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Managing complexity through design

● Recall: Fundamental problem in software development is
managing complexity

● One key tool in managing and guiding complexity is
software architecture
– The overall structure of a system including its components,

how they communicate (interfaces & protocols),
how they control behavior,
and nonfunctional requirements

● The issues cross boundaries of scale and context
– design patterns↔enterprise system designs
– monolithic↔microservice
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Goals of architecture

● Software architecture should help
– Identify and analyze key design constraints
– Analyze the trade-offs of design options
– Guide the design of potential solutions
– Direct and allocate people

● Even architecture is iterative and incremental
– Both analysis and design play a crucial role
– Each will help refine the other iteratively
– Architecture will drift!

● Common patterns and styles arise from goals and requirements
– (Several of which you are already supposed to know....)
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Classical architectural styles [Garlan & Shaw, 1994]  

● Pipe and filter/ Pipeline
– Filters operate on data format
– Pipes connect the filters together

● Pros:
– Adding filters is easy
– Understanding flow & maintenance is easy
– If pipes carry a common type, filters can be dynamic, reordered, ...

● Cons: Favor batch processing over incrementality
● Example: Unix Pipes
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● Client - Server
– Independent clients may make requests of a server
– The server waits for requests and handles them
– Often involve networking & multiple processes, but do not need to

● Pros:
– Clients are independent & decoupled

● Cons:
– Clients are coupled to the server. (How easy is the server to replace?)
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Classical architectural styles 
● Broker

– Servers register with a broker
– Client requests are forwarded through brokers to servers
– The servers wait for requests and handle them

● Pros:
– Clients are independent & decoupled
– Horizontal scaling of brokers & servers
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Classical architectural styles 
● Broker

– Servers register with a broker
– Client requests are forwarded through brokers to servers
– The servers wait for requests and handle them

● Pros:
– Clients are independent & decoupled
– Horizontal scaling of brokers & servers

● Cons:
– Brokers themselves become a single point of failure
– Starts to involve many components (complexity)
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● Publish-Subscribe (event based / observer / ...)
– Event subscribers register with a mediator or by broadcast
– Publishers broadcast that events have happened
– Subscribers are notified & process events

● Pros:
– Highly decoupled. No concrete knowledge of specific actors.
– Very easy reuse.

● Cons:
– No guarantees on ordering
– If actors are not actually independent, it becomes challenging to understand
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Classical architectural styles [Garlan & Shaw, 1994]  

● Layered
– Cohesive abstractions separated into layers

● Pros:
– Clear interfaces can allow layers to be replaced
– Each layer can be focused

● Cons:
– How can we identify clear layer boundaries?
– Higher layers may be coupled to lower layers

Presentation
Logic

Persistence

View
Application

Domain
Infrastructure

[Cunningham]

http://wiki.c2.com/?FourLayerArchitecture


  

Classical architectural styles [Garlan & Shaw, 1994]  

● Others
– MVC, MVVM, ...
– Blackboard
– Repository
– Table driven
– ...
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● Layering and decoupling are pushed further
● A problem with layers:

– Higher layers may be coupled with specific lower layers
View

Application

Domain

Infrastructure

Application

IDomainInfra Infra

IDomainAPI

DomainImpl

What happens when we apply
this to all interactions with the domain?
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More recent styles

● Layering and decoupling are pushed further
● A problem with layers:

– Higher layers may be coupled with lower layers

● Focus on your “layer” or component at the core,
and depend on interfaces for other “layers”

● This is known as:
– Hexagonal architecture
– Ports & adaptors
– Onion architecture
– Clean architecture
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● This idiom is common in many contexts
– Modern monoliths (single program apps)
– Service oriented architecture
– Microservices
– ...
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● You have seen several UML diagrams in CMPT 276 that help 
communicate
– Be careful. UML is only a tool for communication. It is not design.

● 2 Common hurdles prevent visualizing & discussing design well
– Hierarchy / Abstraction
– Perspective

Person
state ∈
  {running,
   sleeping}

Running Sleeping

sleep()

run()

Requester Handler Scheduler

request()

tick()

respond()
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Visualizing Designs

● You have seen several UML diagrams in CMPT 276 that help 
communicate
– Be careful. UML is only a tool for communication. It is not design.

● 2 Common hurdles prevent visualizing & discussing design well
– Hierarchy / Abstraction
– Perspective

● Consider a system from multiple hierarchies to avoid missing the big 
picture

● Consider both static & dynamic contexts
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– It is easier to see where a bad object was created than when it was 
corrupted



  

Tips

● Prefer to reduce the number of boundary crossings
and the # of places they happen

● Prefer batch processing unless incrementality is required
● Prefer to keep your in-flight data immutable
● Start by following a user story through the system. Follow the data.

– Where is data created?
– Where is data transformed or consumed?
– Where is new data made observable?

All of these indicate components.
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The Hidden Challenge

We have looked at many different architectural issues,
but they have focused on the abstract & left something missing:

How do we decide the boundaries of a component?
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Summary

● There are several architectural idioms that can be useful in creating a 
flexible program

● Cleanly separating out layers & interfaces is crucial in modern designs
● When first designing, follow the data of a user story
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