
CMPT 373
Software Development Methods

Nick Sumner
wsumner@sfu.ca

Object Oriented Programming
& Inheritance

Why care about Object Oriented Programming?

● Superficial reasons are straightforward:

Why care about Object Oriented Programming?

● Superficial reasons are straightforward:
– Much of the world’s code is written in OO languages
– Employers consider OOP a core introductory skill
– Chances are you will need to understand it to get a job

Why care about Object Oriented Programming?

● Superficial reasons are straightforward:
– Much of the world’s code is written in OO languages
– Employers consider OOP a core introductory skill
– Chances are you will need to understand it to get a job

● But there are detractors
– “OOP is inefficient”
– “OOP makes it hard to share data easily”

Why care about Object Oriented Programming?

● Superficial reasons are straightforward:
– Much of the world’s code is written in OO languages
– Employers consider OOP a core introductory skill
– Chances are you will need to understand it to get a job

● But there are detractors
– “OOP is inefficient”
– “OOP makes it hard to share data easily”

● Applied well and thoughtfully, it helps solve real problems
– Like any tool, if you apply it poorly, it won’t work well
– If you apply it universally or dogmatically, you will miss out on better tools
– You need to know how to use a tool to get value out of it

Why care about Object Oriented Programming?

● Superficial reasons are straightforward:
– Much of the world’s code is written in OO languages
– Employers consider OOP a core introductory skill
– Chances are you will need to understand it to get a job

● But there are detractors
– “OOP is inefficient”
– “OOP makes it hard to share data easily”

● Applied well and thoughtfully, it helps solve real problems
– Like any tool, if you apply it poorly, it won’t work well
– If you apply it universally or dogmatically, you will miss out on better tools
– You need to know how to use a tool to get value out of it

● OOP will not solve your design for you, but it can be an effective tool

Our Goal

● I will assume you have basic, introductory, OOP experience
– Most schools teach this in year 1 (ours does a little & is aiming to get better)

Our Goal

● I will assume you have basic, introductory, OOP experience
– Most schools teach this in year 1 (ours does a little & is aiming to get better)
– Most employers will expect you to have seen it from year 1

Our Goal

● I will assume you have basic, introductory, OOP experience
– Most schools teach this in year 1 (ours does a little & is aiming to get better)
– Most employers will expect you to have seen it from year 1
– You will be competing on the job market with students doing it from year 1

Our Goal

● I will assume you have basic, introductory, OOP experience
– Most schools teach this in year 1 (ours does a little & is aiming to get better)
– Most employers will expect you to have seen it from year 1
– You will be competing on the job market with students doing it from year 1

● But many schools teach it very badly
– OOP textbooks were notoriously bad in the early 2000s
– Many were written by people who did not know what they were doing
– Many faculty did not learn it well themselves

Our Goal

● I will assume you have basic, introductory, OOP experience
– Most schools teach this in year 1 (ours does a little & is aiming to get better)
– Most employers will expect you to have seen it from year 1
– You will be competing on the job market with students doing it from year 1

● But many schools teach it very badly
– OOP textbooks were notoriously bad in the early 2000s
– Many were written by people who did not know what they were doing
– Many faculty did not learn it well themselves
– This is one of the reasons people complain about OOP

Our Goal

● I will assume you have basic, introductory, OOP experience
– Most schools teach this in year 1 (ours does a little & is aiming to get better)
– Most employers will expect you to have seen it from year 1
– You will be competing on the job market with students doing it from year 1

● But many schools teach it very badly
– OOP textbooks were notoriously bad in the early 2000s
– Many were written by people who did not know what they were doing
– Many faculty did not learn it well themselves
– This is one of the reasons people complain about OOP

● Our goal with OOP is to make you better than that

Our Goal

● I will assume you have basic, introductory, OOP experience
– Most schools teach this in year 1 (ours does a little & is aiming to get better)
– Most employers will expect you to have seen it from year 1
– You will be competing on the job market with students doing it from year 1

● But many schools teach it very badly
– OOP textbooks were notoriously bad in the early 2000s
– Many were written by people who did not know what they were doing
– Many faculty did not learn it well themselves
– This is one of the reasons people complain about OOP

● Our goal with OOP is to make you better than that
– Regardless of the language you work in, I recommend:

Effective Java, C++ Coding Standards, Practical Object-Oriented Design in Ruby

https://www.goodreads.com/book/show/34927404-effective-java
https://www.goodreads.com/book/show/1105780.C_Coding_Standards
https://www.goodreads.com/book/show/13507787-practical-object-oriented-design-in-ruby

Our Goal

● I will assume you have basic, introductory, OOP experience
– Most schools teach this in year 1 (ours does a little & is aiming to get better)
– Most employers will expect you to have seen it from year 1
– You will be competing on the job market with students doing it from year 1

● But many schools teach it very badly
– OOP textbooks were notoriously bad in the early 2000s
– Many were written by people who did not know what they were doing
– Many faculty did not learn it well themselves
– This is one of the reasons people complain about OOP

● Our goal with OOP is to make you better than that
– Regardless of the language you work in, I recommend:

Effective Java, C++ Coding Standards, Practical Object-Oriented Design in Ruby

Treat these as guides rather than laws.
Dogma has no value. Understand the cost/benefit.

https://www.goodreads.com/book/show/34927404-effective-java
https://www.goodreads.com/book/show/1105780.C_Coding_Standards
https://www.goodreads.com/book/show/13507787-practical-object-oriented-design-in-ruby

What is OOP?

● This is a matter of more debate than expected

What is OOP?

● This is a matter of more debate than expected
● Classically:

– A combination of data and code
– Abstraction, Encapsulation, Inheritance, Polymorphism

What is OOP?

● This is a matter of more debate than expected
● Classically:

– A combination of data and code
– Abstraction, Encapsulation, Inheritance, Polymorphism
– “An object is a value exporting a procedural interface to data or behavior”[Cook 2009]

What is OOP?

● This is a matter of more debate than expected
● Classically:

– A combination of data and code
– Abstraction, Encapsulation, Inheritance, Polymorphism
– “An object is a value exporting a procedural interface to data or behavior”
– Objects are “sites of higher level behaviors more appropriate for use as

dynamic components”

[Cook 2009]

[Kay 1993]

What is OOP?

● This is a matter of more debate than expected
● Classically:

– A combination of data and code
– Abstraction, Encapsulation, Inheritance, Polymorphism
– “An object is a value exporting a procedural interface to data or behavior”
– Objects are “sites of higher level behaviors more appropriate for use as

dynamic components”

● Intuitively
– Objects provide interchangeable services supporting higher level goals

[Cook 2009]

[Kay 1993]

[Aldrich 2013]

https://blog.acolyer.org/2014/11/11/the-power-of-interoperability-why-objects-are-inevitable/

What is OOP?

● This is a matter of more debate than expected
● Classically:

– A combination of data and code
– Abstraction, Encapsulation, Inheritance, Polymorphism
– “An object is a value exporting a procedural interface to data or behavior”
– Objects are “sites of higher level behaviors more appropriate for use as

dynamic components”

● Intuitively
– Objects provide interchangeable services supporting higher level goals
– You can think of OOP as like writing a library for a task

[Cook 2009]

[Kay 1993]

[Aldrich 2013]

https://blog.acolyer.org/2014/11/11/the-power-of-interoperability-why-objects-are-inevitable/

What is OOP?

● This is a matter of more debate than expected
● Classically:

– A combination of data and code
– Abstraction, Encapsulation, Inheritance, Polymorphism
– “An object is a value exporting a procedural interface to data or behavior”
– Objects are “sites of higher level behaviors more appropriate for use as

dynamic components”

● Intuitively
– Objects provide interchangeable services supporting higher level goals
– You can think of OOP as like writing a library for a task
– OOP is about decoupling implementation from use

[Cook 2009]

[Kay 1993]

[Aldrich 2013]

https://blog.acolyer.org/2014/11/11/the-power-of-interoperability-why-objects-are-inevitable/

What is OOP?

● This is a matter of more debate than expected
● Classically:

– A combination of data and code
– Abstraction, Encapsulation, Inheritance, Polymorphism
– “An object is a value exporting a procedural interface to data or behavior”
– Objects are “sites of higher level behaviors more appropriate for use as

dynamic components”

● Intuitively
– Objects provide interchangeable services supporting higher level goals
– You can think of OOP as like writing a library for a task
– OOP is about decoupling implementation from use

[Cook 2009]

[Kay 1993]

[Aldrich 2013]

Consider out maze prototyping example.
Have we already seen one way this can be useful?

https://blog.acolyer.org/2014/11/11/the-power-of-interoperability-why-objects-are-inevitable/

Review of classes (the same exist in Java, .NET, ...)

● Classes describe the services of objects
– Objects are instances of classes

class Student : public Person {
public:
 enum class Degree {
 UNDERGRAD, MASTERS, PHD,
 };

 Student(Degree degree);

 void studyOneHour();

 void sleep() override;

private:
 int hoursStudied;
 Degree degree;
};

Review of classes (the same exist in Java, .NET, ...)

● Classes describe the services of objects
– Objects are instances of classes
– Fields define the state an object has

class Student : public Person {
public:
 enum class Degree {
 UNDERGRAD, MASTERS, PHD,
 };

 Student(Degree degree);

 void studyOneHour();

 void sleep() override;

private:
 int hoursStudied;
 Degree degree;
};

Review of classes (the same exist in Java, .NET, ...)

● Classes describe the services of objects
– Objects are instances of classes
– Fields define the state an object has
– Methods define the behaviors

class Student : public Person {
public:
 enum class Degree {
 UNDERGRAD, MASTERS, PHD,
 };

 Student(Degree degree);

 void studyOneHour();

 void sleep() override;

private:
 int hoursStudied;
 Degree degree;
};

Review of classes (the same exist in Java, .NET, ...)

● Classes describe the services of objects
– Objects are instances of classes
– Fields define the state an object has
– Methods define the behaviors
– Visibility modifiers enable deciding what

is published to the outside

class Student : public Person {
public:
 enum class Degree {
 UNDERGRAD, MASTERS, PHD,
 };

 Student(Degree degree);

 void studyOneHour();

 void sleep() override;

private:
 int hoursStudied;
 Degree degree;
};

Review of classes (the same exist in Java, .NET, ...)

● Classes describe the services of objects
– Objects are instances of classes
– Fields define the state an object has
– Methods define the behaviors
– Visibility modifiers enable deciding what

is published to the outside

– Nested constructs enable the use of
scoped enums, classes, aliases, ...

class Student : public Person {
public:
 enum class Degree {
 UNDERGRAD, MASTERS, PHD,
 };

 Student(Degree degree);

 void studyOneHour();

 void sleep() override;

private:
 int hoursStudied;
 Degree degree;
};

Review of classes (the same exist in Java, .NET, ...)

● Classes describe the services of objects
– Objects are instances of classes
– Fields define the state an object has
– Methods define the behaviors
– Visibility modifiers enable deciding what

is published to the outside

– Nested constructs enable the use of
scoped enums, classes, aliases, ...

– Virtual methods & inheritance enable
derived classes with the attributes of
base classes

class Student : public Person {
public:
 enum class Degree {
 UNDERGRAD, MASTERS, PHD,
 };

 Student(Degree degree);

 void studyOneHour();

 void sleep() override;

private:
 int hoursStudied;
 Degree degree;
};

Review of classes (the same exist in Java, .NET, ...)

● Classes describe the services of objects
– Objects are instances of classes
– Fields define the state an object has
– Methods define the behaviors
– Visibility modifiers enable deciding what

is published to the outside

– Nested constructs enable the use of
scoped enums, classes, aliases, ...

– Virtual methods & inheritance enable
derived classes with the attributes of
base classes

class Student : public Person {
public:
 enum class Degree {
 UNDERGRAD, MASTERS, PHD,
 };

 Student(Degree degree);

 void studyOneHour();

 void sleep() override;

private:
 int hoursStudied;
 Degree degree;
};

class Person {
public:
 Person();
 virtual ~Person() = default;

 virtual void sleep() = 0;
};

Review of classes (the same exist in Java, .NET, ...)

● Classes describe the services of objects
– Objects are instances of classes
– Fields define the state an object has
– Methods define the behaviors
– Visibility modifiers enable deciding what

is published to the outside

– Nested constructs enable the use of
scoped enums, classes, aliases, ...

– Virtual methods & inheritance enable
derived classes with the attributes of
base classes

class Student : public Person {
public:
 enum class Degree {
 UNDERGRAD, MASTERS, PHD,
 };

 Student(Degree degree);

 void studyOneHour();

 void sleep() override;

private:
 int hoursStudied;
 Degree degree;
};

class Person {
public:
 Person();
 virtual ~Person() = default;

 virtual void sleep() = 0;
};

void processPerson(Person& p);
...
Student s{Student::Degree::PHD};
processPerson(s);

General guidelines for classes

● Several guidelines & rules of thumb exist

General guidelines for classes

● Several guidelines & rules of thumb exist
– Key: Every guideline has a reason.

Every guideline has exceptions.
Understand the reason to perform cost-benefit analysis.

General guidelines for classes

● Several guidelines & rules of thumb exist
– Key: Every guideline has a reason.

Every guideline has exceptions.
Understand the reason to perform cost-benefit analysis.

● Most common examples:
– SOLID

General guidelines for classes

● Several guidelines & rules of thumb exist
– Key: Every guideline has a reason.

Every guideline has exceptions.
Understand the reason to perform cost-benefit analysis.

● Most common examples:
– SOLID

● Single Responsibility
● Open/Closed (more later)
● Liskov Substitutability
● Interface Segregation
● Dependency inversion

General guidelines for classes

● Several guidelines & rules of thumb exist
– Key: Every guideline has a reason.

Every guideline has exceptions.
Understand the reason to perform cost-benefit analysis.

● Most common examples:
– SOLID

● Single Responsibility
● Open/Closed (more later)
● Liskov Substitutability
● Interface Segregation
● Dependency inversion

– DRY (Don’t Repeat Yourself)

General guidelines for classes

● Several guidelines & rules of thumb exist
– Key: Every guideline has a reason.

Every guideline has exceptions.
Understand the reason to perform cost-benefit analysis.

● Most common examples:
– SOLID

● Single Responsibility
● Open/Closed (more later)
● Liskov Substitutability
● Interface Segregation
● Dependency inversion

– DRY (Don’t Repeat Yourself)
– These in particular are abused via dogma and misapplication

General guidelines for classes

● Several guidelines & rules of thumb exist
– Key: Every guideline has a reason.

Every guideline has exceptions.
Understand the reason to perform cost-benefit analysis

● Most common examples:
– SOLID

● Single Responsibility
● Open/Closed (more later)
● Liskov Substitutability
● Interface Segregation
● Dependency inversion

– DRY (Don’t Repeat Yourself)
– These in particular are abused via dogma and misapplication

All of these relate to Ousterhout’s complexity criteria,
but blind application can be worse.

General guidelines for classes (common)

● Be careful about compiler provided methods

class Thing {
 // Thing()
 // Thing(const Thing&);
 // Thing(Thing&&);
 // [virtual] ~Thing();
 // Thing& operator=(const Thing&);
 // Thing& operator=(Thing&&);
};

class Thing {
 // Thing()
}

General guidelines for classes (common)

● Be careful about compiler provided methods
● Minimize mutability

class RGBColor {
public:
 RGBColor(const Intensity r,
 const Intensity g,
 const Intensity b);

 Hue convertToHue() const;

private:
 const Intensity red;
 const Intensity green;
 const Intensity blue;
};

General guidelines for classes (common)

● Be careful about compiler provided methods
● Minimize mutability

class RGBColor {
public:
 RGBColor(const Intensity r,
 const Intensity g,
 const Intensity b);

 Hue convertToHue() const;

private:
 const Intensity red;
 const Intensity green;
 const Intensity blue;
};

General guidelines for classes (common)

● Be careful about compiler provided methods
● Minimize mutability

class RGBColor {
public:
 RGBColor(const Intensity r,
 const Intensity g,
 const Intensity b);

 Hue convertToHue() const;

private:
 const Intensity red;
 const Intensity green;
 const Intensity blue;
};

const RGBColor color = ...;

vs.

General guidelines for classes (common)

● Be careful about compiler provided methods
● Minimize mutability

class RGBColor {
public:
 RGBColor(const Intensity r,
 const Intensity g,
 const Intensity b);

 Hue convertToHue() const;

private:
 const Intensity red;
 const Intensity green;
 const Intensity blue;
};

General guidelines for classes (common)

● Be careful about compiler provided methods
● Minimize mutability
● Minimize visibility

template<typename T>
class Set {
public:
 Set();

 void insert(const T& toAdd);

 bool contains(const T& toFind) const;

private:
 std::vector<T> elements;
};

General guidelines for classes (common)

● Be careful about compiler provided methods
● Minimize mutability
● Minimize visibility

template<typename T>
class Set {
public:
 Set();

 void insert(const T& toAdd);

 bool contains(const T& toFind) const;

private:
 std::vector<T> elements;
};

General guidelines for classes (common)

● Be careful about compiler provided methods
● Minimize mutability
● Minimize visibility

template<typename T>
class Set {
public:
 Set();

 void insert(const T& toAdd);

 bool contains(const T& toFind) const;

private:
 std::vector<T> elements;
};

General guidelines for classes (common)

● Be careful about compiler provided methods
● Minimize mutability
● Minimize visibility

template<typename T>
class Set {
public:
 Set();

 void insert(const T& toAdd);

 bool contains(const T& toFind) const;

private:
 std::vector<T> elements;
};

struct Point {
 int x;
 int y;
};

General guidelines for classes (common)

● Be careful about compiler provided methods
● Minimize mutability
● Minimize visibility
● Refer to objects by interfaces when applicable

General guidelines for classes (common)

● Be careful about compiler provided methods
● Minimize mutability
● Minimize visibility
● Refer to objects by interfaces when applicable

TreeTraversal

DepthFirstTraversal BreadthFirstTraversal

General guidelines for classes (common)

● Be careful about compiler provided methods
● Minimize mutability
● Minimize visibility
● Refer to objects by interfaces when applicable

TreeTraversal

DepthFirstTraversal BreadthFirstTraversal

void
printTree(const Tree& tree,
 const TreeTraversal& t) {
 t.traverse(tree, printNode);
}

General guidelines for classes (common)

● Be careful about compiler provided methods
● Minimize mutability
● Minimize visibility
● Refer to objects by interfaces when applicable
● Don’t give away your internals

General guidelines for classes (common)

● Be careful about compiler provided methods
● Minimize mutability
● Minimize visibility
● Refer to objects by interfaces when applicable
● Don’t give away your internals

class IntBuffer {
public:
 ...
 std::vector& getContents();
 ...
private:
 std::vector<int> integers;
};

General guidelines for classes

● Prefer dependency injection to hardwiring resources [Block 2001,2018]
– Objects that allocate their own state are hard to:

prove correct, extend, configure, test, ...

General guidelines for classes

● Prefer dependency injection to hardwiring resources [Block 2001,2018]
– Objects that allocate their own state are hard to:

prove correct, extend, configure, test, ...

class CrosswordGenerator {
 CrosswordGenerator()
 : clues{std::make_unique<Clues>}
 { }

private:
 std::unique_ptr<Clues> clues;
};

General guidelines for classes

● Prefer dependency injection to hardwiring resources [Block 2001,2018]
– Objects that allocate their own state are hard to:

prove correct, extend, configure, test, ...

class CrosswordGenerator {
 CrosswordGenerator()
 : clues{std::make_unique<Clues>}
 { }

private:
 std::unique_ptr<Clues> clues;
};

class CrosswordGenerator {
 CrosswordGenerator(... clues)
 : clues{std::move(clues)}
 { }

private:
 std::unique_ptr<Clues> clues;
};

General guidelines for classes

● Prefer dependency injection to hardwiring resources [Block 2001,2018]
– Objects that allocate their own state are hard to:

prove correct, extend, configure, test, ...

class CrosswordGenerator {
 CrosswordGenerator()
 : clues{std::make_unique<Clues>}
 { }

private:
 std::unique_ptr<Clues> clues;
};

class CrosswordGenerator {
 CrosswordGenerator(... clues)
 : clues{std::move(clues)}
 { }

private:
 std::unique_ptr<Clues> clues;
};

auto englishClues = ...
CrosswordGenerator cg{englishClues};

auto frenchClues = ...
CrosswordGenerator cg{frenchClues};

General guidelines for classes

● Prefer dependency injection to hardwiring resources [Block 2001,2018]
– Objects that allocate their own state are hard to:

prove correct, extend, configure, test, ...

class CrosswordGenerator {
 CrosswordGenerator()
 : clues{std::make_unique<Clues>}
 { }

private:
 std::unique_ptr<Clues> clues;
};

class CrosswordGenerator {
 CrosswordGenerator(... clues)
 : clues{std::move(clues)}
 { }

private:
 std::unique_ptr<Clues> clues;
};

auto englishClues = ...
CrosswordGenerator cg{englishClues};

auto frenchClues = ...
CrosswordGenerator cg{frenchClues};

Separating the creation of objects
from the wiring of objects

creates a more flexible system

General guidelines for classes

● Some are specific to “native code”:
Use the PIMPL idiom judiciously [Sutter & Alexandrescu 2005]
– Prevents unnecessary recompilation
– Allows the layout to change without breaking ABI in long lived projects

General guidelines for classes

● Some are specific to “native code”:
Use the PIMPL idiom judiciously [Sutter & Alexandrescu 2005]
– Prevents unnecessary recompilation
– Allows the layout to change without breaking ABI in long lived projects

class Thing {
public:
 Thing();

 void doStuff() const;

private:
 class ThingImpl;
 std::unique_ptr<ThingImpl> impl;
};

Thing.h

General guidelines for classes

● Some are specific to “native code”:
Use the PIMPL idiom judiciously [Sutter & Alexandrescu 2005]
– Prevents unnecessary recompilation
– Allows the layout to change without breaking ABI in long lived projects

class Thing {
public:
 Thing();

 void doStuff() const;

private:
 class ThingImpl;
 std::unique_ptr<ThingImpl> impl;
};

Thing.h

Thing::Thing()
 : impl{std::make_unique<ThingImpl>()}
 { }

void
Thing::doStuff() const {
 impl->doStuff();
}

Thing.cpp

Thinking in terms of services

● Modern thinking notes that OOP defines services
– Inheritance & runtime polymorphism drive this

Thinking in terms of services

● Modern thinking notes that OOP defines services
– Inheritance & runtime polymorphism drive this
– Base classes define an interface

List
+ begin()
+ end()
+ push_back()
+ clear()

Thinking in terms of services

● Modern thinking notes that OOP defines services
– Inheritance & runtime polymorphism drive this
– Base classes define an interface
– Derived classes provide implementations

List
+ begin()
+ end()
+ push_back()
+ clear()

ArrayList
+ begin()
+ end()
+ push_back()
+ clear()

LinkedList
+ begin()
+ end()
+ push_back()
+ clear()

Thinking in terms of services

● Modern thinking notes that OOP defines services
– Inheritance & runtime polymorphism drive this
– Base classes define an interface
– Derived classes provide implementations
– Implementations are interchangeable even at runtime (like remote services)

List
+ begin()
+ end()
+ push_back()
+ clear()

ArrayList
+ begin()
+ end()
+ push_back()
+ clear()

LinkedList
+ begin()
+ end()
+ push_back()
+ clear()

Thinking in terms of services

● Modern thinking notes that OOP defines services
– Inheritance & runtime polymorphism drive this
– Base classes define an interface
– Derived classes provide implementations
– Implementations are interchangeable even at runtime (like remote services)

List
+ begin()
+ end()
+ push_back()
+ clear()

ArrayList
+ begin()
+ end()
+ push_back()
+ clear()

LinkedList
+ begin()
+ end()
+ push_back()
+ clear()

void
transferStudents(List<Student>& from, List<Student>& to) {
 ranges::copy(from, std::back_inserter(to));
 from.clear();
}

Thinking in terms of services

● Modern thinking notes that OOP defines services
– Inheritance & runtime polymorphism drive this
– Base classes define an interface
– Derived classes provide implementations
– Implementations are interchangeable even at runtime (like remote services)

● This also enables heterogeneous aggregates
void
letThePeopleSleep(List<Person*>& people) {
 for (Person* person : people) {
 person->sleep();
 }
}

Student

Student

Faculty

Staff

So let’s try it out...

Note: We will go from absurd to practical

So let’s try it out...

● Suppose we want to model a person who owns a car...

So let’s try it out...

● Suppose we want to model a person who owns a car...

Person Car

CarOwner

is-ais-a

So let’s try it out...

● Suppose we want to model a person who owns a car...

Person Car

CarOwner

is-ais-a

class CarOwner : public Person, Car
 { };

So let’s try it out...

● Suppose we want to model a person who owns a car...

Person Car

CarOwner

is-ais-a

Is this good or bad?
Why?

class CarOwner : public Person, Car
 { };

So let’s try it out...

● Suppose we want to model a person who owns a car...

Person Car

CarOwner

is-ais-a

Is this good or bad?
Why?

class CarOwner : public Person, Car
 { };

How could you make it better?

So let’s try it out...

● Suppose we want to model a person who owns a car...

Person Car

CarOwner

is-ais-a

Person

CarCarOwner
has-a

is-a

So let’s try it out...

● Suppose we want to model a person who owns a car...

Person Car

CarOwner

is-ais-a

Even simpler?

Person

CarCarOwner
has-a

is-a

So let’s try it out...

● Suppose we want to model a person who owns a car...

Person Car

CarOwner

is-ais-a

Person

CarCarOwner
has-a

is-a

CarPerson
has-a

So let’s try it out...

● Suppose we want to model a person who owns a car...

Person Car

CarOwner

is-ais-a

Person

CarCarOwner
has-a

is-a

CarPerson
has-a

That a car is amongst a Person’s possessions
does not make them a special Person

So let’s try it out...

● Suppose we want to model a person who owns a car...

Person Car

CarOwner

is-ais-a

Person

CarCarOwner
has-a

is-a

CarPerson
has-aThis absurd example captures

common, subtle mistakes

That a car is amongst a Person’s possessions
does not make them a special Person

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

Frogs can be male or female

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

Frog

MaleFrog FemaleFrog

Frogs can be male or female

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

Frog

MaleFrog FemaleFrog

Frog
-sex:{male,female}

Frogs can be male or female

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

● Every is-a relationship could instead be has-a!

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

Professor

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

Researcher
is-a

Professor

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

Researcher
is-a

Teacher
is-a
Professor

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

Researcher
is-a

Teacher Napper
is-a is-a
Professor

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

Researcher
Professor

has-a

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

Researcher
Professor

has-a
Teacherhas-a

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

Researcher
Professor

has-a
Teacherhas-a
Napperhas-a

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

Researcher
Professor

has-a
Teacherhas-a
Napper

has-a
Note, these are now roles,
not people.

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

● Whenever is-a applies, you must still make a decision

Researcher
Professor

has-a
Teacherhas-a
Napper

has-a
Note, these are now roles,
not people.

Choosing is-a or has-a

● Guide 1: Might the behavior need to change?
– Coarse inheritance often precludes it

Choosing is-a or has-a

● Guide 1: Might the behavior need to change?
– Coarse inheritance often precludes it
– Composition often simplifies it

Choosing is-a or has-a

● Guide 1: Might the behavior need to change?
– Coarse inheritance often precludes it
– Composition often simplifies it
– Use coarse grained composition if the relationship is dynamic

Choosing is-a or has-a

● Guide 1: Might the behavior need to change?
– Coarse inheritance often precludes it
– Composition often simplifies it
– Use coarse grained composition if the relationship is dynamic

Frog

MaleFrog FemaleFrog

Frog
-sex:{male,female}

Choosing is-a or has-a

● Guide 1: Might the behavior need to change?
– Coarse inheritance often precludes it
– Composition often simplifies it
– Use coarse grained composition if the relationship is dynamic

Frogs and other animals
can spontaneously change sex!

Frog

MaleFrog FemaleFrog

Frog
-sex:{male,female}

Choosing is-a or has-a

● Guide 1: Might the behavior need to change?
– Coarse inheritance often precludes it
– Composition often simplifies it
– Use coarse grained composition if the relationship is dynamic

Frogs and other animals
can spontaneously change sex!

Frog

MaleFrog FemaleFrog

Frog
-sex:{male,female}

Knowing in advance is hard.
Composition is flexible & adapts to requirements.

Choosing is-a or has-a

● Guide 1: Might the behavior need to change?
– Coarse inheritance often precludes it
– Composition often simplifies it
– Use coarse grained composition if the relationship is dynamic

● Guide 2: Might the type be used polymorphically?
– Composition does not intrinsically aid it

Choosing is-a or has-a

● Guide 1: Might the behavior need to change?
– Coarse inheritance often precludes it
– Composition often simplifies it
– Use coarse grained composition if the relationship is dynamic

● Guide 2: Might the type be used polymorphically?
– Composition does not intrinsically aid it
– Inheritance enables it

Choosing is-a or has-a

● Guide 1: Might the behavior need to change?
– Coarse inheritance often precludes it
– Composition often simplifies it
– Use coarse grained composition if the relationship is dynamic

● Guide 2: Might the type be used polymorphically?
– Composition does not intrinsically aid it
– Inheritance enables it
– Consider inheritance when a reference to a general type may point to a

more specific one.

Choosing is-a or has-a

● Guide 1: Might the behavior need to change?
– Coarse inheritance often precludes it
– Composition often simplifies it
– Use coarse grained composition if the relationship is dynamic

● Guide 2: Might the type be used polymorphically?
– Composition does not intrinsically aid it
– Inheritance enables it
– Consider inheritance when a reference to a general type may point to a

more specific one.

0) Student
1) Student
2) Lecturer
3) Professor
4) Student

std::vector<People*> folks;

Choosing is-a or has-a

● Guide 1: Might the behavior need to change?
– Coarse inheritance often precludes it
– Composition often simplifies it
– Use coarse grained composition if the relationship is dynamic

● Guide 2: Might the type be used polymorphically?
– Composition does not intrinsically aid it
– Inheritance enables it
– Consider inheritance when a reference to a general type may point to a

more specific one.

0) Student
1) Student
2) Lecturer
3) Professor
4) Student

std::vector<People*> folks;

We will revisit this in the context of
algebraic data types.

So let’s try it out...

● I need
– Many different types of animals. This should sound

familiar...

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

What does my design look like
based on the rules?

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Animal

ProfessorCat CorgiParrot

Maine Coon Bengal

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Animal

ProfessorCat CorgiParrot

Maine Coon Bengal

Is this good?

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Animal

ProfessorCat CorgiParrot

Maine Coon Bengal

Is this good?

Does Cat serve a purpose?

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Animal

ProfessorCat CorgiParrot

Maine Coon Bengal

Is this good?

Does it achieve reuse?

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Animal

ProfessorCat CorgiParrot

Maine Coon Bengal

Is this good?

Does it achieve reuse?

What if I want a new
Animal at run time?

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better?

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

If someone on my team did this multiple
times,

I would fire them.

Can we do better?

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movementhas-a

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movementhas-a

Movement selects from the
ways any Animal can move.

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movement

Vocalization

has-a

has-a

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movement

Vocalization

has-a

has-a
Crawl

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movement

Vocalization

has-a

has-a
Crawl Fly

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movement

Vocalization

has-a

has-a
Crawl Fly Saunter

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movement

Vocalization

has-a

has-a

Tweet

Crawl Fly Saunter

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movement

Vocalization

has-a

has-a

MeowTweet

Crawl Fly Saunter

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movement

Vocalization

has-a

has-a

MeowTweet Ramble

Crawl Fly Saunter

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movement

Vocalization

has-a

has-a

MeowTweet Ramble Bark

Crawl Fly Saunter

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movement

Vocalization

has-a

has-a

MeowTweet Ramble Bark

Crawl Fly Saunter

class Animal {
 Movement& m;
 void move() {
 m.move();
 }
};

So let’s try it out...

● So let’s try it out...(!)

Shallow, fine grained inheritance

● Avoids reimplementation of common behavior
– e.g. Common aspects of Animal are just fields of Animal

Shallow, fine grained inheritance

● Avoids reimplementation of common behavior
– e.g. Common aspects of Animal are just fields of Animal

● Inheritance contracts for fine grained policies

Shallow, fine grained inheritance

● Avoids reimplementation of common behavior
– e.g. Common aspects of Animal are just fields of Animal

● Inheritance contracts for fine grained policies
● Enables dynamic selection & configuration of which policies are

desired
– e.g. A Cat may start out Stationary, then Run, then be Stationary

Shallow, fine grained inheritance

● Avoids reimplementation of common behavior
– e.g. Common aspects of Animal are just fields of Animal

● Inheritance contracts for fine grained policies
● Enables dynamic selection & configuration of which policies are

desired
– e.g. A Cat may start out Stationary, then Run, then be Stationary

Previously static requirements will often become dynamic.

Shallow, fine grained inheritance

● Avoids reimplementation of common behavior
– e.g. Common aspects of Animal are just fields of Animal

● Inheritance contracts for fine grained policies
● Enables dynamic selection & configuration of which policies are

desired
– e.g. A Cat may start out Stationary, then Run, then be Stationary

● Directly identifies & addresses risks of change in class design

Shallow, fine grained inheritance

● Avoids reimplementation of common behavior
– e.g. Common aspects of Animal are just fields of Animal

● Inheritance contracts for fine grained policies
● Enables dynamic selection & configuration of which policies are

desired
– e.g. A Cat may start out Stationary, then Run, then be Stationary

● Directly identifies & addresses risks of change in class design
● We will see shortly how this interacts with other forms of

polymorphism

Guidelines for inheritance

● Favor composition over inheritance
● Do not inherit to reuse. Inherit to be reused.

For some reason,
textbooks & teachers
often get these wrong

Guidelines for inheritance

● Favor composition over inheritance
● Do not inherit to reuse. Inherit to be reused.

Guidelines for inheritance

● Favor composition over inheritance
● Do not inherit to reuse. Inherit to be reused.

JPanel

CustomJPanel

JComponent

Guidelines for inheritance

● Favor composition over inheritance
● Do not inherit to reuse. Inherit to be reused.

JPanel

CustomJPanel

JComponent

Stack

Vector

Guidelines for inheritance

● Favor composition over inheritance
● Do not inherit to reuse. Inherit to be reused.

Rectangle

Square TextFrame
JPanel

CustomJPanel

JComponent

Stack

Vector

Guidelines for inheritance

● Favor composition over inheritance
● Do not inherit to reuse. Inherit to be reused.

Rectangle

Square TextFrame
JPanel

CustomJPanel

JComponent

Stack

Vector

Guidelines for inheritance

● Use inheritance for semantic is-a relationships

Guidelines for inheritance

● Use inheritance for semantic is-a relationships
– Liskov substitutability

Guidelines for inheritance

● Use inheritance for semantic is-a relationships
– Liskov substitutability

● If φ is true for the base, then φ is true the derived

Base
A foo(B b)

Derived
C foo(D d)

Derived is substitutable for Base

Guidelines for inheritance

● Use inheritance for semantic is-a relationships
– Liskov substitutability

● If φ is true for the base, then φ is true the derived
● Arguments in the subtype may be more general

Base
A foo(B b)

Derived
C foo(D d)

B <: D

Arguments are contravariant

Guidelines for inheritance

● Use inheritance for semantic is-a relationships
– Liskov substitutability

● If φ is true for the base, then φ is true the derived
● Arguments in the subtype may be more general
● Return values in the subtype may be more constrained

Base
A foo(B b)

Derived
C foo(D d)

C <: A

Return types are covariant

Guidelines for inheritance

● Use inheritance for semantic is-a relationships
– Liskov substitutability

● If φ is true for the base, then φ is true the derived
● Arguments in the subtype may be more general
● Return values in the subtype may be more constrained
● If φ is true for a sequence of operations on the base,

then φ is true for a sequence of operations on the derived

Guidelines for inheritance

● Use inheritance for semantic is-a relationships
– Liskov substitutability

● If φ is true for the base, then φ is true the derived
● Arguments in the subtype may be more general
● Return values in the subtype may be more constrained
● If φ is true for a sequence of operations on the base,

then φ is true for a sequence of operations on the derived
– Semantic substitutability is robust to drift

Rectangle

Square TextFrame

Guidelines for inheritance

● Use inheritance for semantic is-a relationships
– Liskov substitutability

● If φ is true for the base, then φ is true the derived
● Arguments in the subtype may be more general
● Return values in the subtype may be more constrained
● If φ is true for a sequence of operations on the base,

then φ is true for a sequence of operations on the derived
– Semantic substitutability is robust to drift

Rectangle

Square TextFrame

Guidelines for inheritance

● Inherit interfaces. Push implementation into the leaves.

Animal

Movement

Vocalization

has-a

has-a

MeowTweet Ramble Bark

Crawl Fly Saunter

class Animal {
 Movement& m;
 void move() {
 m.move();
 }
};

Guidelines for inheritance

● Inherit interfaces. Push implementation into the leaves.
– Hierarchies delocalize code, yielding a yo-yo effect
– Ambiguous overrides break encapsulation

[Bloch, “Effective Java”]

Guidelines for inheritance

● Inherit interfaces. Push implementation into the leaves.
– Hierarchies delocalize code, yielding a yo-yo effect
– Ambiguous overrides break encapsulation

[Bloch, “Effective Java”]

Alternatively: Only leaves should be instantiable.

Guidelines for inheritance

● Inherit interfaces. Push implementation into the leaves.
– Hierarchies delocalize code, yielding a yo-yo effect
– Ambiguous overrides break encapsulation

[Bloch, “Effective Java”]

class Parent {
 virtual void foo() { bar(); }
 virtual void bar() {}
};

Guidelines for inheritance

● Inherit interfaces. Push implementation into the leaves.
– Hierarchies delocalize code, yielding a yo-yo effect
– Ambiguous overrides break encapsulation

class Parent {
 virtual void foo() { bar(); }
 virtual void bar() {}
};class Child : public Parent {

public:
 virtual void bar() { foo(); }
}; [Bloch, “Effective Java”]

Guidelines for inheritance

● Inherit interfaces. Push implementation into the leaves.
– Hierarchies delocalize code, yielding a yo-yo effect
– Ambiguous overrides break encapsulation

class Parent {
 virtual void foo() { bar(); }
 virtual void bar() {}
};class Child : public Parent {

public:
 virtual void bar() { foo(); }
}; [Bloch, “Effective Java”]

class Parent {
public:
 void foo() { barImpl(); }
 void bar() { barImpl(); }
private:
 virtual void barImpl() = 0;
};

Guidelines for inheritance

● Inherit interfaces. Push implementation into the leaves.
– Hierarchies delocalize code, yielding a yo-yo effect
– Ambiguous overrides break encapsulation

class Parent {
 virtual void foo() { bar(); }
 virtual void bar() {}
};class Child : public Parent {

public:
 virtual void bar() { foo(); }
}; [Bloch, “Effective Java”]

class Parent {
public:
 void foo() { barImpl(); }
 void bar() { barImpl(); }
private:
 virtual void barImpl() = 0;
};

Non Virtual Interfaces (NVI) help
clarify & are common in C++.

Other patterns help even more...

Guidelines for inheritance

● Design for inheritance.
Choose customization points for runtime polymorphism.
Prevent inheritance elsewhere. class Student final : public Person {

public:
 enum class Degree {
 UNDERGRAD, MASTERS, PHD,
 };

 Student(Degree degree);

 void studyOneHour();

 void sleep() override;

private:
 int hoursStudied;
 Degree degree;
};

Summary

● Object oriented programming is a useful tool in your toolbox

Summary

● Object oriented programming is a useful tool in your toolbox
● It can be challenging to use well and should be deliberate

Summary

● Object oriented programming is a useful tool in your toolbox
● It can be challenging to use well and should be deliberate
● Inheritance, specifically, is powerful but often abused

Summary

● Object oriented programming is a useful tool in your toolbox
● It can be challenging to use well and should be deliberate
● Inheritance, specifically, is powerful but often abused
● Object orientation does not solve problems in modeling;

that requires more effort, as we will see.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158

