
CMPT 373
Software Development Methods

Nick Sumner
wsumner@sfu.ca

A Tour of
Software Architecture

Managing complexity through design

● Recall: Fundamental problem in software development is
managing complexity

Managing complexity through design

● Recall: Fundamental problem in software development is
managing complexity

● One key tool in managing and guiding complexity is
software architecture

Managing complexity through design

● Recall: Fundamental problem in software development is
managing complexity

● One key tool in managing and guiding complexity is
software architecture
– The overall structure of a system including its components,

Managing complexity through design

● Recall: Fundamental problem in software development is
managing complexity

● One key tool in managing and guiding complexity is
software architecture
– The overall structure of a system including its components,

how they communicate (interfaces & protocols),

Managing complexity through design

● Recall: Fundamental problem in software development is
managing complexity

● One key tool in managing and guiding complexity is
software architecture
– The overall structure of a system including its components,

how they communicate (interfaces & protocols),
how they control behavior,

Managing complexity through design

● Recall: Fundamental problem in software development is
managing complexity

● One key tool in managing and guiding complexity is
software architecture
– The overall structure of a system including its components,

how they communicate (interfaces & protocols),
how they control behavior,
and nonfunctional requirements

Managing complexity through design

● Recall: Fundamental problem in software development is
managing complexity

● One key tool in managing and guiding complexity is
software architecture
– The overall structure of a system including its components,

how they communicate (interfaces & protocols),
how they control behavior,
and nonfunctional requirements

● The issues cross boundaries of scale and context
– design patterns↔enterprise system designs
– monolithic↔microservice

Goals of architecture

● Software architecture should help
– Identify and analyze key design constraints
– Analyze the trade-offs of design options

Goals of architecture

● Software architecture should help
– Identify and analyze key design constraints
– Analyze the trade-offs of design options
– Guide the design of potential solutions

Goals of architecture

● Software architecture should help
– Identify and analyze key design constraints
– Analyze the trade-offs of design options
– Guide the design of potential solutions
– Direct and allocate people

Goals of architecture

● Software architecture should help
– Identify and analyze key design constraints
– Analyze the trade-offs of design options
– Guide the design of potential solutions
– Direct and allocate people

● Even architecture is iterative and incremental
– Both analysis and design play a crucial role
– Each will help refine the other iteratively

Goals of architecture

● Software architecture should help
– Identify and analyze key design constraints
– Analyze the trade-offs of design options
– Guide the design of potential solutions
– Direct and allocate people

● Even architecture is iterative and incremental
– Both analysis and design play a crucial role
– Each will help refine the other iteratively
– Architecture will drift!

Goals of architecture

● Software architecture should help
– Identify and analyze key design constraints
– Analyze the trade-offs of design options
– Guide the design of potential solutions
– Direct and allocate people

● Even architecture is iterative and incremental
– Both analysis and design play a crucial role
– Each will help refine the other iteratively
– Architecture will drift!

● Common patterns and styles arise from goals and requirements
– (Several of which you are already supposed to know....)

Classical architectural styles [Garlan & Shaw, 1994]

● Pipe and filter/ Pipeline
– Filters operate on data format
– Pipes connect the filters together

Filter
A

Filter
B

Pipe

Classical architectural styles [Garlan & Shaw, 1994]

● Pipe and filter/ Pipeline
– Filters operate on data format
– Pipes connect the filters together

Filter
A

Filter
B

Filter
C

Filter
B

Filter
E

Pipe Pipe Pipe Pipe

Filter
D

PipePipe

Classical architectural styles [Garlan & Shaw, 1994]

● Pipe and filter/ Pipeline
– Filters operate on data format
– Pipes connect the filters together

● Pros:
– Adding filters is easy
– Understanding flow & maintenance is easy
– If pipes carry a common type, filters can be dynamic, reordered, ...

Filter
A

Filter
B

Filter
C

Filter
B

Filter
E

Pipe Pipe Pipe Pipe

Filter
D

PipePipe

Classical architectural styles [Garlan & Shaw, 1994]

● Pipe and filter/ Pipeline
– Filters operate on data format
– Pipes connect the filters together

● Pros:
– Adding filters is easy
– Understanding flow & maintenance is easy
– If pipes carry a common type, filters can be dynamic, reordered, ...

● Cons: Favor batch processing over incrementality

Filter
A

Filter
B

Filter
C

Filter
B

Filter
E

Pipe Pipe Pipe Pipe

Filter
D

PipePipe

Classical architectural styles [Garlan & Shaw, 1994]

● Pipe and filter/ Pipeline
– Filters operate on data format
– Pipes connect the filters together

● Pros:
– Adding filters is easy
– Understanding flow & maintenance is easy
– If pipes carry a common type, filters can be dynamic, reordered, ...

● Cons: Favor batch processing over incrementality
● Example: Unix Pipes

Filter
A

Filter
B

Filter
C

Filter
B

Filter
E

Pipe Pipe Pipe Pipe

Filter
D

PipePipe

Classical architectural styles [Garlan & Shaw, 1994]

● Client - Server
– Independent clients may make requests of a server
– The server waits for requests and handles them

Client
A

Client
C

ServerClient
B request

request

request

Classical architectural styles [Garlan & Shaw, 1994]

● Client - Server
– Independent clients may make requests of a server
– The server waits for requests and handles them
– Often involve networking & multiple processes, but do not need to

Client
A

Client
C

ServerClient
B request

request

request

Classical architectural styles [Garlan & Shaw, 1994]

● Client - Server
– Independent clients may make requests of a server
– The server waits for requests and handles them
– Often involve networking & multiple processes, but do not need to

Client
A

Client
C

ServerClient
B request

request

request

How does this relate to our
discussion on complexity?

Classical architectural styles [Garlan & Shaw, 1994]

● Client - Server
– Independent clients may make requests of a server
– The server waits for requests and handles them
– Often involve networking & multiple processes, but do not need to

● Pros:
– Clients are independent & decoupled

Client
A

Client
C

ServerClient
B request

request

request

Classical architectural styles [Garlan & Shaw, 1994]

● Client - Server
– Independent clients may make requests of a server
– The server waits for requests and handles them
– Often involve networking & multiple processes, but do not need to

● Pros:
– Clients are independent & decoupled

● Cons:
– Clients are coupled to the server. (How easy is the server to replace?)

Client
A

Client
C

ServerClient
B request

request

request

Classical architectural styles
● Broker

– Servers register with a broker

Client
AClient

C

Server
1

Client
B

Server
2

Broker

Classical architectural styles
● Broker

– Servers register with a broker
– Client requests are forwarded through brokers to servers

Client
AClient

C

Server
1

Client
B

request

request

request

Server
2

Broker

Classical architectural styles
● Broker

– Servers register with a broker
– Client requests are forwarded through brokers to servers
– The servers wait for requests and handle them

Client
AClient

C

Server
1

Client
B

request

request

request

Server
2

Broker

Classical architectural styles
● Broker

– Servers register with a broker
– Client requests are forwarded through brokers to servers
– The servers wait for requests and handle them

Client
AClient

C

Server
1

Client
B

request

request

request

Server
2

Broker

How does this relate to our
discussion on complexity?

Classical architectural styles
● Broker

– Servers register with a broker
– Client requests are forwarded through brokers to servers
– The servers wait for requests and handle them

● Pros:
– Clients are independent & decoupled
– Horizontal scaling of brokers & servers

Client
AClient

C

Server
1

Client
B

request

request

request

Server
2

Broker

Classical architectural styles
● Broker

– Servers register with a broker
– Client requests are forwarded through brokers to servers
– The servers wait for requests and handle them

● Pros:
– Clients are independent & decoupled
– Horizontal scaling of brokers & servers

● Cons:
– Brokers themselves become a single point of failure
– Starts to involve many components (complexity)

Client
AClient

C

Server
1

Client
B

request

request

request

Server
2

Broker

Classical architectural styles [Garlan & Shaw, 1994]

● Publish-Subscribe (event based / observer / ...)
– Event subscribers register with a mediator or by broadcast

Publisher
A

Publisher
C

Publisher
B

Mediator/
Broadcast Medium

Subscriber
1

Subscriber
2

Subscriber
3

Classical architectural styles [Garlan & Shaw, 1994]

● Publish-Subscribe (event based / observer / ...)
– Event subscribers register with a mediator or by broadcast
– Publishers broadcast that events have happened

Publisher
A

Publisher
C

Publisher
B

eventevent Mediator/
Broadcast Medium

Subscriber
1

Subscriber
2

Subscriber
3

event

Classical architectural styles [Garlan & Shaw, 1994]

● Publish-Subscribe (event based / observer / ...)
– Event subscribers register with a mediator or by broadcast
– Publishers broadcast that events have happened
– Subscribers are notified & process events

Publisher
A

Publisher
C

Publisher
B

event

eventevent Mediator/
Broadcast Medium

Subscriber
1

Subscriber
2

Subscriber
3

Classical architectural styles [Garlan & Shaw, 1994]

● Publish-Subscribe (event based / observer / ...)
– Event subscribers register with a mediator or by broadcast
– Publishers broadcast that events have happened
– Subscribers are notified & process events

● Pros:
– Highly decoupled. No concrete knowledge of specific actors.
– Very easy reuse.

Publisher
A

Publisher
C

Publisher
B

event

eventevent Mediator/
Broadcast Medium

Subscriber
1

Subscriber
2

Subscriber
3

Classical architectural styles [Garlan & Shaw, 1994]

● Publish-Subscribe (event based / observer / ...)
– Event subscribers register with a mediator or by broadcast
– Publishers broadcast that events have happened
– Subscribers are notified & process events

● Pros:
– Highly decoupled. No concrete knowledge of specific actors.
– Very easy reuse.

● Cons:
– No guarantees on ordering
– If actors are not actually independent, it becomes challenging to understand

Publisher
A

Publisher
C

Publisher
B

event

eventevent Mediator/
Broadcast Medium

Subscriber
1

Subscriber
2

Subscriber
3

Classical architectural styles [Garlan & Shaw, 1994]

● Layered
– Cohesive abstractions separated into layers

Classical architectural styles [Garlan & Shaw, 1994]

● Layered
– Cohesive abstractions separated into layers

Presentation
Logic

Persistence

Classical architectural styles [Garlan & Shaw, 1994]

● Layered
– Cohesive abstractions separated into layers

Presentation
Logic

Persistence

View
Application

Domain
Infrastructure

[Cunningham]

http://wiki.c2.com/?FourLayerArchitecture

Classical architectural styles [Garlan & Shaw, 1994]

● Layered
– Cohesive abstractions separated into layers

● Pros:
– Clear interfaces can allow layers to be replaced
– Each layer can be focused

Presentation
Logic

Persistence

View
Application

Domain
Infrastructure

[Cunningham]

http://wiki.c2.com/?FourLayerArchitecture

Classical architectural styles [Garlan & Shaw, 1994]

● Layered
– Cohesive abstractions separated into layers

● Pros:
– Clear interfaces can allow layers to be replaced
– Each layer can be focused

● Cons:
– How can we identify clear layer boundaries?
– Higher layers may be coupled to lower layers

Presentation
Logic

Persistence

View
Application

Domain
Infrastructure

[Cunningham]

http://wiki.c2.com/?FourLayerArchitecture

Classical architectural styles [Garlan & Shaw, 1994]

● Others
– MVC, MVVM, ...
– Blackboard
– Repository
– Table driven
– ...

More recent styles

● Layering and decoupling are pushed further

More recent styles

● Layering and decoupling are pushed further
● A problem with layers:

– Higher layers may be coupled with specific lower layers

More recent styles

● Layering and decoupling are pushed further
● A problem with layers:

– Higher layers may be coupled with specific lower layers
View

Application

Domain

Infrastructure

More recent styles

● Layering and decoupling are pushed further
● A problem with layers:

– Higher layers may be coupled with specific lower layers
View

Application

Domain

Infrastructure

Student Management

SQLite Storage

What if you want
some other storage?

More recent styles

● Layering and decoupling are pushed further
● A problem with layers:

– Higher layers may be coupled with specific lower layers
View

Application

Domain

Infrastructure

Application

IDomainInfra Infra

IDomainAPI

DomainImpl

More recent styles

● Layering and decoupling are pushed further
● A problem with layers:

– Higher layers may be coupled with specific lower layers
View

Application

Domain

Infrastructure

Application

IDomainInfra Infra

IDomainAPI

DomainImpl

Dependency Inversion
from SOLID design

More recent styles

● Layering and decoupling are pushed further
● A problem with layers:

– Higher layers may be coupled with specific lower layers
View

Application

Domain

Infrastructure

Application

IDomainInfra Infra

IDomainAPI

DomainImpl

What happens when we apply
this to all interactions with the domain?

More recent styles

● Layering and decoupling are pushed further
● A problem with layers:

– Higher layers may be coupled with lower layers

More recent styles

● Layering and decoupling are pushed further
● A problem with layers:

– Higher layers may be coupled with lower layers

● Focus on your “layer” or component at the core,
and depend on interfaces for other “layers”

More recent styles

● Layering and decoupling are pushed further
● A problem with layers:

– Higher layers may be coupled with lower layers

● Focus on your “layer” or component at the core,
and depend on interfaces for other “layers”

Domain

More recent styles

● Layering and decoupling are pushed further
● A problem with layers:

– Higher layers may be coupled with lower layers

● Focus on your “layer” or component at the core,
and depend on interfaces for other “layers”

Domain

Admin Console

More recent styles

● Layering and decoupling are pushed further
● A problem with layers:

– Higher layers may be coupled with lower layers

● Focus on your “layer” or component at the core,
and depend on interfaces for other “layers”

Domain

Admin Console Emailer

More recent styles

● Layering and decoupling are pushed further
● A problem with layers:

– Higher layers may be coupled with lower layers

● Focus on your “layer” or component at the core,
and depend on interfaces for other “layers”

Domain

GUI VIew

Admin Console Emailer

More recent styles

● Layering and decoupling are pushed further
● A problem with layers:

– Higher layers may be coupled with lower layers

● Focus on your “layer” or component at the core,
and depend on interfaces for other “layers”

Domain

ORMGUI VIew

Admin Console Emailer

More recent styles

● Layering and decoupling are pushed further
● A problem with layers:

– Higher layers may be coupled with lower layers

● Focus on your “layer” or component at the core,
and depend on interfaces for other “layers”

Domain

ORMGUI VIew

Admin Console Emailer

More recent styles

● Layering and decoupling are pushed further
● A problem with layers:

– Higher layers may be coupled with lower layers

● Focus on your “layer” or component at the core,
and depend on interfaces for other “layers”

Domain

ORMGUI VIew

Admin Console Emailer

More recent styles

● Layering and decoupling are pushed further
● A problem with layers:

– Higher layers may be coupled with lower layers

● Focus on your “layer” or component at the core,
and depend on interfaces for other “layers”

● This is known as:
– Hexagonal architecture
– Ports & adaptors
– Onion architecture
– Clean architecture

More recent styles

● This idiom is common in many contexts

More recent styles

● This idiom is common in many contexts
– Modern monoliths (single program apps)
– Service oriented architecture

More recent styles

● This idiom is common in many contexts
– Modern monoliths (single program apps)
– Service oriented architecture
– Microservices
– ...

Visualizing Designs

● You have seen several UML diagrams in CMPT 276 that help
communicate
– Be careful. UML is only a tool for communication. It is not design.

Visualizing Designs

● You have seen several UML diagrams in CMPT 276 that help
communicate
– Be careful. UML is only a tool for communication. It is not design.

● 2 Common hurdles prevent visualizing & discussing design well

Visualizing Designs

● You have seen several UML diagrams in CMPT 276 that help
communicate
– Be careful. UML is only a tool for communication. It is not design.

● 2 Common hurdles prevent visualizing & discussing design well
– Hierarchy / Abstraction

Visualizing Designs

● You have seen several UML diagrams in CMPT 276 that help
communicate
– Be careful. UML is only a tool for communication. It is not design.

● 2 Common hurdles prevent visualizing & discussing design well
– Hierarchy / Abstraction

Visualizing Designs

● You have seen several UML diagrams in CMPT 276 that help
communicate
– Be careful. UML is only a tool for communication. It is not design.

● 2 Common hurdles prevent visualizing & discussing design well
– Hierarchy / Abstraction

Visualizing Designs

● You have seen several UML diagrams in CMPT 276 that help
communicate
– Be careful. UML is only a tool for communication. It is not design.

● 2 Common hurdles prevent visualizing & discussing design well
– Hierarchy / Abstraction
– Perspective

Visualizing Designs

● You have seen several UML diagrams in CMPT 276 that help
communicate
– Be careful. UML is only a tool for communication. It is not design.

● 2 Common hurdles prevent visualizing & discussing design well
– Hierarchy / Abstraction
– Perspective

Person
state ∈
 {running,
 sleeping}

Visualizing Designs

● You have seen several UML diagrams in CMPT 276 that help
communicate
– Be careful. UML is only a tool for communication. It is not design.

● 2 Common hurdles prevent visualizing & discussing design well
– Hierarchy / Abstraction
– Perspective

Person
state ∈
 {running,
 sleeping}

Running Sleeping

sleep()

run()

Visualizing Designs

● You have seen several UML diagrams in CMPT 276 that help
communicate
– Be careful. UML is only a tool for communication. It is not design.

● 2 Common hurdles prevent visualizing & discussing design well
– Hierarchy / Abstraction
– Perspective

Person
state ∈
 {running,
 sleeping}

Running Sleeping

sleep()

run()

Requester Handler Scheduler

request()

tick()

respond()

Visualizing Designs

● You have seen several UML diagrams in CMPT 276 that help
communicate
– Be careful. UML is only a tool for communication. It is not design.

● 2 Common hurdles prevent visualizing & discussing design well
– Hierarchy / Abstraction
– Perspective

● Consider a system from multiple hierarchies to avoid missing the big
picture

Visualizing Designs

● You have seen several UML diagrams in CMPT 276 that help
communicate
– Be careful. UML is only a tool for communication. It is not design.

● 2 Common hurdles prevent visualizing & discussing design well
– Hierarchy / Abstraction
– Perspective

● Consider a system from multiple hierarchies to avoid missing the big
picture

● Consider both static & dynamic contexts

Tips

● Prefer to reduce the number of boundary crossings
and the # of places they happen

Tips

● Prefer to reduce the number of boundary crossings
and the # of places they happen

main()

foo() bar()

io() io() io() io() io() io()

baz()

Tips

● Prefer to reduce the number of boundary crossings
and the # of places they happen

main()

foo() bar()

io() io() io() io() io() io()

main()

read()baz() foo() bar() baz() write()

Tips

● Prefer to reduce the number of boundary crossings
and the # of places they happen

● Prefer batch processing unless incrementality is required

Tips

● Prefer to reduce the number of boundary crossings
and the # of places they happen

● Prefer batch processing unless incrementality is required
– Operating at Google scale can require incrementality
– Batch processing is clearer & groups related code if you can use it

Tips

● Prefer to reduce the number of boundary crossings
and the # of places they happen

● Prefer batch processing unless incrementality is required
● Prefer to keep your in-flight data immutable

Tips

● Prefer to reduce the number of boundary crossings
and the # of places they happen

● Prefer batch processing unless incrementality is required
● Prefer to keep your in-flight data immutable

– It is easier to see where a bad object was created than when it was
corrupted

Tips

● Prefer to reduce the number of boundary crossings
and the # of places they happen

● Prefer batch processing unless incrementality is required
● Prefer to keep your in-flight data immutable
● Start by following a user story through the system. Follow the data.

– Where is data created?
– Where is data transformed or consumed?
– Where is new data made observable?

All of these indicate components.

The Hidden Challenge

We have looked at many different architectural issues,
but they have focused on the abstract & left something missing:

The Hidden Challenge

We have looked at many different architectural issues,
but they have focused on the abstract & left something missing:

How do we decide the boundaries of a component?

Summary

● There are several architectural idioms that can be useful in creating a
flexible program

Summary

● There are several architectural idioms that can be useful in creating a
flexible program

● Cleanly separating out layers & interfaces is crucial in modern designs

Summary

● There are several architectural idioms that can be useful in creating a
flexible program

● Cleanly separating out layers & interfaces is crucial in modern designs
● When first designing, follow the data of a user story

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85

