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What is inheritance?

● You should already be comfortable with inheritance

● Review of inheritance:
– Create a new type based on an existing type

– Shares properties and behaviors with the new type

– Can establish a subtyping relationship

List
+ add()

ArrayList
+ add()

is-a

Note: This conflates inheritance & subtyping,
but it is probably what you know (from Java/C++).
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– Liskov Substitution Principle
● If φ is true for the base, then φ is true the derived

● Arguments in the subtype may be more general
● Return values in the subtype may be more constrained

● Preconditions are not stronger

Base
A foo(B b)

Derived
C foo(D d)

assert(x > 0) assert(x != 0)
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● Initial guidelines:
– Prefer composition to inheritance

– Liskov Substitution Principle
● If φ is true for the base, then φ is true the derived

● Arguments in the subtype may be more general
● Return values in the subtype may be more constrained

● Preconditions are not stronger
● Postconditions are not weaker

Base
A foo(B b)

Derived
C foo(D d)

assert(result != 0) assert(result > 0)
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What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance

– Liskov Substitution Principle
● If φ is true for the base, then φ is true the derived

● Arguments in the subtype may be more general
● Return values in the subtype may be more constrained

● Preconditions are not stronger
● Postconditions are not weaker
● Invariants must still hold

Base
A foo(B b)

Derived
C foo(D d)

How does the Liskov Substitution Principle
relate to coupling from using inheritance?
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  virtual void bar() {}
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● Initial guidelines:
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– Liskov Substitution Principle

– Be wary of implementation inheritance
● Hierarchies delocalize code, yielding a yo-yo effect
● Ambiguous overrides break encapsulation

class Parent { public:
  virtual void foo() { bar(); }
  virtual void bar() {}
};
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public:
  void foo() { barImpl(); }
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};

class Child : public Parent {
public:
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clarify & are common in C++.



  

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance

– Liskov Substitution Principle

– Be wary of implementation inheritance
● Hierarchies delocalize code, yielding a yo-yo effect
● Ambiguous overrides break encapsulation

class Parent { public:
  virtual void foo() { bar(); }
  virtual void bar() {}
};

class Parent {
public:
  void foo() { barImpl(); }
  void bar() { barImpl(); }
private:
  virtual void barImpl() = 0;
};

class Child : public Parent {
public:
  virtual void bar() { foo(); }
}; [Bloch, “Effective Java”]

Non Virtual Interfaces (NVI) help
clarify & are common in C++.

Other patterns help even more...



  

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance

– Liskov Substitution Principle

– Be wary of implementation inheritance

Here endeth the review
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So let’s try it out...

● Suppose we want to model a person who owns a car...

Person Car

CarOwner

is-ais-a

Is this good or bad?
Why?

class CarOwner : public Person, Car
  { };

How could you make it better?
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So let’s try it out...

● Suppose we want to model a person who owns a car...

Person Car

CarOwner

is-ais-a

Person

CarCarOwner
has-a

is-a

CarPerson
has-aThis absurd example captures

common, subtle mistakes

That a car is amongst a Person’s possessions
does not make them a special Person
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So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to 
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

● Whenever is-a applies, you must still make a decision

Researcher

Professor

has-a

Teacherhas-a

Napper
has-a

Note, these are now roles,
not people.
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Choosing is-a or has-a

● Guide 1: Might the behavior need to change?
– Inheritance often precludes it
– Composition often simplifies it
– Use composition if the relationship is dynamic

Frogs and other animals
can spontaneously change sex!

Frog

MaleFrog FemaleFrog

Frog
-sex:{male,female}

Knowing in advance is hard.
Composition is flexible & adapts to requirements.
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Choosing is-a or has-a

● Guide 1: Might the behavior need to change?
– Inheritance often precludes it
– Composition often simplifies it
– Use composition if the relationship is dynamic

● Guide 2: Might the type be used polymorphically?
– Composition does not intrinsically aid it
– Inheritance enables it
– Consider inheritance when a reference to a general type may point to a 

more specific one.

0) Student
1) Student
2) Lecturer
3) Professor
4) Student

std::vector<People*> folks;

We will revisit this in the context of
algebraic data types.
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based on the rules?
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Is this good?

Does Cat serve a purpose?
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So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Animal

ProfessorCat CorgiParrot

Maine Coon Bengal

Is this good?

Does it achieve reuse?

What if I want a new
Animal at run time?
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So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

If someone on my team did this multiple times,
I would fire them.

Can we do better?
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So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movementhas-a

Movement selects from the
ways any Animal can move.
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– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change
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So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movement

Vocalization

has-a

has-a

MeowTweet Ramble Bark

Crawl Fly Saunter

class Animal {
  Movement& m;
  void move() {
    m.move();
  }
};



  

So let’s try it out...

● So let’s try it out...(!)
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Shallow, fine grained inheritance

● Avoids reimplementation of common behavior
– e.g. Common aspects of Animal are just fields of Animal

● Inheritance contracts for fine grained policies

● Enables dynamic selection & configuration of which policies are 
desired
– e.g. A Cat may start out Stationary, then Run, then be Stationary

● Directly identifies & addresses risks of change in class design

● We will see shortly how this interacts with other forms of 
polymorphism
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Summary

● Inheritance is a powerful tool, but it requires care.

● Good inheritance simplifies design & both expresses and isolates 
regions of change

● There is no best design. Be pragmatic, but smart.

Animal

ProfessorCat CorgiParrot

Maine Coon Bengal
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