CMPT 373
Software Development Methods

Handling Erroneous Behavior

Nick Sumner
wsumner@sfu.ca
Sources of Error

- Your software exists in an adversarial context
Sources of Error

- Your software exists in an adversarial context
 - Users (both ignorant & malign)
Sources of Error

- Your software exists in an adversarial context
 - Users (both ignorant & malign)
 - External software components
Sources of Error

- Your software exists in an adversarial context
 - Users (both ignorant & malign)
 - External software components
 - Internal software components
Sources of Error

- Your software exists in an adversarial context
 - Users (both ignorant & malign)
 - External software components
 - Internal software components
 - Environmental context
Sources of Error

- Your software exists in an adversarial context
 - Users (both ignorant & malign)
 - External software components
 - Internal software components
 - Environmental context

- You should develop your software to respond appropriately to erroneous behavior
Sources of Error

● Your software exists in an adversarial context
 – Users (both ignorant & malign)
 – External software components
 – Internal software components
 – Environmental context

● You should develop your software to respond appropriately to erroneous behavior
 – The challenge is knowing what to do & when
User Error

- The user is an adversary
User Error

- The user is an adversary
 - If they can do the wrong thing, they will
User Error

- The user is an adversary
 - If they can do the wrong thing, they will
 - If they can benefit from it, they will seek to
User Error

• The user is an adversary
 – If they can do the wrong thing, they will
 – If they can benefit from it, they will seek to

Mallory, how much money would you like to transfer to Bob?
User Error

- The user is an adversary
 - If they can do the wrong thing, they will
 - If they can benefit from it, they will seek to

Mallory, how much money would you like to transfer to Bob?
$500.00
User Error

- The user is an adversary
 - If they can do the wrong thing, they will
 - If they can benefit from it, they will seek to

Mallory, how much money would you like to transfer to Bob?

$-500.00
User Error

- The user is an adversary
 - If they can do the wrong thing, they will
 - If they can benefit from it, they will seek to

Mallory, how much money would you like to transfer to Bob?

Ask yourself what should be allowable & enforce it
User Error

- The user is an adversary
 - If they can do the wrong thing, they will
 - If they can benefit from it, they will seek to

- Validate & sanitize all user input
 - Command line
 - Files
 - Databases
 - ...

The user is an adversary
- If they can do the wrong thing, they will
- If they can benefit from it, they will seek to

Validate & sanitize all user input
- Command line
- Files
- Databases
- ...

Prefer to provide feedback indicating the user error
User Error

• The user is an adversary
 – If they can do the wrong thing, they will
 – If they can benefit from it, they will seek to

• Validate & sanitize all user input
 – Command line
 – Files
 – Databases
 – ...

• Prefer to provide feedback indicating the user error

• You can even use software hardening tools for better security
 (more in CMPT 473)
Handling Non-user Errors

- What if a function returns an unexpected value?
 - Can’t just print an error message for that function and ask it to return again....
Handling Non-user Errors

- What if a function returns an unexpected value?
 - Can’t just print an error message for that function and ask it to return again....

- Strategies for erroneous scenarios
Handling Non-user Errors

- What if a function returns an unexpected value?
 - Can’t just print an error message for that function and ask it to return again....

- Strategies for erroneous scenarios
 - Design them out of existence

Similar to what we did with ambiguous function arguments.
Handling Non-user Errors

- What if a function returns an unexpected value?
 - Can’t just print an error message for that function and ask it to return again....

- Strategies for erroneous scenarios
 - Design them out of existence
 - Assertions
Handling Non-user Errors

- What if a function returns an unexpected value?
 - Can’t just print an error message for that function and ask it to return again....

- Strategies for erroneous scenarios
 - Design them out of existence
 - Assertions
 - Exceptions
Handling Non-user Errors

- What if a function returns an unexpected value?
 - Can’t just print an error message for that function and ask it to return again....

- Strategies for erroneous scenarios
 - Design them out of existence
 - Assertions
 - Exceptions
 - Return error codes & out arguments
Handling Non-user Errors

- What if a function returns an unexpected value?
 - Can’t just print an error message for that function and ask it to return again.

- Strategies for erroneous scenarios
 - Design them out of existence
 - Assertions
 - Exceptions
 - Return error codes & out arguments

- All of these come with a cost and trade one form of complexity for another.
Defining Away Erroneous Behavior

- Use the type system to your advantage

```python
computeForce(Mass{16g}, Acceleration{9.8mss})
```
Defining Away Erroneous Behavior

- Use the type system to your advantage
- Generalize away corner cases
Defining Away Erroneous Behavior

- Use the type system to your advantage

- Generalize away corner cases
 - Implicitly – e.g. Null Object Pattern

Null Object Pattern

Create a subtype representing an object with no information.

Any getters/methods effectively perform no-ops.
Defining Away Erroneous Behavior

- Use the type system to your advantage

- Generalize away corner cases
 - Implicitly – e.g. Null Object Pattern
 - Explicitly – e.g. getChildren() vs getLeft() & getRight()

What are the trade offs?
Defining Away Erroneous Behavior

- Use the type system to your advantage
- Generalize away corner cases
- Make inconsistent state unrepresentable
Defining Away Erroneous Behavior

- Use the type system to your advantage

- Generalize away corner cases

- Make inconsistent state unrepresentable
 - State Pattern – richer state machines
Defining Away Erroneous Behavior

- Use the type system to your advantage

- Generalize away corner cases

- Make inconsistent state unrepresentable
 - State Pattern – richer state machines
 - Sum types – e.g. boost::variant & std::variant (& optional!)
Defining Away Erroneous Behavior

- Use the type system to your advantage
- Generalize away corner cases
- Make inconsistent state unrepresentable
Defining Away Erroneous Behavior

- Use the type system to your advantage
- Generalize away corner cases
- Make inconsistent state unrepresentable

```cpp
enum class CurrentState { SLEEP, PLAY, WORK }

class Student {
    CurrentState state;
    uint64_t timeWorked;
};
```
Defining Away Erroneous Behavior

- Use the type system to your advantage
- Generalize away corner cases
- Make inconsistent state unrepresentable

```cpp
enum class CurrentState { SLEEP, PLAY, WORK }

class Student {
    CurrentState state;
    uint64_t timeWorked;
};
```

What can go wrong?
State Patterns & Sum Types

- How can we fix it?
State Patterns & Sum Types

- How can we fix it?

```java
class CurrentState {
    ...
};
```
State Patterns & Sum Types

- How can we fix it?

class CurrentState {
 ...
};

class Sleep : public CurrentState {
 ...
};

class Work : public CurrentState {
 uint64_t timeWorked;
};
State Patterns & Sum Types

- How can we fix it?

class Student {
 unique_ptr<CurrentState> state;
};

class CurrentState {
 ...
};

class Sleep : public CurrentState {
};

class Work : public CurrentState {
 uint64_t timeWorked
};
State Patterns & Sum Types

• How can we fix it?

```cpp
class Student {
    unique_ptr<CurrentState> state;
};

class CurrentState {
    // This is part of the state pattern!
};
```

```cpp
class Sleep : public CurrentState {
};
```

```cpp
class Work : public CurrentState {
    uint64_t timeWorked;
};
```
State Patterns & Sum Types

- How can we fix it?

```cpp
class Student {
    struct Sleep {};
    struct Play {};
    struct Work { uint64_t timeWorked; };

    std::variant<Sleep, Play, Work> currentState;
};
```

This uses \textit{sum types}!
State Patterns & Sum Types

- How can we fix it?

```cpp
class Student {
    struct Sleep {}
    struct Play {}
    struct Work { uint64_t timeWorked; }

    std::variant<Sleep, Play, Work> currentState;
};
```

This uses *sum types*!
State Patterns & Sum Types

- How can we fix it?

```cpp
class Student {
    struct Sleep {};
    struct Play {};
    struct Work { uint64_t timeWorked; };

    std::variant<Sleep, Play, Work> currentState;
};
```

This uses *sum types*!
Defining Away Erroneous Behavior

- Use the type system to your advantage

- Generalize away corner cases

- Make inconsistent state unrepresentable
 - State Pattern – richer state machines
 - Sum types – e.g. boost::variant & std::variant (& optional!)
Defining Away Erroneous Behavior

- Use the type system to your advantage
- Generalize away corner cases
- Make inconsistent state unrepresentable
 - State Pattern – richer state machines
 - Sum types – e.g. boost::variant & std::variant (& optional!)
Defining Away Erroneous Behavior

- Use the type system to your advantage
- Generalize away corner cases
- Make inconsistent state unrepresentable
 - State Pattern – richer state machines
 - Sum types – e.g. boost::variant & std::variant (& optional!)

```cpp
std::optional<int>
divide(int numerator, int denominator);
```
Defining Away Erroneous Behavior

- Use the type system to your advantage
- Generalize away corner cases
- Make inconsistent state unrepresentable
 - State Pattern – richer state machines
 - Sum types – e.g. boost::variant & std::variant (& optional!)
 - Phantom Types – Exploit parametric polymorphism
double distanceTraveled(double speed, double time) {
 return speed * time;
}

What can go wrong?
double
distanceTraveled(double speed, double time) {
 return speed * time;
}

What can go wrong?

// Miles per hour * seconds?
... = distanceTraveled(3, 5);

d1 = ...; // Meters
d2 = ...; // Miles
... = d1 + d2; // Uh oh.
Phantom Types

- Parameterize your types by unique type names...

```cpp
struct Meters {}
struct Miles {}
struct Seconds {}
struct Hours {}

template <typename T, typename U>
struct Speed { double speed; }

template <typename T>
struct Distance { double distance; }

template <typename T>
struct Time { double time; }
```
Phantom Types

- Consistent units are enforced via template arguments

```cpp
template <typename T, typename U>
Distance<T>
distanceTraveled(Speed<T,U> speed, Time<U> time) {
    return {speed.speed * time.time};
}

template <typename T>
Distance<T>
operator+(Distance<T> d1, Distance<T> d2) {
    return d1.distance + d2.distance;
}
```
Phantom Types

- Consistent units are enforced via template arguments

```cpp
template <typename T, typename U>
Distance<T>
distanceTraveled(Speed<T, U> speed, Time<U> time) {
    return {speed.speed * time.time};
}

template <typename T>
Distance<T>
operator+(Distance<T> d1, Distance<T> d2) {
    return d1.distance + d2.distance;
}
```
Phantom Types

distanceTraveled(Speed<Miles, Hours>{3}, Time<Seconds>{5});

phantom.cpp:37:19: error: no matching function for call to 'distanceTraveled'
... deduced conflicting types for parameter 'U' ('Hours' vs. 'Seconds')
Phantom Types

distanceTraveled(Speed<
Miles, Hours>{3}, Time<
Seconds>{5});

phantom.cpp:41:30: error: invalid operands to binary expression
... deduced conflicting types for parameter 'T' ('Miles' vs. 'Meters')

d1 = distanceTraveled(Speed<
Miles, Hours>{3}, Time<
Hours>{5});
d2 = distanceTraveled(Speed<
Meters, Seconds>{3}, Time<
Seconds>{5});
d3 = d2 + d3;

 phantom.cpp:37:19: error: no matching function for call to 'distanceTraveled'
... deduced conflicting types for parameter 'U' ('Hours' vs. 'Seconds')
Phantom Types

```cpp
distanceTraveled(Speed<Miles, Hours>{3}, Time<Seconds>{5});
```

phantom.cpp:37:19: error: no matching function for call to 'distanceTraveled'
... deduced conflicting types for parameter 'U' ('Hours' vs. 'Seconds')

```cpp
d1 = distanceTraveled(Speed<Miles, Hours>{3}, Time<Hours>{5});
d2 = distanceTraveled(Speed<Meters, Seconds>{3}, Time<Seconds>{5});
d3 = d2 + d3;
```

phantom.cpp:41:30: error: invalid operands to binary expression
... deduced conflicting types for parameter 'T' ('Miles' vs. 'Meters')

What are the trade offs for using this technique?
Assertions

- Assertions check the *invariants* of your program
Assertions

- Assertions check the *invariants* of your program
 - What should be true when a function starts?
 - What should be true when a function ends?
Assertions

- Assertions check the invariants of your program
 - What should be true when a function starts?
 - What should be true when a function ends?

- These are guaranteed bugs that should never happen in production!
Assertions

- Assertions check the invariants of your program
 - What should be true when a function starts?
 - What should be true when a function ends?

- These are guaranteed bugs that should never happen in production!

```cpp
#include <cassert>
constexpr char ascii[256] = ...

char getChar(int asciiCode) {
    assert(0 < asciiCode && asciiCode < 256
            && "ASCII code out of range.");
}
```
Assertions

- Assertions check the invariants of your program
 - What should be true when a function starts?
 - What should be true when a function ends?

- These are guaranteed bugs that should never happen in production!

- In general, better quality code has more assertions.
Exceptions

- Exceptions respond to *external* unexpected behaviors.
Exceptions

- Exceptions respond to *external* unexpected behaviors.

- What should you do when an exception is thrown?
 Exceptions

- Exceptions respond to *external* unexpected behaviors.

- What should you do when an exception is thrown?
 - Nothing?
 - Try again?
 - Log the error & continue?
 - Log the error & abort?
Exceptions

- Exceptions respond to *external* unexpected behaviors.

- What should you do when an exception is thrown?
 - Nothing?
 - Try again?
 - Log the error & continue?
 - Log the error & abort?

- What should you pass to an exception when throwing?
Exceptions

- Exceptions respond to *external* unexpected behaviors.

- What should you do when an exception is thrown?
 - Nothing?
 - Try again?
 - Log the error & continue?
 - Log the error & abort?

- What should you pass to an exception when throwing?
 - Do you expect it to be re-tried?
 - Do you expect it to be logged?
Handling Erroneous Behavior

- As a developer, how do you respond to erroneous behavior?
Handling Erroneous Behavior

- As a developer, how do you respond to erroneous behavior?

What if the cause occurred much earlier?
Handling Erroneous Behavior

- As a developer, how do you respond to erroneous behavior?

- What if an absence of behavior is erroneous?
Handling Erroneous Behavior

- As a developer, how do you respond to erroneous behavior?
- What if an absence of behavior is erroneous?
- What if a trend makes something erroneous?
Handling Erroneous Behavior

- As a developer, how do you respond to erroneous behavior?
- What if an absence of behavior is erroneous?
- What if a trend makes something erroneous?
- What if it only happens when deployed?
Handling Erroneous Behavior

- As a developer, how do you respond to erroneous behavior?
- What if an absence of behavior is erroneous?
- What if a trend makes something erroneous?
- What if it only happens when deployed?

Tracking behavior is crucial.
Real world software uses *logging*.
A logging system records program state & events over time.
A logging system records program state & events over time.

```cpp
LOG(INFO) << "Creating new account. "
    << "name:" << username;
```
A logging system records program state & events over time.

```cpp
LOG(INFO) << "Creating new account. "
    << "name:" << username;
```
Logging

- A logging system records program state & events over time.

```cpp
LOG(INFO) << "Creating new account. "
    << "name:" << username;
```
Logging

- A logging system records program state & events over time.

```cpp
LOG(INFO) << "Creating new account. "
    << "name:" << username;

LOG_IF(INFO, numUsers > 10)
    << "Many users logged in. "
    << "numusers:" << numUsers;
```
• A logging system records program state & events over time.

LOG(INFO) << "Creating new account. "
 << "name:" << username;

LOG_IF(INFO, numUsers > 10)
 << "Many users logged in. "
 << "numusers:" << numUsers;

CHECK_LT(index, size) << "Index out of bounds."
CHECK_NONNULL(ptr);
Logging

- A logging system records program state & events over time.

- **Common to log:** [Fu et al., ICSE 2014]
Logging

- A logging system records program state & events over time.

- **Common to log:** [Fu et al., ICSE 2014]
 - Assertion failures
 - Critical return values
 - Exceptions

\[
\text{Unexpected Situations}
\]
Loggin

- A logging system records program state & events over time.

Common to log: [Fu et al., ICSE 2014]

- Assertion failures
- Critical return values
- Exceptions
- Key branch points
- Observation points

\[
\text{Unexpected Situations} \\
\text{Key Execution Points}
\]
Logging

- A logging system records program state & events over time.

- **Common to log:** [Fu et al., ICSE 2014]
 - Assertion failures
 - Critical return values
 - Exceptions
 - Key branch points
 - Observation points

- Logging *too little* or *too much* can be a problem
Logging

- A logging system records program state & events over time.

- **Common to log:** [Fu et al., ICSE 2014]
 - Assertion failures
 - Critical return values
 - Exceptions
 - Key branch points
 - Observation points

- **Logging too little** or **too much** can be a problem
 - Might miss what you want
 - Might create a haystack for your needle
 - Might spend too many resources!
Logging Guidelines

- Log all assertion failures
Logging Guidelines

- Log all assertion failures
- Log exceptions at most once
Logging Guidelines

- Log all assertion failures

- Log exceptions at most once
 - Might *defer* logging if exception is rethrown
Logging Guidelines

- Log all assertion failures

- Log exceptions **at most once**
 - Might *defer* logging if exception is rethrown
 - Might *skip* logging exceptions that do no harm
 (e.g. if deleting a file failed because it was not there)
Logging Guidelines

- Log all assertion failures

- Log exceptions at most once
 - Might *defer* logging if exception is rethrown
 - Might *skip* logging exceptions that do no harm (e.g. if deleting a file failed because it was not there)

- Log *all* events needed for auditing
Logging Guidelines

- Log all assertion failures

- Log exceptions at most once
 - Might *defer* logging if exception is rethrown
 - Might *skip* logging exceptions that do no harm
 (e.g. if deleting a file failed because it was not there)

- Log all events needed for auditing

- Log logic that *provides context* for possible errors
Logging Guidelines

● Log all assertion failures

● Log exceptions at most once
 - Might *defer* logging if exception is rethrown
 - Might *skip* logging exceptions that do no harm
 (e.g. if deleting a file failed because it was not there)

● Log all events needed for auditing

● Log logic that provides context for possible errors

Bear in mind, logging also comes at a price.
It is a *cross-cutting concern*.
Logging Guidelines

- Make your log easy to use
 - Machine parsable if possible (JSON logging!)
Logging Guidelines

- Make your log easy to use
 - Machine parsable if possible
 - What / When / Why / Where should be clearly captured
Summary

- Many strategies for dealing with possible errors.
Summary

- Many strategies for dealing with possible errors.
- Designing them away is preferred.
Summary

- Many strategies for dealing with possible errors.
- Designing them away is preferred.
- All strategies have a cost.
Summary

- Many strategies for dealing with possible errors.
- Designing them away is preferred.
- All strategies have a cost.
- Logging is critical for dealing with real world code.