board...
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e.g. Structural Pattern: Decorator

● Goal: Flexibly add state/behavior to an object

class VideoStream
  getNextFrame()

class FrameProvider
  getNextFrame() = 0;

interface

The core/simplest behavior will
always be necessary
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class VideoStream
  getNextFrame()

class FrameProvider
  getNextFrame() = 0;

class FrameDecorator
  FrameProvidor *stream;

interface

abstract class

This only exists to provide the *stream
to concrete decorations!
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● Goal: Flexibly add state/behavior to an object

class VideoStream
  getNextFrame()

class FrameProvider
  getNextFrame() = 0;

class FrameDecorator
  FrameProvidor *stream;

interface

abstract class

What does its getNextFrame() look like?
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  getNextFrame()



  

e.g. Structural Pattern: Decorator

● Goal: Flexibly add state/behavior to an object

class VideoStream
  getNextFrame()

class FrameProvider
  getNextFrame() = 0;

class FrameDecorator
  FrameProvidor *stream;

interface

abstract class

class ScaledStream
  getNextFrame()

Frame
getNextFrame() {
  f = stream->get...();
  f.resize(...);
  return f;
}



  

e.g. Structural Pattern: Decorator

● Goal: Flexibly add state/behavior to an object

class VideoStream
  getNextFrame()

class FrameProvider
  getNextFrame() = 0;

class FrameDecorator
  FrameProvidor *stream;

interface

abstract class

class ScaledStream
  getNextFrame()

Frame
getNextFrame() {
  f = stream->get...();
  f.resize(...);
  return f;
}



  

e.g. Structural Pattern: Decorator

● Goal: Flexibly add state/behavior to an object

class VideoStream
  getNextFrame()

class FrameProvider
  getNextFrame() = 0;

class FrameDecorator
  FrameProvidor *stream;

interface

abstract class

class ScaledStream
  getNextFrame()

Frame
getNextFrame() {
  f = stream->get...();
  f.resize(...);
  return f;
}



  

e.g. Structural Pattern: Decorator

● Goal: Flexibly add state/behavior to an object

class VideoStream
  getNextFrame()

class FrameProvider
  getNextFrame() = 0;

class FrameDecorator
  FrameProvidor *stream;

class AdStream
  getNextFrame()

interface

abstract class

class ScaledStream
  getNextFrame()



  

e.g. Structural Pattern: Decorator
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class VideoStream
  getNextFrame()

class FrameProvider
  getNextFrame() = 0;

class FrameDecorator
  FrameProvidor *stream;

class ScaledStream
  getNextFrame()

class AdStream
  getNextFrame()

class LoggedStream
  getNextFrame()

interface

abstract class



  

e.g. Structural Pattern: Decorator

● Goal: Flexibly add state/behavior to an object

class VideoStream
  getNextFrame()

class FrameProvider
  getNextFrame() = 0;

class FrameDecorator
  FrameProvidor *stream;

class ScaledStream
  getNextFrame()

class AdStream
  getNextFrame()

class LoggedStream
  getNextFrame()

interface

abstract class

Configurable
Wrappers

Core

Shared API
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e.g. Structural Pattern: Decorator

● Goal: Flexibly add state/behavior to an object

● Also called Wrapper (for now obvious reasons)

● Benefits
– Avoid class explosion

– Works when inheritance on core is prohibited

– Enables dynamically adding/removing behavior!

● Can the added & original behaviors change independently?
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e.g. Structural Pattern: Decorator

● Downsides?
– Address no longer gives object identity

● How might you resolve this?

– The indirection is itself a form of complexity
● Debugging why one link in a chain fails is more complex



  

Problem: Separate Caller & Callee

● What if we want to fully decouple actions to be taken from their call 
sites?



  

Problem: Separate Caller & Callee

● What if we want to fully decouple actions to be taken from their call 
sites?

What are the forms of 
coupling that arise?

auto result = foo(x, y, z);
...

...



  

Problem: Separate Caller & Callee

● What if we want to fully decouple actions to be taken from their call 
sites?

What are the forms of 
coupling that arise?

auto result = foo(x, y, z);
...

...



  

Problem: Separate Caller & Callee

● What if we want to fully decouple actions to be taken from their call 
sites?
– Sometimes you must execute an action without any knowledge of what 

that action is.

auto result = foo(x, y, z);
...

...



  

Problem: Separate Caller & Callee

● What if we want to fully decouple actions to be taken from their call 
sites?
– Sometimes you must execute an action without any knowledge of what 

that action is.

Create some work.

Do the created work.



  

Problem: Separate Caller & Callee

● What if we want to fully decouple actions to be taken from their call 
sites?
– Sometimes you must execute an action without any knowledge of what 

that action is.

– What interface captures this?

Create some work.

Do the created work.



  

Problem: Separate Caller & Callee

● What if we want to fully decouple actions to be taken from their call 
sites?
– Sometimes you must execute an action without any knowledge of what 

that action is.

auto result = foo(x, y, z);
...

...



  

Problem: Separate Caller & Callee

● What if we want to fully decouple actions to be taken from their call 
sites?
– Sometimes you must execute an action without any knowledge of what 

that action is.

auto result = worker.doWork();



  

Problem: Separate Caller & Callee

● What if we want to fully decouple actions to be taken from their call 
sites?
– Sometimes you must execute an action without any knowledge of what 

that action is. class Work {
  // Information about work
  // ...
  Result doWork() {...}
};auto result = worker.doWork();



  

Problem: Separate Caller & Callee

● What if we want to fully decouple actions to be taken from their call 
sites?
– Sometimes you must execute an action without any knowledge of what 

that action is. class Work {
  // Information about work
  // ...
  Result doWork() {...}
};auto result = worker.doWork();

class OtherKindOfWork {
  Result doWork() {...}
};



  

Problem: Separate Caller & Callee

● What if we want to fully decouple actions to be taken from their call 
sites?
– Sometimes you must execute an action without any knowledge of what 

that action is.

class WorkKind1 : public Work {
  Result doWork() override{...}
};

auto result = worker.doWork();

class WorkKind2 : public Work {
  Result doWork() override{...}
};class Work {

  virtual Result doWork() = 0;
};
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e.g. Behavioral Pattern: Command

● This is the command pattern

● It is nothing more than an object oriented callback

class Command {
public:
  virtual void execute() = 0;
};

Why not just use a lambda?
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The Command Pattern

● Benefits
– Decouples a request / behavior from the invoker

– Invoker decides when to invoke without caring what

– Parametrizable via constructor

auto result = foo(x, y, z);
...

...
auto command = FooCommand(x, y, z);
...

...

command.execute();
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The Command Pattern

● Benefits
– Decouples a request / behavior from the invoker

– Invoker decides when to invoke without caring what

– Parametrizable via constructor

– Sequences of commands can be easily batched

How can this be used in the project?
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Command

Move Look Attack



  

The Command Pattern

Command

Move Look Attack

Is only one Move necessary?



  

The Command Pattern

● Issues
– How much state should it hold? (Passed to constructor vs passed to execute)
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The Command Pattern

● Issues
– How much state should it hold?

– Does it perform undo/redo?

– Can you batch commands?

– How does temporal decoupling affect operation logic?
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– What is the API you want?

auto result = foo(x, y, z);
...

... auto result = worker.doWork();vsauto result = foo(x, y, z);

...

...
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The Big Picture

● There is nothing special about design patterns!
– What is the API you want?

– What do you know, what do you need to know, & when?

– How can you hide design decisions to get the API you want?

x, y, zI know here

I want to know
but hide them here.

x, y, z

auto result = worker.doWork();

class Command {
public:
  virtual void doWork() = 0;
};
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Design Patterns

● They provide a common language for design decisions

● They illustrate common trade offs & how to solve them

● I heartily recommend learning State, Strategy, & Visitor as well
– We will explore these a little in class.
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