
Handling Erroneous
Behavior

CMPT 373
Software Development Methods

Nick Sumner
wsumner@sfu.ca

Sources of Error

● Your software exists in an adversarial context

Sources of Error

● Your software exists in an adversarial context
– Users (both ignorant & malign)

Sources of Error

● Your software exists in an adversarial context
– Users (both ignorant & malign)

– External software components

Sources of Error

● Your software exists in an adversarial context
– Users (both ignorant & malign)

– External software components

– Internal software components

Sources of Error

● Your software exists in an adversarial context
– Users (both ignorant & malign)

– External software components

– Internal software components

– Environmental context

Sources of Error

● Your software exists in an adversarial context
– Users (both ignorant & malign)

– External software components

– Internal software components

– Environmental context

● You should develop your software to respond appropriately to
erroneous behavior

Sources of Error

● Your software exists in an adversarial context
– Users (both ignorant & malign)

– External software components

– Internal software components

– Environmental context

● You should develop your software to respond appropriately to
erroneous behavior
– The challenge is knowing what to do & when

User Error

● The user is an adversary

User Error

● The user is an adversary
– If they can do the wrong thing, they will

User Error

● The user is an adversary
– If they can do the wrong thing, they will
– If they can benefit from it, they will seek to

User Error

● The user is an adversary
– If they can do the wrong thing, they will
– If they can benefit from it, they will seek to

Mallory, how much money would
you like to transfer to Bob?

Mallory

Bob

User Error

● The user is an adversary
– If they can do the wrong thing, they will
– If they can benefit from it, they will seek to

Mallory, how much money would
you like to transfer to Bob?
$500.00

Mallory

Bob

User Error

● The user is an adversary
– If they can do the wrong thing, they will
– If they can benefit from it, they will seek to

Mallory, how much money would
you like to transfer to Bob?
$-500.00

Mallory

Bob

User Error

● The user is an adversary
– If they can do the wrong thing, they will
– If they can benefit from it, they will seek to

Mallory, how much money would
you like to transfer to Bob?

Mallory

Bob
Ask yourself what should be allowable

& enforce it

User Error

● The user is an adversary
– If they can do the wrong thing, they will
– If they can benefit from it, they will seek to

● Validate & sanitize all user input
– Command line
– Files
– Databases
– ...

User Error

● The user is an adversary
– If they can do the wrong thing, they will
– If they can benefit from it, they will seek to

● Validate & sanitize all user input
– Command line
– Files
– Databases
– ...

● Prefer to provide feedback indicating the user error

User Error

● The user is an adversary
– If they can do the wrong thing, they will
– If they can benefit from it, they will seek to

● Validate & sanitize all user input
– Command line
– Files
– Databases
– ...

● Prefer to provide feedback indicating the user error

● You can even use software hardening tools for better security
(more in CMPT 473)

Handling Non-user Errors

● What if a function returns an unexpected value?
– Can’t just print an error message for that function and ask it to return again....

Handling Non-user Errors

● What if a function returns an unexpected value?
– Can’t just print an error message for that function and ask it to return again....

● Strategies for erroneous scenarios

Handling Non-user Errors

● What if a function returns an unexpected value?
– Can’t just print an error message for that function and ask it to return again....

● Strategies for erroneous scenarios
– Design them out of existence

Similar to what we did with
ambiguous function arguments.

Handling Non-user Errors

● What if a function returns an unexpected value?
– Can’t just print an error message for that function and ask it to return again....

● Strategies for erroneous scenarios
– Design them out of existence

– Assertions

Handling Non-user Errors

● What if a function returns an unexpected value?
– Can’t just print an error message for that function and ask it to return again....

● Strategies for erroneous scenarios
– Design them out of existence

– Assertions

– Exceptions

Handling Non-user Errors

● What if a function returns an unexpected value?
– Can’t just print an error message for that function and ask it to return again....

● Strategies for erroneous scenarios
– Design them out of existence

– Assertions

– Exceptions

– Return error codes & out arguments

Handling Non-user Errors

● What if a function returns an unexpected value?
– Can’t just print an error message for that function and ask it to return again....

● Strategies for erroneous scenarios
– Design them out of existence

– Assertions

– Exceptions

– Return error codes & out arguments

● All of these come with a cost and trade one form of complexity for
another.

Defining Away Erroneous Behavior

● Use the type system to your advantage

computeForce(Mass{16g}, Acceleration{9.8mss})

Defining Away Erroneous Behavior

● Use the type system to your advantage

● Generalize away corner cases

Defining Away Erroneous Behavior

● Use the type system to your advantage

● Generalize away corner cases
– Implicitly – e.g. Null Object Pattern

Null Object Pattern
Create a subtype representing an

object with no information.

Any getters/methods effectively
perform no-ops.

Defining Away Erroneous Behavior

● Use the type system to your advantage

● Generalize away corner cases
– Implicitly – e.g. Null Object Pattern

– Explicitly – e.g. getChildren() vs getLeft() & getRight()

What are the trade offs?

Defining Away Erroneous Behavior

● Use the type system to your advantage

● Generalize away corner cases

● Make inconsistent state unrepresentable

Defining Away Erroneous Behavior

● Use the type system to your advantage

● Generalize away corner cases

● Make inconsistent state unrepresentable
– State Pattern – richer state machines

Defining Away Erroneous Behavior

● Use the type system to your advantage

● Generalize away corner cases

● Make inconsistent state unrepresentable
– State Pattern – richer state machines

– Sum types – e.g. boost::variant & std::variant (& optional!)

Defining Away Erroneous Behavior

● Use the type system to your advantage

● Generalize away corner cases

● Make inconsistent state unrepresentable

Work

Sleep

PlayStudent

Defining Away Erroneous Behavior

● Use the type system to your advantage

● Generalize away corner cases

● Make inconsistent state unrepresentable

Work

Sleep

PlayStudent
class Student {
 CurrentState state;
 uint64_t timeWorked;
};

enum class CurrentState {
 SLEEP, PLAY, WORK
};

Defining Away Erroneous Behavior

● Use the type system to your advantage

● Generalize away corner cases

● Make inconsistent state unrepresentable

Work

Sleep

PlayStudent
class Student {
 CurrentState state;
 uint64_t timeWorked;
};

enum class CurrentState {
 SLEEP, PLAY, WORK
};

What can go wrong?

State Patterns & Sum Types

● How can we fix it?
Work

Sleep

PlayStudent

State Patterns & Sum Types

● How can we fix it?
Work

Sleep

PlayStudent

class CurrentState {
...
};

State Patterns & Sum Types

● How can we fix it?
Work

Sleep

PlayStudent

class CurrentState {
...
};

class Sleep
 : public CurrentState
{ };

class Work
 : public CurrentState {
 uint64_t timeWorked
};

State Patterns & Sum Types

● How can we fix it?
Work

Sleep

PlayStudent

class CurrentState {
...
};

class Sleep
 : public CurrentState
{ };

class Work
 : public CurrentState {
 uint64_t timeWorked
};

class Student {
 unique_ptr<CurrentState> state;
};

State Patterns & Sum Types

State Patterns & Sum Types

● How can we fix it?
Work

Sleep

PlayStudent

This uses sum types!

class Student {
 struct Sleep {};
 struct Play {};
 struct Work { uint64_t timeWorked; };

 std::variant<Sleep, Play, Work> currentState;
};

State Patterns & Sum Types

● How can we fix it?
Work

Sleep

PlayStudent

This uses sum types!

class Student {
 struct Sleep {};
 struct Play {};
 struct Work { uint64_t timeWorked; };

 std::variant<Sleep, Play, Work> currentState;
};

State Patterns & Sum Types

● How can we fix it?
Work

Sleep

PlayStudent

class Student {
 struct Sleep {};
 struct Play {};
 struct Work { uint64_t timeWorked; };

 std::variant<Sleep, Play, Work> currentState;
};

This uses sum types!

Defining Away Erroneous Behavior

● Use the type system to your advantage

● Generalize away corner cases

● Make inconsistent state unrepresentable
– State Pattern – richer state machines

– Sum types – e.g. boost::variant & std::variant (& optional!)

Defining Away Erroneous Behavior

● Use the type system to your advantage

● Generalize away corner cases

● Make inconsistent state unrepresentable
– State Pattern – richer state machines

– Sum types – e.g. boost::variant & std::variant (& optional!)

Defining Away Erroneous Behavior

● Use the type system to your advantage

● Generalize away corner cases

● Make inconsistent state unrepresentable
– State Pattern – richer state machines

– Sum types – e.g. boost::variant & std::variant (& optional!)
std::optional<int>
divide(int numerator, int denominator);

Defining Away Erroneous Behavior

● Use the type system to your advantage

● Generalize away corner cases

● Make inconsistent state unrepresentable
– State Pattern – richer state machines

– Sum types – e.g. boost::variant & std::variant (& optional!)

– Phantom Types – Exploit parametric polymorphism

Phantom Types

double
distanceTraveled(double speed, double time) {
 return speed * time;
}

What can go wrong?

Phantom Types

// Miles per hour * seconds?
... = distanceTraveled(3, 5);

d1 = ...; // Meters
d2 = ...; // Miles
... = d1 + d2; // Uh oh.

double
distanceTraveled(double speed, double time) {
 return speed * time;
}

What can go wrong?

Phantom Types

struct Meters {};
struct Miles {};
struct Seconds {};
struct Hours {};

template <typename T, typename U>
struct Speed { double speed; };

template <typename T>
struct Distance { double distance; };

template <typename T>
struct Time { double time; };

● Parameterize your types by unique type names...

Phantom Types

● Consistent units are enforced via template arguments

template <typename T, typename U>
Distance<T>
distanceTraveled(Speed<T,U> speed, Time<U> time) {
 return {speed.speed * time.time};
}

template <typename T>
Distance<T>
operator+(Distance<T> d1, Distance<T> d2) {
 return d1.distance + d2.distance;
}

Phantom Types

● Consistent units are enforced via template arguments

template <typename T, typename U>
Distance<T>
distanceTraveled(Speed<T,U> speed, Time<U> time) {
 return {speed.speed * time.time};
}

template <typename T>
Distance<T>
operator+(Distance<T> d1, Distance<T> d2) {
 return d1.distance + d2.distance;
}

Phantom Types

phantom.cpp:37:19: error: no matching function for call to 'distanceTraveled’
... deduced conflicting types for parameter 'U' ('Hours' vs. 'Seconds')

distanceTraveled(Speed<Miles,Hours>{3}, Time<Seconds>{5});

Phantom Types

d1 = distanceTraveled(Speed<Miles,Hours>{3}, Time<Hours>{5});
d2 = distanceTraveled(Speed<Meters,Seconds>{3}, Time<Seconds>{5});
d3 = d2 + d3;

phantom.cpp:41:30: error: invalid operands to binary expression
... deduced conflicting types for parameter 'T' ('Miles' vs. 'Meters')

Phantom Types

What are the trade offs for using this technique?

Assertions

● Assertions check the invariants of your program

Assertions

● Assertions check the invariants of your program
– What should be true when a function starts?

– What should be true when a function ends?

Assertions

● Assertions check the invariants of your program
– What should be true when a function starts?

– What should be true when a function ends?

● These are guaranteed bugs that should never happen in
production!

Assertions

● Assertions check the invariants of your program
– What should be true when a function starts?

– What should be true when a function ends?

● These are guaranteed bugs that should never happen in
production!

#include <cassert>
constexpr char ascii[256] = ...

char getChar(int asciiCode) {
 assert(0 < asciiCode && asciiCode < 256
 && “ASCII code out of range.”);
}

Assertions

● Assertions check the invariants of your program
– What should be true when a function starts?

– What should be true when a function ends?

● These are guaranteed bugs that should never happen in
production!

● In general, better quality code has more assertions.

Exceptions

● Exceptions respond to external unexpected behaviors.

Exceptions

● Exceptions respond to external unexpected behaviors.

● What should you do when an exception is thrown?

Exceptions

● Exceptions respond to external unexpected behaviors.

● What should you do when an exception is thrown?
– Nothing?
– Try again?
– Log the error & continue?
– Log the error & abort?

Exceptions

● Exceptions respond to external unexpected behaviors.

● What should you do when an exception is thrown?
– Nothing?
– Try again?
– Log the error & continue?
– Log the error & abort?

● What should you pass to an exception when throwing?

Exceptions

● Exceptions respond to external unexpected behaviors.

● What should you do when an exception is thrown?
– Nothing?
– Try again?
– Log the error & continue?
– Log the error & abort?

● What should you pass to an exception when throwing?
– Do you expect it to be re-tried?

– Do you expect it to be logged?

Handling Erroneous Behavior

● As a developer, how do you respond to erroneous behavior?

Handling Erroneous Behavior

● As a developer, how do you respond to erroneous behavior?

What if the cause occurred
much earlier?

Handling Erroneous Behavior

● As a developer, how do you respond to erroneous behavior?

● What if an absence of behavior is erroneous?

Handling Erroneous Behavior

● As a developer, how do you respond to erroneous behavior?

● What if an absence of behavior is erroneous?

● What if a trend makes something erroneous?

Handling Erroneous Behavior

● As a developer, how do you respond to erroneous behavior?

● What if an absence of behavior is erroneous?

● What if a trend makes something erroneous?

● What if it only happens when deployed?

Handling Erroneous Behavior

● As a developer, how do you respond to erroneous behavior?

● What if an absence of behavior is erroneous?

● What if a trend makes something erroneous?

● What if it only happens when deployed?

Tracking behavior is crucial.
Real world software uses logging.

Logging

● A logging system records program state & events over time.

Logging

● A logging system records program state & events over time.

LOG(INFO) << "Creating new account. "
 << "name:" << username;

Logging

● A logging system records program state & events over time.

LOG(INFO) << "Creating new account. "
 << "name:" << username;

Logging

● A logging system records program state & events over time.

LOG(INFO) << "Creating new account. "
 << "name:" << username;

Logging

● A logging system records program state & events over time.

LOG(INFO) << "Creating new account. "
 << "name:" << username;

LOG_IF(INFO, numUsers > 10)
 << "Many users logged in. "
 << "numusers:" << numUsers;

Logging

● A logging system records program state & events over time.

LOG(INFO) << "Creating new account. "
 << "name:" << username;

LOG_IF(INFO, numUsers > 10)
 << "Many users logged in. "
 << "numusers:" << numUsers;

CHECK_LT(index, size) << "Index out of bounds.";
CHECK_NOTNULL(ptr);

Logging

● A logging system records program state & events over time.

● Common to log: [Fu et al., ICSE 2014]

Logging

● A logging system records program state & events over time.

● Common to log: [Fu et al., ICSE 2014]

– Assertion failures
– Critical return values
– Exceptions

Unexpected
Situations

Logging

● A logging system records program state & events over time.

● Common to log: [Fu et al., ICSE 2014]

– Assertion failures
– Critical return values
– Exceptions

– Key branch points
– Observation points

Unexpected
Situations

Key Execution
Points

Logging

● A logging system records program state & events over time.

● Common to log: [Fu et al., ICSE 2014]

– Assertion failures
– Critical return values
– Exceptions

– Key branch points
– Observation points

● Logging too little or too much can be a problem

Unexpected
Situations

Key Execution
Points

Logging

● A logging system records program state & events over time.

● Common to log: [Fu et al., ICSE 2014]

– Assertion failures
– Critical return values
– Exceptions

– Key branch points
– Observation points

● Logging too little or too much can be a problem

– Might miss what you want
– Might create a haystack for your needle
– Might spend too many resources!

Unexpected
Situations

Key Execution
Points

Logging Guidelines

● Log all assertion failures

Logging Guidelines

● Log all assertion failures

● Log exceptions at most once

Logging Guidelines

● Log all assertion failures

● Log exceptions at most once
– Might defer logging if exception is rethrown

Logging Guidelines

● Log all assertion failures

● Log exceptions at most once
– Might defer logging if exception is rethrown

– Might skip logging exceptions that do no harm
(e.g. if deleting a file failed because it was not there)

Logging Guidelines

● Log all assertion failures

● Log exceptions at most once
– Might defer logging if exception is rethrown

– Might skip logging exceptions that do no harm
(e.g. if deleting a file failed because it was not there)

● Log all events needed for auditing

Logging Guidelines

● Log all assertion failures

● Log exceptions at most once
– Might defer logging if exception is rethrown

– Might skip logging exceptions that do no harm
(e.g. if deleting a file failed because it was not there)

● Log all events needed for auditing

● Log logic that provides context for possible errors

Logging Guidelines

● Log all assertion failures

● Log exceptions at most once
– Might defer logging if exception is rethrown

– Might skip logging exceptions that do no harm
(e.g. if deleting a file failed because it was not there)

● Log all events needed for auditing

● Log logic that provides context for possible errors

Bear in mind, logging also comes at a price.
It is a cross-cutting concern.

Logging Guidelines

● Make your log easy to use
– Machine parsable if possible (JSON logging!)

Logging Guidelines

● Make your log easy to use
– Machine parsable if possible

– What / When / Why / Where should be clearly captured

Summary

● Many strategies for dealing with possible errors.

Summary

● Many strategies for dealing with possible errors.

● Designing them away is preferred.

Summary

● Many strategies for dealing with possible errors.

● Designing them away is preferred.

● All strategies have a cost.

Summary

● Many strategies for dealing with possible errors.

● Designing them away is preferred.

● All strategies have a cost.

● Logging is critical for dealing with real world code.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95

