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● Superficial reasons are straightforward:
– Much of the world’s code is written in OO languages
– Employers consider OOP a core introductory skill
– Chances are you will need to understand it to get a job

● But there are detractors
– “OOP is inefficient”
– “OOP makes it hard to share data easily”

● Applied well and thoughtfully, it helps solve real problems
– Like any tool, if you apply it poorly, it won’t work well
– If you apply it universally or dogmatically, you will miss out on better tools
– You need to know how to use a tool to get value out of it

● OOP will not solve your design for you, but it can be an effective tool
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Our Goal

● I will assume you have basic, introductory, OOP experience
– Most schools teach this in year 1 (ours does a little & is aiming to get better)
– Most employers will expect you to have seen it from year 1
– You will be competing on the job market with students doing it from year 1

● But many schools teach it very badly
– OOP textbooks were notoriously bad in the early 2000s
– Many were written by people who did not know what they were doing
– Many faculty did not learn it well themselves
– This is one of the reasons people complain about OOP

● Our goal with OOP is to make you better than that
– Regardless of the language you work in, I recommend:

Effective Java, C++ Coding Standards, Practical Object-Oriented Design in Ruby

Treat these as guides rather than laws.
Dogma has no value. Understand the cost/benefit.

https://www.goodreads.com/book/show/34927404-effective-java
https://www.goodreads.com/book/show/1105780.C_Coding_Standards
https://www.goodreads.com/book/show/13507787-practical-object-oriented-design-in-ruby
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What is OOP?

● This is a matter of more debate than expected
● Classically:

– A combination of data and code
– Abstraction, Encapsulation, Inheritance, Polymorphism
– “An object is a value exporting a procedural interface to data or behavior”
– Objects are “sites of higher level behaviors more appropriate for use as 

dynamic components”

● Intuitively
– Objects provide interchangeable services supporting higher level goals
– You can think of OOP as like writing a library for a task
– OOP is about decoupling implementation from use

[Cook 2009]

[Kay 1993]

[Aldrich 2013]

Consider out maze prototyping example.
Have we already seen one way this can be useful?

https://blog.acolyer.org/2014/11/11/the-power-of-interoperability-why-objects-are-inevitable/
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● Classes describe the services of objects
– Objects are instances of classes
– Fields define the state an object has
– Methods define the behaviors
– Visibility modifiers enable deciding what 

is published to the outside

– Nested constructs enable the use of 
scoped enums, classes, aliases, ...

– Virtual methods & inheritance enable
derived classes with the attributes of 
base classes

class Student : public Person {
public:
  enum class Degree {
    UNDERGRAD, MASTERS, PHD,
  };

  Student(Degree degree);

  void studyOneHour();

  void sleep() override;

private:
  int hoursStudied;
  Degree degree;
};

class Person {
public:
  Person();
  virtual ~Person() = default;

  virtual void sleep() = 0;
};

void processPerson(Person& p);
...
Student s{Student::Degree::PHD};
processPerson(s);
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General guidelines for classes

● Several guidelines & rules of thumb exist
– Key: Every guideline has a reason.

Every guideline has exceptions.
Understand the reason to perform cost-benefit analysis

● Most common examples:
– SOLID

● Single Responsibility
● Open/Closed (more later)
● Liskov Substitutability
● Interface Segregation
● Dependency inversion

– DRY (Don’t Repeat Yourself)
– These in particular are abused via dogma and misapplication

All of these relate to Ousterhout’s complexity criteria,
but blind application can be worse.
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class Thing {
  // Thing()
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General guidelines for classes (common)

● Be careful about compiler provided methods
● Minimize mutability
● Minimize visibility

template<typename T>
class Set {
public:
  Set();

  void insert(const T& toAdd);

  bool contains(const T& toFind) const;

private:
  std::vector<T> elements;
};

struct Point {
  int x;
  int y;
};
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TreeTraversal

DepthFirstTraversal BreadthFirstTraversal

void
printTree(const Tree& tree,
          const TreeTraversal& t) {
  t.traverse(tree, printNode);
}
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General guidelines for classes (common)

● Be careful about compiler provided methods
● Minimize mutability
● Minimize visibility
● Refer to objects by interfaces when applicable
● Don’t give away your internals

class IntBuffer {
public:
  ...
  std::vector& getContents();
  ...
private:
  std::vector<int> integers;
};
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General guidelines for classes

● Prefer dependency injection to hardwiring resources [Block 2001,2018]
– Objects that allocate their own state are hard to:

prove correct, extend, configure, test, ...

class CrosswordGenerator {
  CrosswordGenerator()
    : clues{std::make_unique<Clues>}
      { }

private:
  std::unique_ptr<Clues> clues;
};

class CrosswordGenerator {
  CrosswordGenerator(... clues)
    : clues{std::move(clues)}
      { }

private:
  std::unique_ptr<Clues> clues;
};

auto englishClues = ...
CrosswordGenerator cg{englishClues};

auto frenchClues = ...
CrosswordGenerator cg{frenchClues};

Separating the creation of objects
from the wiring of objects

creates a more flexible system
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General guidelines for classes

● Some are specific to “native code”:
Use the PIMPL idiom judiciously [Sutter & Alexandrescu 2005]
– Prevents unnecessary recompilation
– Allows the layout to change without breaking ABI in long lived projects

class Thing {
public:
  Thing();
  
  void doStuff() const;

private:
  class ThingImpl;
  std::unique_ptr<ThingImpl> impl;
};

Thing.h

Thing::Thing()
  : impl{std::make_unique<ThingImpl>()}
    { }

void
Thing::doStuff() const {
  impl->doStuff();
}

Thing.cpp
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Thinking in terms of services

● Modern thinking notes that OOP defines services
– Inheritance & runtime polymorphism drive this
– Base classes define an interface
– Derived classes provide implementations
– Implementations are interchangeable even at runtime (like remote services)

List
+ begin()
+ end()
+ push_back()
+ clear()

ArrayList
+ begin()
+ end()
+ push_back()
+ clear()

LinkedList
+ begin()
+ end()
+ push_back()
+ clear()

void
transferStudents(List<Student>& from, List<Student>& to) {
  ranges::copy(from, std::back_inserter(to));
  from.clear();
}



  

Thinking in terms of services

● Modern thinking notes that OOP defines services
– Inheritance & runtime polymorphism drive this
– Base classes define an interface
– Derived classes provide implementations
– Implementations are interchangeable even at runtime (like remote services)

● This also enables heterogeneous aggregates
void
letThePeopleSleep(List<Person*>& people) {
  for (Person* person : people) {
    person->sleep();
  }
}

Student

Student

Faculty

Staff
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Person Car
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Is this good or bad?
Why?

class CarOwner : public Person, Car
  { };

How could you make it better?



  

So let’s try it out...

● Suppose we want to model a person who owns a car...

Person Car

CarOwner

is-ais-a

Person

CarCarOwner
has-a

is-a



  

So let’s try it out...

● Suppose we want to model a person who owns a car...

Person Car

CarOwner

is-ais-a

Even simpler?

Person

CarCarOwner
has-a

is-a



  

So let’s try it out...

● Suppose we want to model a person who owns a car...

Person Car

CarOwner

is-ais-a

Person

CarCarOwner
has-a

is-a

CarPerson
has-a



  

So let’s try it out...

● Suppose we want to model a person who owns a car...

Person Car

CarOwner

is-ais-a

Person

CarCarOwner
has-a

is-a

CarPerson
has-a

That a car is amongst a Person’s possessions
does not make them a special Person



  

So let’s try it out...

● Suppose we want to model a person who owns a car...

Person Car

CarOwner

is-ais-a

Person

CarCarOwner
has-a

is-a

CarPerson
has-aThis absurd example captures

common, subtle mistakes

That a car is amongst a Person’s possessions
does not make them a special Person
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So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to 
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

● Whenever is-a applies, you must still make a decision

Researcher
Professor

has-a
Teacherhas-a
Napper

has-a
Note, these are now roles,
not people.
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● Guide 1: Might the behavior need to change?
– Coarse inheritance often precludes it
– Composition often simplifies it
– Use coarse grained composition if the relationship is dynamic

Frogs and other animals
can spontaneously change sex!

Frog

MaleFrog FemaleFrog

Frog
-sex:{male,female}

Knowing in advance is hard.
Composition is flexible & adapts to requirements.
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Choosing is-a or has-a

● Guide 1: Might the behavior need to change?
– Coarse inheritance often precludes it
– Composition often simplifies it
– Use coarse grained composition if the relationship is dynamic

● Guide 2: Might the type be used polymorphically?
– Composition does not intrinsically aid it
– Inheritance enables it
– Consider inheritance when a reference to a general type may point to a 

more specific one.

0) Student
1) Student
2) Lecturer
3) Professor
4) Student

std::vector<People*> folks;

We will revisit this in the context of
algebraic data types.
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So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Animal

ProfessorCat CorgiParrot

Maine Coon Bengal

Is this good?

Does it achieve reuse?

What if I want a new
Animal at run time?
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● I need
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– An Animal& should be able to refer to any of them.

If someone on my team did this multiple 
times,

I would fire them.

Can we do better?
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● I need
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– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movementhas-a

Movement selects from the
ways any Animal can move.
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So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movement

Vocalization

has-a

has-a

MeowTweet Ramble Bark

Crawl Fly Saunter

class Animal {
  Movement& m;
  void move() {
    m.move();
  }
};
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● So let’s try it out...(!)



  

Shallow, fine grained inheritance

● Avoids reimplementation of common behavior
– e.g. Common aspects of Animal are just fields of Animal



  

Shallow, fine grained inheritance

● Avoids reimplementation of common behavior
– e.g. Common aspects of Animal are just fields of Animal

● Inheritance contracts for fine grained policies



  

Shallow, fine grained inheritance

● Avoids reimplementation of common behavior
– e.g. Common aspects of Animal are just fields of Animal

● Inheritance contracts for fine grained policies
● Enables dynamic selection & configuration of which policies are 

desired
– e.g. A Cat may start out Stationary, then Run, then be Stationary



  

Shallow, fine grained inheritance

● Avoids reimplementation of common behavior
– e.g. Common aspects of Animal are just fields of Animal

● Inheritance contracts for fine grained policies
● Enables dynamic selection & configuration of which policies are 

desired
– e.g. A Cat may start out Stationary, then Run, then be Stationary

Previously static requirements will often become dynamic.



  

Shallow, fine grained inheritance

● Avoids reimplementation of common behavior
– e.g. Common aspects of Animal are just fields of Animal

● Inheritance contracts for fine grained policies
● Enables dynamic selection & configuration of which policies are 

desired
– e.g. A Cat may start out Stationary, then Run, then be Stationary

● Directly identifies & addresses risks of change in class design



  

Shallow, fine grained inheritance

● Avoids reimplementation of common behavior
– e.g. Common aspects of Animal are just fields of Animal

● Inheritance contracts for fine grained policies
● Enables dynamic selection & configuration of which policies are 

desired
– e.g. A Cat may start out Stationary, then Run, then be Stationary

● Directly identifies & addresses risks of change in class design
● We will see shortly how this interacts with other forms of 

polymorphism
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For some reason,
textbooks & teachers
often get these wrong
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Base
A foo(B b)

Derived
C foo(D d)

C <: A

Return types are covariant
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Guidelines for inheritance

● Inherit interfaces. Push implementation into the leaves.

Animal

Movement

Vocalization

has-a

has-a

MeowTweet Ramble Bark

Crawl Fly Saunter

class Animal {
  Movement& m;
  void move() {
    m.move();
  }
};
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Alternatively: Only leaves should be instantiable.



  

Guidelines for inheritance

● Inherit interfaces. Push implementation into the leaves.
– Hierarchies delocalize code, yielding a yo-yo effect
– Ambiguous overrides break encapsulation

[Bloch, “Effective Java”]

class Parent {
  virtual void foo() { bar(); }
  virtual void bar() {}
};



  

Guidelines for inheritance

● Inherit interfaces. Push implementation into the leaves.
– Hierarchies delocalize code, yielding a yo-yo effect
– Ambiguous overrides break encapsulation

class Parent {
  virtual void foo() { bar(); }
  virtual void bar() {}
};class Child : public Parent {

public:
  virtual void bar() { foo(); }
}; [Bloch, “Effective Java”]



  

Guidelines for inheritance

● Inherit interfaces. Push implementation into the leaves.
– Hierarchies delocalize code, yielding a yo-yo effect
– Ambiguous overrides break encapsulation

class Parent {
  virtual void foo() { bar(); }
  virtual void bar() {}
};class Child : public Parent {

public:
  virtual void bar() { foo(); }
}; [Bloch, “Effective Java”]

class Parent {
public:
  void foo() { barImpl(); }
  void bar() { barImpl(); }
private:
  virtual void barImpl() = 0;
};



  

Guidelines for inheritance

● Inherit interfaces. Push implementation into the leaves.
– Hierarchies delocalize code, yielding a yo-yo effect
– Ambiguous overrides break encapsulation

class Parent {
  virtual void foo() { bar(); }
  virtual void bar() {}
};class Child : public Parent {

public:
  virtual void bar() { foo(); }
}; [Bloch, “Effective Java”]

class Parent {
public:
  void foo() { barImpl(); }
  void bar() { barImpl(); }
private:
  virtual void barImpl() = 0;
};

Non Virtual Interfaces (NVI) help
clarify & are common in C++.

Other patterns help even more...



  

Guidelines for inheritance

● Design for inheritance.
Choose customization points for runtime polymorphism.
Prevent inheritance elsewhere. class Student final : public Person {

public:
  enum class Degree {
    UNDERGRAD, MASTERS, PHD,
  };

  Student(Degree degree);

  void studyOneHour();

  void sleep() override;

private:
  int hoursStudied;
  Degree degree;
};
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Summary

● Object oriented programming is a useful tool in your toolbox
● It can be challenging to use well and should be deliberate
● Inheritance, specifically, is powerful but often abused
● Object orientation does not solve problems in modeling;

that requires more effort, as we will see.
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