
Using Inheritance
(and Not Abusing It)

CMPT 373
Software Development Methods

Nick Sumner
wsumner@sfu.ca

with some material from Bertrand Meyer

mailto:wsumner@sfu.ca

What is inheritance?

● You should already be comfortable with inheritance

What is inheritance?

● You should already be comfortable with inheritance

● Review of inheritance:

What is inheritance?

● You should already be comfortable with inheritance

● Review of inheritance:
– Create a new type based on an existing type

List

ArrayList

What is inheritance?

● You should already be comfortable with inheritance

● Review of inheritance:
– Create a new type based on an existing type

– Shares properties and behaviors with the new type

List
+ add()

ArrayList
+ add()

What is inheritance?

● You should already be comfortable with inheritance

● Review of inheritance:
– Create a new type based on an existing type

– Shares properties and behaviors with the new type

– Can establish a subtyping relationship

List
+ add()

ArrayList
+ add()

is-a

What is inheritance?

● You should already be comfortable with inheritance

● Review of inheritance:
– Create a new type based on an existing type

– Shares properties and behaviors with the new type

– Can establish a subtyping relationship

List
+ add()

ArrayList
+ add()

is-a

Note: This conflates inheritance & subtyping,
but it is probably what you know (from Java/C++).

What does good inheritance look like? (Review)

● Initial guidelines:

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance

– Liskov Substitution Principle
● If φ is true for the base, then φ is true the derived

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance

– Liskov Substitution Principle
● If φ is true for the base, then φ is true the derived

Base
A foo(B b)

Derived
C foo(D d)

Derived is substitutable for Base

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance

– Liskov Substitution Principle
● If φ is true for the base, then φ is true the derived

● Arguments in the subtype may be more general

Base
A foo(B b)

Derived
C foo(D d)

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance

– Liskov Substitution Principle
● If φ is true for the base, then φ is true the derived

● Arguments in the subtype may be more general

Base
A foo(B b)

Derived
C foo(D d)

B <: D

Arguments are contravariant

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance

– Liskov Substitution Principle
● If φ is true for the base, then φ is true the derived

● Arguments in the subtype may be more general
● Return values in the subtype may be more constrained

Base
A foo(B b)

Derived
C foo(D d)

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance

– Liskov Substitution Principle
● If φ is true for the base, then φ is true the derived

● Arguments in the subtype may be more general
● Return values in the subtype may be more constrained

Base
A foo(B b)

Derived
C foo(D d)

C <: A

Return types are covariant

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance

– Liskov Substitution Principle
● If φ is true for the base, then φ is true the derived

● Arguments in the subtype may be more general
● Return values in the subtype may be more constrained

● Preconditions are not stronger

Base
A foo(B b)

Derived
C foo(D d)

assert(x > 0) assert(x != 0)

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance

– Liskov Substitution Principle
● If φ is true for the base, then φ is true the derived

● Arguments in the subtype may be more general
● Return values in the subtype may be more constrained

● Preconditions are not stronger
● Postconditions are not weaker

Base
A foo(B b)

Derived
C foo(D d)

assert(result != 0) assert(result > 0)

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance

– Liskov Substitution Principle
● If φ is true for the base, then φ is true the derived

● Arguments in the subtype may be more general
● Return values in the subtype may be more constrained

● Preconditions are not stronger
● Postconditions are not weaker
● Invariants must still hold

Base
A foo(B b)

Derived
C foo(D d)

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance

– Liskov Substitution Principle
● If φ is true for the base, then φ is true the derived

● Arguments in the subtype may be more general
● Return values in the subtype may be more constrained

● Preconditions are not stronger
● Postconditions are not weaker
● Invariants must still hold

Base
A foo(B b)

Derived
C foo(D d)

How does the Liskov Substitution Principle
relate to coupling from using inheritance?

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance

– Liskov Substitution Principle

– Be wary of implementation inheritance

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance

– Liskov Substitution Principle

– Be wary of implementation inheritance
● Hierarchies delocalize code, yielding a yo-yo effect

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance

– Liskov Substitution Principle

– Be wary of implementation inheritance
● Hierarchies delocalize code, yielding a yo-yo effect
● Ambiguous overrides break encapsulation

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance

– Liskov Substitution Principle

– Be wary of implementation inheritance
● Hierarchies delocalize code, yielding a yo-yo effect
● Ambiguous overrides break encapsulation

[Bloch, “Effective Java”]

class Parent {
 virtual void foo() { bar(); }
 virtual void bar() {}
};

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance

– Liskov Substitution Principle

– Be wary of implementation inheritance
● Hierarchies delocalize code, yielding a yo-yo effect
● Ambiguous overrides break encapsulation

class Parent {
 virtual void foo() { bar(); }
 virtual void bar() {}
};class Child : public Parent {

public:
 virtual void bar() { foo(); }
}; [Bloch, “Effective Java”]

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance

– Liskov Substitution Principle

– Be wary of implementation inheritance
● Hierarchies delocalize code, yielding a yo-yo effect
● Ambiguous overrides break encapsulation

class Parent {
 virtual void foo() { bar(); }
 virtual void bar() {}
};class Child : public Parent {

public:
 virtual void bar() { foo(); }
}; [Bloch, “Effective Java”]

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance

– Liskov Substitution Principle

– Be wary of implementation inheritance
● Hierarchies delocalize code, yielding a yo-yo effect
● Ambiguous overrides break encapsulation

class Parent { public:
 virtual void foo() { bar(); }
 virtual void bar() {}
};

class Parent {
public:
 void foo() { barImpl(); }
 void bar() { barImpl(); }
private:
 virtual void barImpl() = 0;
};

class Child : public Parent {
public:
 virtual void bar() { foo(); }
}; [Bloch, “Effective Java”]

Non Virtual Interfaces (NVI) help
clarify & are common in C++.

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance

– Liskov Substitution Principle

– Be wary of implementation inheritance
● Hierarchies delocalize code, yielding a yo-yo effect
● Ambiguous overrides break encapsulation

class Parent { public:
 virtual void foo() { bar(); }
 virtual void bar() {}
};

class Parent {
public:
 void foo() { barImpl(); }
 void bar() { barImpl(); }
private:
 virtual void barImpl() = 0;
};

class Child : public Parent {
public:
 virtual void bar() { foo(); }
}; [Bloch, “Effective Java”]

Non Virtual Interfaces (NVI) help
clarify & are common in C++.

Other patterns help even more...

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance

– Liskov Substitution Principle

– Be wary of implementation inheritance

Here endeth the review

So let’s try it out...

Note: We will go from absurd to practical

So let’s try it out...

● Suppose we want to model a person who owns a car...

So let’s try it out...

● Suppose we want to model a person who owns a car...

Person Car

CarOwner

is-ais-a

So let’s try it out...

● Suppose we want to model a person who owns a car...

Person Car

CarOwner

is-ais-a

class CarOwner : public Person, Car
 { };

So let’s try it out...

● Suppose we want to model a person who owns a car...

Person Car

CarOwner

is-ais-a

Is this good or bad?
Why?

class CarOwner : public Person, Car
 { };

So let’s try it out...

● Suppose we want to model a person who owns a car...

Person Car

CarOwner

is-ais-a

Is this good or bad?
Why?

class CarOwner : public Person, Car
 { };

How could you make it better?

So let’s try it out...

● Suppose we want to model a person who owns a car...

Person Car

CarOwner

is-ais-a

Person

CarCarOwner
has-a

is-a

So let’s try it out...

● Suppose we want to model a person who owns a car...

Person Car

CarOwner

is-ais-a

Even simpler?

Person

CarCarOwner
has-a

is-a

So let’s try it out...

● Suppose we want to model a person who owns a car...

Person Car

CarOwner

is-ais-a

Person

CarCarOwner
has-a

is-a

CarPerson
has-a

So let’s try it out...

● Suppose we want to model a person who owns a car...

Person Car

CarOwner

is-ais-a

Person

CarCarOwner
has-a

is-a

CarPerson
has-a

That a car is amongst a Person’s possessions
does not make them a special Person

So let’s try it out...

● Suppose we want to model a person who owns a car...

Person Car

CarOwner

is-ais-a

Person

CarCarOwner
has-a

is-a

CarPerson
has-aThis absurd example captures

common, subtle mistakes

That a car is amongst a Person’s possessions
does not make them a special Person

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

Frogs can be male or female

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

Frog

MaleFrog FemaleFrog

Frogs can be male or female

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

Frog

MaleFrog FemaleFrog

Frog
-sex:{male,female}

Frogs can be male or female

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

● Every is-a relationship could instead be has-a!

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

Professor

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

Researcher
is-a

Professor

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

Researcher
is-a

Teacher
is-a

Professor

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

Researcher
is-a

Teacher Napper
is-a is-a

Professor

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

Researcher

Professor

has-a

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

Researcher

Professor

has-a

Teacherhas-a

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

Researcher

Professor

has-a

Teacherhas-a

Napper
has-a

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

Researcher

Professor

has-a

Teacherhas-a

Napper
has-a

Note, these are now roles,
not people.

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

● Whenever is-a applies, you must still make a decision

Researcher

Professor

has-a

Teacherhas-a

Napper
has-a

Note, these are now roles,
not people.

Choosing is-a or has-a

● Guide 1: Might the behavior need to change?
– Inheritance often precludes it

Choosing is-a or has-a

● Guide 1: Might the behavior need to change?
– Inheritance often precludes it
– Composition often simplifies it

Choosing is-a or has-a

● Guide 1: Might the behavior need to change?
– Inheritance often precludes it
– Composition often simplifies it
– Use composition if the relationship is dynamic

Choosing is-a or has-a

● Guide 1: Might the behavior need to change?
– Inheritance often precludes it
– Composition often simplifies it
– Use composition if the relationship is dynamic

Frog

MaleFrog FemaleFrog

Frog
-sex:{male,female}

Choosing is-a or has-a

● Guide 1: Might the behavior need to change?
– Inheritance often precludes it
– Composition often simplifies it
– Use composition if the relationship is dynamic

Frogs and other animals
can spontaneously change sex!

Frog

MaleFrog FemaleFrog

Frog
-sex:{male,female}

Choosing is-a or has-a

● Guide 1: Might the behavior need to change?
– Inheritance often precludes it
– Composition often simplifies it
– Use composition if the relationship is dynamic

Frogs and other animals
can spontaneously change sex!

Frog

MaleFrog FemaleFrog

Frog
-sex:{male,female}

Knowing in advance is hard.
Composition is flexible & adapts to requirements.

Choosing is-a or has-a

● Guide 1: Might the behavior need to change?
– Inheritance often precludes it
– Composition often simplifies it
– Use composition if the relationship is dynamic

● Guide 2: Might the type be used polymorphically?
– Composition does not intrinsically aid it

Choosing is-a or has-a

● Guide 1: Might the behavior need to change?
– Inheritance often precludes it
– Composition often simplifies it
– Use composition if the relationship is dynamic

● Guide 2: Might the type be used polymorphically?
– Composition does not intrinsically aid it
– Inheritance enables it

Choosing is-a or has-a

● Guide 1: Might the behavior need to change?
– Inheritance often precludes it
– Composition often simplifies it
– Use composition if the relationship is dynamic

● Guide 2: Might the type be used polymorphically?
– Composition does not intrinsically aid it
– Inheritance enables it
– Consider inheritance when a reference to a general type may point to a

more specific one.

Choosing is-a or has-a

● Guide 1: Might the behavior need to change?
– Inheritance often precludes it
– Composition often simplifies it
– Use composition if the relationship is dynamic

● Guide 2: Might the type be used polymorphically?
– Composition does not intrinsically aid it
– Inheritance enables it
– Consider inheritance when a reference to a general type may point to a

more specific one.

0) Student
1) Student
2) Lecturer
3) Professor
4) Student

std::vector<People*> folks;

Choosing is-a or has-a

● Guide 1: Might the behavior need to change?
– Inheritance often precludes it
– Composition often simplifies it
– Use composition if the relationship is dynamic

● Guide 2: Might the type be used polymorphically?
– Composition does not intrinsically aid it
– Inheritance enables it
– Consider inheritance when a reference to a general type may point to a

more specific one.

0) Student
1) Student
2) Lecturer
3) Professor
4) Student

std::vector<People*> folks;

We will revisit this in the context of
algebraic data types.

So let’s try it out...

● I need
– Many different types of animals. This should sound

familiar...

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

What does my design look like
based on the rules?

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Animal

ProfessorCat CorgiParrot

Maine Coon Bengal

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Animal

ProfessorCat CorgiParrot

Maine Coon Bengal

Is this good?

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Animal

ProfessorCat CorgiParrot

Maine Coon Bengal

Is this good?

Does Cat serve a purpose?

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Animal

ProfessorCat CorgiParrot

Maine Coon Bengal

Is this good?

Does it achieve reuse?

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Animal

ProfessorCat CorgiParrot

Maine Coon Bengal

Is this good?

Does it achieve reuse?

What if I want a new
Animal at run time?

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better?

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

If someone on my team did this multiple times,
I would fire them.

Can we do better?

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movementhas-a

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movementhas-a

Movement selects from the
ways any Animal can move.

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movement

Vocalization

has-a

has-a

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movement

Vocalization

has-a

has-a
Crawl

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movement

Vocalization

has-a

has-a
Crawl Fly

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movement

Vocalization

has-a

has-a
Crawl Fly Saunter

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movement

Vocalization

has-a

has-a

Tweet

Crawl Fly Saunter

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movement

Vocalization

has-a

has-a

MeowTweet

Crawl Fly Saunter

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movement

Vocalization

has-a

has-a

MeowTweet Ramble

Crawl Fly Saunter

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movement

Vocalization

has-a

has-a

MeowTweet Ramble Bark

Crawl Fly Saunter

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movement

Vocalization

has-a

has-a

MeowTweet Ramble Bark

Crawl Fly Saunter

class Animal {
 Movement& m;
 void move() {
 m.move();
 }
};

So let’s try it out...

● So let’s try it out...(!)

Shallow, fine grained inheritance

● Avoids reimplementation of common behavior
– e.g. Common aspects of Animal are just fields of Animal

Shallow, fine grained inheritance

● Avoids reimplementation of common behavior
– e.g. Common aspects of Animal are just fields of Animal

● Inheritance contracts for fine grained policies

Shallow, fine grained inheritance

● Avoids reimplementation of common behavior
– e.g. Common aspects of Animal are just fields of Animal

● Inheritance contracts for fine grained policies

● Enables dynamic selection & configuration of which policies are
desired
– e.g. A Cat may start out Stationary, then Run, then be Stationary

Shallow, fine grained inheritance

● Avoids reimplementation of common behavior
– e.g. Common aspects of Animal are just fields of Animal

● Inheritance contracts for fine grained policies

● Enables dynamic selection & configuration of which policies are
desired
– e.g. A Cat may start out Stationary, then Run, then be Stationary

Previously static requirements will often become dynamic.

Shallow, fine grained inheritance

● Avoids reimplementation of common behavior
– e.g. Common aspects of Animal are just fields of Animal

● Inheritance contracts for fine grained policies

● Enables dynamic selection & configuration of which policies are
desired
– e.g. A Cat may start out Stationary, then Run, then be Stationary

● Directly identifies & addresses risks of change in class design

Shallow, fine grained inheritance

● Avoids reimplementation of common behavior
– e.g. Common aspects of Animal are just fields of Animal

● Inheritance contracts for fine grained policies

● Enables dynamic selection & configuration of which policies are
desired
– e.g. A Cat may start out Stationary, then Run, then be Stationary

● Directly identifies & addresses risks of change in class design

● We will see shortly how this interacts with other forms of
polymorphism

Summary

● Inheritance is a powerful tool, but it requires care.

Summary

● Inheritance is a powerful tool, but it requires care.

● Good inheritance simplifies design & both expresses and isolates
regions of change

Summary

● Inheritance is a powerful tool, but it requires care.

● Good inheritance simplifies design & both expresses and isolates
regions of change

● There is no best design. Be pragmatic.

Summary

● Inheritance is a powerful tool, but it requires care.

● Good inheritance simplifies design & both expresses and isolates
regions of change

● There is no best design. Be pragmatic, but smart.

Animal

ProfessorCat CorgiParrot

Maine Coon Bengal

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99

