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Sources of Error

● Your software exists in an adversarial context
– Users (both ignorant & malign)

– External software components 

– Internal software components

– Environmental context

● You should develop your software to respond appropriately to 
erroneous behavior
– The challenge is knowing what to do & when
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Mallory, how much money would 
you like to transfer to Bob?
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Mallory
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Mallory, how much money would 
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$-500.00

Mallory

Bob



  

User Error

● The user is an adversary
– If they can do the wrong thing, they will
– If they can benefit from it, they will seek to

Mallory, how much money would 
you like to transfer to Bob?

Mallory

Bob
Ask yourself what should be allowable 

& enforce it
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User Error

● The user is an adversary
– If they can do the wrong thing, they will
– If they can benefit from it, they will seek to

● Validate & sanitize all user input
– Command line
– Files
– Databases
– ...

● Prefer to provide feedback indicating the user error

● You can even use software hardening tools for better security
(more in CMPT 473)
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Handling Non-user Errors

● What if a function returns an unexpected value?
– Can’t just print an error message for that function and ask it to return again....

● Strategies for erroneous scenarios
– Design them out of existence

Similar to what we did with 
ambiguous function arguments.
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Handling Non-user Errors

● What if a function returns an unexpected value?
– Can’t just print an error message for that function and ask it to return again....

● Strategies for erroneous scenarios
– Design them out of existence

– Assertions

– Exceptions

– Return error codes & out arguments

● All of these come with a cost and trade one form of complexity for 
another.



  

Defining Away Erroneous Behavior

● Use the type system to your advantage

computeForce(Mass{16g}, Acceleration{9.8mss})
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– Implicitly – e.g. Null Object Pattern

Null Object Pattern
Create a subtype representing an 

object with no information. 

Any getters/methods effectively 
perform no-ops.



  

Defining Away Erroneous Behavior

● Use the type system to your advantage

● Generalize away corner cases
– Implicitly – e.g. Null Object Pattern

– Explicitly – e.g. getChildren() vs getLeft() & getRight()

What are the trade offs?
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Defining Away Erroneous Behavior

● Use the type system to your advantage

● Generalize away corner cases

● Make inconsistent state unrepresentable

Work

Sleep

PlayStudent
class Student {
  CurrentState state;
  uint64_t timeWorked;
};

enum class CurrentState {
  SLEEP, PLAY, WORK
};

What can go wrong?
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  : public CurrentState
{ };

class Work
  : public CurrentState {
  uint64_t timeWorked
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State Patterns & Sum Types

● How can we fix it?
Work

Sleep

PlayStudent

class CurrentState {
...
};

class Sleep
  : public CurrentState
{ };

class Work
  : public CurrentState {
  uint64_t timeWorked
};

class Student {
  unique_ptr<CurrentState> state;
};



State Patterns & Sum Types
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● How can we fix it?
Work

Sleep

PlayStudent

This uses sum types!

class Student {
  struct Sleep {};
  struct Play {};
  struct Work { uint64_t timeWorked; };

  std::variant<Sleep, Play, Work> currentState;
};
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Defining Away Erroneous Behavior

● Use the type system to your advantage

● Generalize away corner cases

● Make inconsistent state unrepresentable
– State Pattern – richer state machines

– Sum types – e.g. boost::variant & std::variant (& optional!)
std::optional<int>
divide(int numerator, int denominator);



  

Defining Away Erroneous Behavior

● Use the type system to your advantage

● Generalize away corner cases

● Make inconsistent state unrepresentable
– State Pattern – richer state machines

– Sum types – e.g. boost::variant & std::variant (& optional!)

– Phantom Types – Exploit parametric polymorphism



  

Phantom Types

double
distanceTraveled(double speed, double time) {
  return speed * time;
}

What can go wrong?



  

Phantom Types

// Miles per hour * seconds?
... = distanceTraveled(3, 5);

d1 = ...; // Meters
d2 = ...; // Miles
... = d1 + d2; // Uh oh.

double
distanceTraveled(double speed, double time) {
  return speed * time;
}

What can go wrong?



  

Phantom Types

struct Meters {};
struct Miles {};
struct Seconds {};
struct Hours {};

template <typename T, typename U>
struct Speed { double speed; };

template <typename T>
struct Distance { double distance; };

template <typename T>
struct Time { double time; };

● Parameterize your types by unique type names...



  

Phantom Types

● Consistent units are enforced via template arguments

template <typename T, typename U>
Distance<T>
distanceTraveled(Speed<T,U> speed, Time<U> time) {
  return {speed.speed * time.time};
}

template <typename T>
Distance<T>
operator+(Distance<T> d1, Distance<T> d2) {
  return d1.distance + d2.distance;
}



  

Phantom Types

● Consistent units are enforced via template arguments

template <typename T, typename U>
Distance<T>
distanceTraveled(Speed<T,U> speed, Time<U> time) {
  return {speed.speed * time.time};
}

template <typename T>
Distance<T>
operator+(Distance<T> d1, Distance<T> d2) {
  return d1.distance + d2.distance;
}



  

Phantom Types

phantom.cpp:37:19: error: no matching function for call to 'distanceTraveled’
... deduced conflicting types for parameter 'U' ('Hours' vs. 'Seconds')

distanceTraveled(Speed<Miles,Hours>{3}, Time<Seconds>{5});



  

Phantom Types

d1 = distanceTraveled(Speed<Miles,Hours>{3}, Time<Hours>{5});
d2 = distanceTraveled(Speed<Meters,Seconds>{3}, Time<Seconds>{5});
d3 = d2 + d3;

phantom.cpp:41:30: error: invalid operands to binary expression
... deduced conflicting types for parameter 'T' ('Miles' vs. 'Meters')



  

Phantom Types

What are the trade offs for using this technique?
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Assertions

● Assertions check the invariants of your program
– What should be true when a function starts?

– What should be true when a function ends?

● These are guaranteed bugs that should never happen in 
production!

#include <cassert>
constexpr char ascii[256] = ...

char getChar(int asciiCode) {
  assert(0 < asciiCode && asciiCode < 256
         && “ASCII code out of range.”);
}



  

Assertions

● Assertions check the invariants of your program
– What should be true when a function starts?

– What should be true when a function ends?

● These are guaranteed bugs that should never happen in 
production!

● In general, better quality code has more assertions.
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Exceptions

● Exceptions respond to external unexpected behaviors.

● What should you do when an exception is thrown?
– Nothing?
– Try again?
– Log the error & continue?
– Log the error & abort?

● What should you pass to an exception when throwing?
– Do you expect it to be re-tried?

– Do you expect it to be logged?
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Handling Erroneous Behavior 

● As a developer, how do you respond to erroneous behavior?

What if the cause occurred 
much earlier?
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Handling Erroneous Behavior 

● As a developer, how do you respond to erroneous behavior?

● What if an absence of behavior is erroneous?

● What if a trend makes something erroneous?

● What if it only happens when deployed?

Tracking behavior is crucial.
Real world software uses logging.
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Logging

● A logging system records program state & events over time.

LOG(INFO) << "Creating new account. "
          << "name:" << username;

LOG_IF(INFO, numUsers > 10)
  << "Many users logged in. "
  << "numusers:" << numUsers;



  

Logging

● A logging system records program state & events over time.

LOG(INFO) << "Creating new account. "
          << "name:" << username;

LOG_IF(INFO, numUsers > 10)
  << "Many users logged in. "
  << "numusers:" << numUsers;

CHECK_LT(index, size) << "Index out of bounds.";
CHECK_NOTNULL(ptr);
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● Common to log: [Fu et al., ICSE 2014]
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Logging

● A logging system records program state & events over time.

● Common to log: [Fu et al., ICSE 2014]

– Assertion failures
– Critical return values
– Exceptions

– Key branch points
– Observation points

● Logging too little or too much can be a problem

– Might miss what you want
– Might create a haystack for your needle
– Might spend too many resources!

Unexpected
Situations

Key Execution
Points
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Logging Guidelines

● Log all assertion failures

● Log exceptions at most once
– Might defer logging if exception is rethrown

– Might skip logging exceptions that do no harm
(e.g. if deleting a file failed because it was not there)

● Log all events needed for auditing

● Log logic that provides context for possible errors

Bear in mind, logging also comes at a price.
It is a cross-cutting concern.
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● Make your log easy to use
– Machine parsable if possible (JSON logging!)



  

Logging Guidelines

● Make your log easy to use
– Machine parsable if possible

– What / When / Why / Where should be clearly captured
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Summary

● Many strategies for dealing with possible errors.

● Designing them away is preferred.

● All strategies have a cost.

● Logging is critical for dealing with real world code.
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