
Design Patterns

CMPT 373
Software Development Methods

Nick Sumner
wsumner@sfu.ca

Recall: Managing Complexity

The most fundamental issue in software development
is managing complexity

Recall: Managing Complexity

The most fundamental issue in software development
is managing complexity

Complexity:

● Has many forms

Recall: Managing Complexity

The most fundamental issue in software development
is managing complexity

Complexity:

● Has many forms
● One broad notion is coupling

Recall: Managing Complexity

The most fundamental issue in software development
is managing complexity

Complexity:

● Has many forms
● One broad notion is coupling

– Can one component be understood without others?
– Can one component be changed without changing others?

Recall: Managing Complexity

The most fundamental issue in software development
is managing complexity

Complexity:

● Has many forms
● One broad notion is coupling

– Can one component be understood without others?
– Can one component be changed without changing others?

Solutions are built using:

Recall: Managing Complexity

The most fundamental issue in software development
is managing complexity

Complexity:

● Has many forms
● One broad notion is coupling

– Can one component be understood without others?
– Can one component be changed without changing others?

Solutions are built using:

● Abstraction
● Encapsulation
● Information hiding

The most fundamental issue in software development
is managing complexity

Complexity:

● Has many forms
● One broad notion is coupling

– Can one component be understood without others?
– Can one component be changed without changing others?

Solutions are built using:

● Abstraction
● Encapsulation
● Information hiding

Recall: Managing Complexity

Strive for components that:
● interact minimally
● know minimal information

What are design patterns?

● Design patterns are reusable solutions and metaphors for addressing
problems

What are design patterns?

● Design patterns are reusable solutions and metaphors for addressing
problems

● They provide
– Common Language

● discuss complex solutions more easily by name.

What are design patterns?

● Design patterns are reusable solutions and metaphors for addressing
problems

● They provide
– Common Language

● discuss complex solutions more easily by name.

– Archetypes

What are design patterns?

● Design patterns are reusable solutions and metaphors for addressing
problems

● They provide
– Common Language

● discuss complex solutions more easily by name.

– Archetypes

What are design patterns?

● Design patterns are reusable solutions and metaphors for addressing
problems

● They provide
– Common Language

● discuss complex solutions more easily by name.

– Archetypes
● Their trade-offs are well understood
● New solutions can be modelled after them effectively

What are design patterns?

● Design patterns are reusable solutions and metaphors for addressing
problems

● They provide
– Common Language

● discuss complex solutions more easily by name.

– Archetypes
● Their trade-offs are well understood
● New solutions can be modelled after them effectively

Note:
– As in literature, you do not copy the archetype directly.

What are design patterns?

● Design patterns are reusable solutions and metaphors for addressing
problems

● They provide
– Common Language

● discuss complex solutions more easily by name.

– Archetypes
● Their trade-offs are well understood
● New solutions can be modelled after them effectively

Note:
– As in literature, you do not copy the archetype directly.
– Adapt it to your specific needs & trade offs.

What are design patterns?

● Design patterns are reusable solutions and metaphors for addressing
problems

● They provide
– Common Language

● discuss complex solutions more easily by name.

– Archetypes
● Their trade-offs are well understood
● New solutions can be modelled after them effectively

Note:
– As in literature, you do not copy the archetype directly.
– Adapt it to your specific needs & trade offs.
– Why a pattern exists is more important than just knowing that pattern

What are design patterns?

● Design patterns are reusable solutions and metaphors for addressing
problems

● They provide
– Common Language

● discuss complex solutions more easily by name.

– Archetypes
● Their trade-offs are well understood
● New solutions can be modelled after them effectively

Note:
– As in literature, you do not copy the archetype directly.
– Adapt it to your specific needs & trade offs.
– Why a pattern exists is more important than just knowing that pattern!

So what is their benefit?

● Design patterns...

So what is their benefit?

● Design patterns...
– have clear formulations of the problems they attack

Your problems will usually
be slightly different

So what is their benefit?

● Design patterns...
– have clear formulations of the problems they attack

– enable efficient communication

So what is their benefit?

● Design patterns...
– have clear formulations of the problems they attack

– enable efficient communication

– have well understood strengths & weaknesses

So what is their benefit?

● Design patterns...
– have clear formulations of the problems they attack

– enable efficient communication

– have well understood strengths & weaknesses

– provide anchor points in the design space that you can explore

What are their risks?

What are their risks?

● Solutions can be built around design patterns rather than informed by
them.

What are their risks?

● Solutions can be built around design patterns rather than informed by
them.

● Emergent tradeoffs can be hidden by adopting a pattern too early.

What are their risks?

● Solutions can be built around design patterns rather than informed by
them.

● Emergent tradeoffs can be hidden by adopting a pattern too early.

Start simple and adopt or move toward
design patterns as their utility becomes clear.

What are the puzzle pieces?

● Design patterns are largely built around exploiting
– composition
– polymorphism

What are the puzzle pieces?

● Design patterns are largely built around exploiting
– composition
– polymorphism

● Polymorphism
– Using a common interface for many types

What are the puzzle pieces?

● Design patterns are largely built around exploiting
– composition
– polymorphism

● Polymorphism
– Using a common interface for many types

● 4(ish) common types of polymorphism:

What are they?

What are the puzzle pieces?

● Design patterns are largely built around exploiting
– composition
– polymorphism

● Polymorphism
– Using a common interface for many types

● 4 common types of polymorphism:
– Inheritance / Subtyping (at runtime)

What are the puzzle pieces?

● Design patterns are largely built around exploiting
– composition
– polymorphism

● Polymorphism
– Using a common interface for many types

● 4 common types of polymorphism:
– Inheritance / Subtyping (at runtime)
– Parametric polymorphism (at compile time)

What are the puzzle pieces?

● Design patterns are largely built around exploiting
– composition
– polymorphism

● Polymorphism
– Using a common interface for many types

● 4 common types of polymorphism:
– Inheritance / Subtyping (at runtime)
– Parametric polymorphism (at compile time)
– Ad hoc polymorphism / overloading / type classes

What are the puzzle pieces?

● Design patterns are largely built around exploiting
– composition
– polymorphism

● Polymorphism
– Using a common interface for many types

● 4 common types of polymorphism:
– Inheritance / Subtyping (at runtime)
– Parametric polymorphism (at compile time)
– Ad hoc polymorphism / overloading / type classes
– Coercion / casting (ish)

What are the puzzle pieces?

● Design patterns are largely built around exploiting
– composition
– polymorphism

● Polymorphism
– Using a common interface for many types

● 4 common types of polymorphism:
– Inheritance / Subtyping (at runtime)
– Parametric polymorphism (at compile time)
– Ad hoc polymorphism / overloading / type classes
– Coercion / casting

Choosing one form of polymorphism
over another yields trade-offs

3 classical categories

● Creational
– Support creation of objects within a program

3 classical categories

● Creational
– Support creation of objects within a program

● Structural
– Organize object composition for creating new behavior

3 classical categories

● Creational
– Support creation of objects within a program

● Structural
– Organize object composition for creating new behavior

● Behavioral
– Focus on communication between entities

3 classical categories

● Creational
– Support creation of objects within a program

● Structural
– Organize object composition for creating new behavior

● Behavioral
– Focus on communication between entities

Other categories exist for specific domains.
These are general.

Deriving Designs & Recognizing Patterns

● We will derive a handful of patterns in these categories

Deriving Designs & Recognizing Patterns

● We will derive a handful of patterns in these categories

● I want us to try to construct them from first principles

Deriving Designs & Recognizing Patterns

● We will derive a handful of patterns in these categories

● I want us to try to construct them from first principles
– Identify goals
– Understand the constraints of a scenario
– Derive a design that does what you want

Deriving Designs & Recognizing Patterns

● We will derive a handful of patterns in these categories

● I want us to try to construct them from first principles
– Identify goals
– Understand the constraints of a scenario
– Derive a design that does what you want

● I expect the patterns to be obvious in retrospect....

Problem: Flexibly creating objects

● How would you normally create an instance of an object?

Problem: Flexibly creating objects

● How would you normally create an instance of an object?

Animal animal{"Zebra", RunPolicy, WinnyPolicy};

Problem: Flexibly creating objects

● How would you normally create an instance of an object?

● What are the coupled constraints in this approach?

Animal animal{"Zebra", RunPolicy, WinnyPolicy};

Problem: Flexibly creating objects

● How would you normally create an instance of an object?

● What are the coupled constraints in this approach?

Animal animal{"Zebra", RunPolicy, WinnyPolicy};

Note, there are also temporal constraints!
When are the arguments & types known?

Problem: Flexibly creating objects

● How would you normally create an instance of an object?

● What are the coupled constraints in this approach?

● What if you want to allow the user to define their own kinds of
objects to create? (custom paintbrush for objects)

Animal animal{"Zebra", RunPolicy, WinnyPolicy};

Problem: Flexibly creating objects

● Sometimes you want to create new objects patterned off another

Problem: Flexibly creating objects

● Sometimes you want to create new objects patterned off another
– First instance might be costly to build

Problem: Flexibly creating objects

● Sometimes you want to create new objects patterned off another
– First instance might be costly to build
– First instance might be user created

Problem: Flexibly creating objects

● Sometimes you want to create new objects patterned off another
– First instance might be costly to build
– First instance might be user created
– Actual type may need to change

Problem: Flexibly creating objects

● Sometimes you want to create new objects patterned off another
– First instance might be costly to build
– First instance might be user created
– Actual type may need to change
– Might be created far from where arguments are known

Problem: Flexibly creating objects

● Sometimes you want to create new objects patterned off another
– First instance might be costly to build
– First instance might be user created
– Actual type may need to change
– Might be created far from where arguments are known

How would you attack this?

Animal animal{"Zebra", RunPolicy, WinnyPolicy};
...
...

Problem: Flexibly creating objects

● Sometimes you want to create new objects patterned off another
– First instance might be costly to build
– First instance might be user created
– Actual type may need to change
– Might be created far from where arguments are known

How would you attack this?

Animal animal{"Zebra", RunPolicy, WinnyPolicy};
...
...

Problem: Flexibly creating objects

● Sometimes you want to create new objects patterned off another
– First instance might be costly to build
– First instance might be user created
– Actual type may need to change
– Might be created far from where arguments are known

How would you attack this?

Animal animal = maker.makeOne();

Problem: Flexibly creating objects

● Sometimes you want to create new objects patterned off another
– First instance might be costly to build
– First instance might be user created
– Actual type may need to change
– Might be created far from where arguments are known

How would you attack this?

Animal animal = maker.makeOne();

class ThingMaker{
 //info about
 //thing to make
 Animal makeOne();
} maker;

Problem: Flexibly creating objects

● Sometimes you want to create new objects patterned off another
– First instance might be costly to build
– First instance might be user created
– Actual type may need to change
– Might be created far from where arguments are known

How would you attack this?

Animal animal = maker.makeOne();

class ThingMaker{
 Animal toCopy;
public:
 Animal makeOne();
} maker;

Problem: Flexibly creating objects

● Sometimes you want to create new objects patterned off another
– First instance might be costly to build
– First instance might be user created
– Actual type may need to change
– Might be created far from where arguments are known

● Register an instance as a template & make clones

e.g. Creational Pattern: Prototype

● Goal: Create new objects based on a configuration.

e.g. Creational Pattern: Prototype

● Goal: Create new objects based on a configuration.

class Clonable
 std::unique_ptr<Clonable>
 clone() = 0;

interfaceAn inheritance version:

e.g. Creational Pattern: Prototype

● Goal: Create new objects based on a configuration.

interface

class Instance
 : public Clonable
 ... clone();

An inheritance version:
class Clonable
 std::unique_ptr<Clonable>
 clone() = 0;

e.g. Creational Pattern: Prototype

● Goal: Create new objects based on a configuration.

interface

class Instance
 : public Clonable
 ... clone();

An inheritance version:
class Clonable
 std::unique_ptr<Clonable>
 clone() = 0;class Cloner

 std::unique_ptr<Clonable> toClone;

 std::unique_ptr<Clonable> create();

e.g. Creational Pattern: Prototype

● Goal: Create new objects based on a configuration.

interface

class Instance
 : public Clonable
 ... clone();

An inheritance version:
class Clonable
 std::unique_ptr<Clonable>
 clone() = 0;class Cloner

 std::unique_ptr<Clonable> toClone;

 std::unique_ptr<Clonable> create();

e.g. Creational Pattern: Prototype

● Goal: Create new objects based on a configuration.

class Cloner
 std::unique_ptr<Clonable> toClone;

 std::unique_ptr<Clonable> create();

interface

class Instance
 : public Clonable
 ... clone();

An inheritance version:

What risks are there?
Can you see better ways?

class Clonable
 std::unique_ptr<Clonable>
 clone() = 0;

e.g. Creational Pattern: Prototype

● Benefits:
– User defined objects become easier

e.g. Creational Pattern: Prototype

● Benefits:
– User defined objects become easier

● Downsides:
– Managing the cloning becomes critical

e.g. Creational Pattern: Prototype

● Benefits:
– User defined objects become easier

● Downsides:
– Managing the cloning becomes critical

– Inheritance based approaches require clone implementations

e.g. Creational Pattern: Prototype

● Benefits:
– User defined objects become easier

● Downsides:
– Managing the cloning becomes critical

– Inheritance based approaches require clone implementations

– Deep copy vs shallow copy?

Problem: Adding Behavior/State

● How do you normally add behaviors or state to an object?

Problem: Adding Behavior/State

● How do you normally add behaviors or state to an object?

class ByteStream {
public:
 Byte getNextByte();
};

Problem: Adding Behavior/State

● How do you normally add behaviors or state to an object?

class ByteStream {
public:
 Byte getNextByte();
 UT8Char getNextUTF8Char();
 UTF16Char getNextUTF16Char();
};

Problem: Adding Behavior/State

● How do you normally add behaviors or state to an object?

class ByteStream {
public:
 Byte getNextByte();
 UT8Char getNextUTF8Char();
 UTF16Char getNextUTF16Char();
};

or

IOStream
+getNext()

ByteStream
+getNext()

UTF8CharStream
+getNext()

UTF16CharStream
+getNext()

Problem: Adding Behavior/State

class ByteStream {
public:
 Byte getNextByte();
 UT8Char getNextUTF8Char();
 UTF16Char getNextUTF16Char();
};

or

IOStream
+getNext()

ByteStream
+getNext()

UTF8CharStream
+getNext()

UTF16CharStream
+getNext()

● How do you normally add behaviors or state to an object?

– What issues do these solutions suffer from?

–

Problem: Adding Behavior/State

class ByteStream {
public:
 Byte getNextByte();
 UT8Char getNextUTF8Char();
 UTF16Char getNextUTF16Char();
};

or

IOStream
+getNext()

ByteStream
+getNext()

UTF8CharStream
+getNext()

UTF16CharStream
+getNext()

● How do you normally add behaviors or state to an object?

– What issues do these solutions suffer from?

– What if you wanted the behavior to be
dynamic?

–

Problem: Adding Behavior/State

● Let us consider another example:

class VideoStream {
public:
 Frame getNextFrame();
};

Problem: Adding Behavior/State

● Let us consider another example:
– What if we want the ability to scale/resize frames?

class VideoStream {
public:
 Frame getNextFrame();
};

Problem: Adding Behavior/State

● Let us consider another example:
– What if we want the ability to scale/resize frames?
– What if we want to add a banner ad?

class VideoStream {
public:
 Frame getNextFrame();
};

Problem: Adding Behavior/State

● Let us consider another example:
– What if we want the ability to scale/resize frames?
– What if we want to add a banner ad?
– What if we want to log slow to acquire frames?

class VideoStream {
public:
 Frame getNextFrame();
};

Problem: Adding Behavior/State

● Let us consider another example:
– What if we want the ability to scale/resize frames?
– What if we want to add a banner ad?
– What if we want to log slow to acquire frames?
– And the combined behavior is chosen at runtime.

class VideoStream {
public:
 Frame getNextFrame();
};

Problem: Adding Behavior/State

● What if we use inheritance?

Problem: Adding Behavior/State

● What if we use inheritance?

VideoStream

ScaledStream AdStream LoggedStream

Problem: Adding Behavior/State

● What if we use inheritance?

VideoStream

AdStream LoggedStream

Is this sufficient?

ScaledStream

Problem: Adding Behavior/State

● What if we use inheritance?

VideoStream

AdStream LoggedStream

ScaledAdStream

ScaledStream

Problem: Adding Behavior/State

● What if we use inheritance?

VideoStream

AdStream LoggedStream

LoggedAdStream

ScaledStream

ScaledAdStream

AdStream

ScaledAdStream

Problem: Adding Behavior/State

● What if we use inheritance?

VideoStream

LoggedStream

LoggedAdStream

ScaledStream

ScaledLoggedStream

AdStream

ScaledAdStream

Problem: Adding Behavior/State

● What if we use inheritance?

VideoStream

LoggedStream

LoggedAdStream

ScaledStream

ScaledLoggedAdStreamScaledLoggedStream

AdStream

ScaledAdStream

Problem: Adding Behavior/State

● What if we use inheritance?

VideoStream

LoggedStream

LoggedAdStream

● For k additions: 2k classes

ScaledStream

ScaledLoggedAdStreamScaledLoggedStream

ScaledAdStream

Problem: Adding Behavior/State

● What if we use inheritance?

VideoStream

AdStream LoggedStream

LoggedAdStream
ScaledLoggedAdStream

● For k additions: 2k classes

– And you may not know which even make sense right away...

ScaledStream

ScaledLoggedStream

Problem: Adding Behavior/State

● Goal:

– Decouple the addition of behavior from the VideoStream class

Problem: Adding Behavior/State

● Goal:

– Decouple the addition of behavior from the VideoStream class

– But inheritance of implementation is strongly coupling!

Problem: Adding Behavior/State

● Goal:

– Decouple the addition of behavior from the VideoStream class

– But inheritance of implementation is strongly coupling!

VideoStream

AdStream

Problem: Adding Behavior/State

● Goal:

– Decouple the addition of behavior from the VideoStream class

– But inheritance of implementation is strongly coupling!

– So what can we do instead?

VideoStream

AdStream

Let’s work through it
on the board...

e.g. Structural Pattern: Decorator

● Goal: Flexibly add state/behavior to an object

e.g. Structural Pattern: Decorator

● Goal: Flexibly add state/behavior to an object
class FrameProvider
 getNextFrame() = 0;

interface

e.g. Structural Pattern: Decorator

● Goal: Flexibly add state/behavior to an object

class VideoStream
 getNextFrame()

class FrameProvider
 getNextFrame() = 0;

interface

The core/simplest behavior will
always be necessary

e.g. Structural Pattern: Decorator

● Goal: Flexibly add state/behavior to an object

class VideoStream
 getNextFrame()

class FrameProvider
 getNextFrame() = 0;

class FrameDecorator
 FrameProvidor *stream;

interface

abstract class

e.g. Structural Pattern: Decorator

● Goal: Flexibly add state/behavior to an object

class VideoStream
 getNextFrame()

class FrameProvider
 getNextFrame() = 0;

class FrameDecorator
 FrameProvidor *stream;

interface

abstract class

This only exists to provide the *stream
to concrete decorations!

e.g. Structural Pattern: Decorator

● Goal: Flexibly add state/behavior to an object

class VideoStream
 getNextFrame()

class FrameProvider
 getNextFrame() = 0;

class FrameDecorator
 FrameProvidor *stream;

interface

abstract class

class ScaledStream
 getNextFrame()

e.g. Structural Pattern: Decorator

● Goal: Flexibly add state/behavior to an object

class VideoStream
 getNextFrame()

class FrameProvider
 getNextFrame() = 0;

class FrameDecorator
 FrameProvidor *stream;

interface

abstract class

What does its getNextFrame() look like?

class ScaledStream
 getNextFrame()

e.g. Structural Pattern: Decorator

● Goal: Flexibly add state/behavior to an object

class VideoStream
 getNextFrame()

class FrameProvider
 getNextFrame() = 0;

class FrameDecorator
 FrameProvidor *stream;

interface

abstract class

class ScaledStream
 getNextFrame()

Frame
getNextFrame() {
 f = stream->get...();
 f.resize(...);
 return f;
}

e.g. Structural Pattern: Decorator

● Goal: Flexibly add state/behavior to an object

class VideoStream
 getNextFrame()

class FrameProvider
 getNextFrame() = 0;

class FrameDecorator
 FrameProvidor *stream;

interface

abstract class

class ScaledStream
 getNextFrame()

Frame
getNextFrame() {
 f = stream->get...();
 f.resize(...);
 return f;
}

e.g. Structural Pattern: Decorator

● Goal: Flexibly add state/behavior to an object

class VideoStream
 getNextFrame()

class FrameProvider
 getNextFrame() = 0;

class FrameDecorator
 FrameProvidor *stream;

interface

abstract class

class ScaledStream
 getNextFrame()

Frame
getNextFrame() {
 f = stream->get...();
 f.resize(...);
 return f;
}

e.g. Structural Pattern: Decorator

● Goal: Flexibly add state/behavior to an object

class VideoStream
 getNextFrame()

class FrameProvider
 getNextFrame() = 0;

class FrameDecorator
 FrameProvidor *stream;

class AdStream
 getNextFrame()

interface

abstract class

class ScaledStream
 getNextFrame()

e.g. Structural Pattern: Decorator

● Goal: Flexibly add state/behavior to an object

class VideoStream
 getNextFrame()

class FrameProvider
 getNextFrame() = 0;

class FrameDecorator
 FrameProvidor *stream;

class ScaledStream
 getNextFrame()

class AdStream
 getNextFrame()

class LoggedStream
 getNextFrame()

interface

abstract class

e.g. Structural Pattern: Decorator

● Goal: Flexibly add state/behavior to an object

class VideoStream
 getNextFrame()

class FrameProvider
 getNextFrame() = 0;

class FrameDecorator
 FrameProvidor *stream;

class ScaledStream
 getNextFrame()

class AdStream
 getNextFrame()

class LoggedStream
 getNextFrame()

interface

abstract class

Configurable
Wrappers

Core

Shared API

e.g. Structural Pattern: Decorator

● Goal: Flexibly add state/behavior to an object

● Also called Wrapper (for now obvious reasons)

e.g. Structural Pattern: Decorator

● Goal: Flexibly add state/behavior to an object

● Also called Wrapper (for now obvious reasons)

● Benefits

e.g. Structural Pattern: Decorator

● Goal: Flexibly add state/behavior to an object

● Also called Wrapper (for now obvious reasons)

● Benefits
– Avoid class explosion

e.g. Structural Pattern: Decorator

● Goal: Flexibly add state/behavior to an object

● Also called Wrapper (for now obvious reasons)

● Benefits
– Avoid class explosion

– Works when inheritance on core is prohibited

e.g. Structural Pattern: Decorator

● Goal: Flexibly add state/behavior to an object

● Also called Wrapper (for now obvious reasons)

● Benefits
– Avoid class explosion

– Works when inheritance on core is prohibited

– Enables dynamically adding/removing behavior!

e.g. Structural Pattern: Decorator

● Goal: Flexibly add state/behavior to an object

● Also called Wrapper (for now obvious reasons)

● Benefits
– Avoid class explosion

– Works when inheritance on core is prohibited

– Enables dynamically adding/removing behavior!

● Can the added & original behaviors change independently?

e.g. Structural Pattern: Decorator

● Downsides?

e.g. Structural Pattern: Decorator

● Downsides?
– Address no longer gives object identity

● How might you resolve this?

e.g. Structural Pattern: Decorator

● Downsides?
– Address no longer gives object identity

● How might you resolve this?

– The indirection is itself a form of complexity
● Debugging why one link in a chain fails is more complex

Problem: Separate Caller & Callee

● What if we want to fully decouple actions to be taken from their call
sites?

Problem: Separate Caller & Callee

● What if we want to fully decouple actions to be taken from their call
sites?

What are the forms of
coupling that arise?

auto result = foo(x, y, z);
...

...

Problem: Separate Caller & Callee

● What if we want to fully decouple actions to be taken from their call
sites?

What are the forms of
coupling that arise?

auto result = foo(x, y, z);
...

...

Problem: Separate Caller & Callee

● What if we want to fully decouple actions to be taken from their call
sites?
– Sometimes you must execute an action without any knowledge of what

that action is.

auto result = foo(x, y, z);
...

...

Problem: Separate Caller & Callee

● What if we want to fully decouple actions to be taken from their call
sites?
– Sometimes you must execute an action without any knowledge of what

that action is.

Create some work.

Do the created work.

Problem: Separate Caller & Callee

● What if we want to fully decouple actions to be taken from their call
sites?
– Sometimes you must execute an action without any knowledge of what

that action is.

– What interface captures this?

Create some work.

Do the created work.

Problem: Separate Caller & Callee

● What if we want to fully decouple actions to be taken from their call
sites?
– Sometimes you must execute an action without any knowledge of what

that action is.

auto result = foo(x, y, z);
...

...

Problem: Separate Caller & Callee

● What if we want to fully decouple actions to be taken from their call
sites?
– Sometimes you must execute an action without any knowledge of what

that action is.

auto result = worker.doWork();

Problem: Separate Caller & Callee

● What if we want to fully decouple actions to be taken from their call
sites?
– Sometimes you must execute an action without any knowledge of what

that action is. class Work {
 // Information about work
 // ...
 Result doWork() {...}
};auto result = worker.doWork();

Problem: Separate Caller & Callee

● What if we want to fully decouple actions to be taken from their call
sites?
– Sometimes you must execute an action without any knowledge of what

that action is. class Work {
 // Information about work
 // ...
 Result doWork() {...}
};auto result = worker.doWork();

class OtherKindOfWork {
 Result doWork() {...}
};

Problem: Separate Caller & Callee

● What if we want to fully decouple actions to be taken from their call
sites?
– Sometimes you must execute an action without any knowledge of what

that action is.

class WorkKind1 : public Work {
 Result doWork() override{...}
};

auto result = worker.doWork();

class WorkKind2 : public Work {
 Result doWork() override{...}
};class Work {

 virtual Result doWork() = 0;
};

e.g. Behavioral Pattern: Command

class Command {
public:
 virtual void execute() = 0;
};

e.g. Behavioral Pattern: Command

● This is the command pattern

class Command {
public:
 virtual void execute() = 0;
};

e.g. Behavioral Pattern: Command

● This is the command pattern

● It is nothing more than an object oriented callback

class Command {
public:
 virtual void execute() = 0;
};

e.g. Behavioral Pattern: Command

● This is the command pattern

● It is nothing more than an object oriented callback

class Command {
public:
 virtual void execute() = 0;
};

Why not just use a lambda?

The Command Pattern

● Benefits
– Decouples a request / behavior from the invoker

The Command Pattern

● Benefits
– Decouples a request / behavior from the invoker

– Invoker decides when to invoke without caring what

The Command Pattern

● Benefits
– Decouples a request / behavior from the invoker

– Invoker decides when to invoke without caring what

– Parametrizable via constructor

The Command Pattern

● Benefits
– Decouples a request / behavior from the invoker

– Invoker decides when to invoke without caring what

– Parametrizable via constructor

auto result = foo(x, y, z);
...

...

The Command Pattern

● Benefits
– Decouples a request / behavior from the invoker

– Invoker decides when to invoke without caring what

– Parametrizable via constructor

auto result = foo(x, y, z);
...

...
auto command = FooCommand(x, y, z);
...

...

command.execute();

The Command Pattern

● Benefits
– Decouples a request / behavior from the invoker

– Invoker decides when to invoke without caring what

– Parametrizable via constructor

– Sequences of commands can be easily batched

The Command Pattern

● Benefits
– Decouples a request / behavior from the invoker

– Invoker decides when to invoke without caring what

– Parametrizable via constructor

– Sequences of commands can be easily batched

How can this be used in the project?

The Command Pattern

Command

Move Look Attack

The Command Pattern

Command

Move Look Attack

Is only one Move necessary?

The Command Pattern

● Issues
– How much state should it hold? (Passed to constructor vs passed to execute)

The Command Pattern

● Issues
– How much state should it hold?

– Does it perform undo/redo?

The Command Pattern

● Issues
– How much state should it hold?

– Does it perform undo/redo?

– Can you batch commands?

The Command Pattern

● Issues
– How much state should it hold?

– Does it perform undo/redo?

– Can you batch commands?

– How does temporal decoupling affect operation logic?

The Big Picture

● There is nothing special about design patterns!

The Big Picture

● There is nothing special about design patterns!
– What is the API you want?

auto result = foo(x, y, z);
...

... auto result = worker.doWork();vsauto result = foo(x, y, z);

...

...

The Big Picture

● There is nothing special about design patterns!
– What is the API you want?

– What do you know, what do you need to know, & when?

x, y, zI know here

I want to know
but hide them here.

x, y, z

auto result = worker.doWork();

The Big Picture

● There is nothing special about design patterns!
– What is the API you want?

– What do you know, what do you need to know, & when?

– How can you hide design decisions to get the API you want?

x, y, zI know here

I want to know
but hide them here.

x, y, z

auto result = worker.doWork();

class Command {
public:
 virtual void doWork() = 0;
};

Design Patterns

● They provide a common language for design decisions

Design Patterns

● They provide a common language for design decisions

● They illustrate common trade offs & how to solve them

Design Patterns

● They provide a common language for design decisions

● They illustrate common trade offs & how to solve them

● I heartily recommend learning State, Strategy, & Visitor as well
– We will explore these a little in class.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149

