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Levels of Testing

● Many different levels of testing can be considered:
– Unit Tests

– Integration Tests

– System Tests

– Acceptance Tests

– …

● The simplest of these is Unit Testing
– Testing the smallest possible fragments of a program
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● Try to ensure that the functionality of each component works in 
isolation
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Unit Testing

● Try to ensure that the functionality of each component works in 
isolation
– Unit Test a car:

Wheels work. Steering wheel works....
– Integration Test a car:

Steering wheel turns the wheels....
– System Test a car:

 Driving down the highway with the air conditioning on works....

● Not testing how well things are glued together.

Why? How is this beneficial?
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● A dual view:
– They specify the expected behavior of individual components
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Unit Tests

● A dual view:
– They specify the expected behavior of individual components

– An executable specification

● Can even be built first & used to guide development
– Usually called Test Driven Development
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● Some guiding principles:
– Focus on one component in isolation

– Be simple to set up & run

– Be easy to understand
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Unit Tests

● Some guiding principles:
– Focus on one component in isolation

– Be simple to set up & run

– Be easy to understand

● Usually managed by some automating framework ....
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● Increasingly used framework for C++
– Not dissimilar from JUnit



16

GoogleTest

● Increasingly used framework for C++
– Not dissimilar from JUnit

● Test cases are written as functions:

TEST(TriangleTest, isEquilateral) {
  Triangle tri{2,2,2};
  EXPECT_TRUE(tri.isEquilateral());
}



17

GoogleTest

● Increasingly used framework for C++
– Not dissimilar from JUnit

● Test cases are written as functions:

TEST(TriangleTest, isEquilateral) {
  Triangle tri{2,2,2};
  EXPECT_TRUE(tri.isEquilateral());
}The TEST macro defines
individual test cases.



18

GoogleTest

● Increasingly used framework for C++
– Not dissimilar from JUnit

● Test cases are written as functions:

TEST(TriangleTest, isEquilateral) {
  Triangle tri{2,2,2};
  EXPECT_TRUE(tri.isEquilateral());
}

The first argument
names related tests.



19

GoogleTest

● Increasingly used framework for C++
– Not dissimilar from JUnit

● Test cases are written as functions:

TEST(TriangleTest, isEquilateral) {
  Triangle tri{2,2,2};
  EXPECT_TRUE(tri.isEquilateral());
}

The second argument
names individual test cases.
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GoogleTest

● Increasingly used framework for C++
– Not dissimilar from JUnit

● Test cases are written as functions:

TEST(TriangleTest, isEquilateral) {
  Triangle tri{2,2,2};
  EXPECT_TRUE(tri.isEquilateral());
}EXPECT and ASSERT macros

provide correctness oracles.
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GoogleTest

● Increasingly used framework for C++
– Not dissimilar from JUnit

● Test cases are written as functions:

TEST(TriangleTest, isEquilateral) {
  Triangle tri{2,2,2};
  EXPECT_TRUE(tri.isEquilateral());
}
ASSERT oracles terminate the program when they fail.

EXPECT oracles allow the program to continue running.
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● Increasingly used framework for C++
– Not dissimilar from JUnit

● Test cases are written as functions.

● TEST() cases are automatically registered with GoogleTest and are 
executed by the test driver.
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GoogleTest

● Increasingly used framework for C++
– Not dissimilar from JUnit

● Test cases are written as functions.

● TEST() cases are automatically registered with GoogleTest and are 
executed by the test driver.

● Some tests require common setUp & tearDown
– Group them into test fixtures

– A fresh fixture is created for each test
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GoogleTest - Fixtures

class StackTest : public ::testing::Test {
 protected:
  void SetUp() override {
    s1.push(1);
    s2.push(2);
    s2.push(3);
  }

  void TearDown() override { }

  Stack<int> s1;
  Stack<int> s2;
}; Derive from the fixture base class
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GoogleTest - Fixtures

class StackTest : public ::testing::Test {
 protected:
  void SetUp() override {
    s1.push(1);
    s2.push(2);
    s2.push(3);
  }

  void TearDown() override { }

  Stack<int> s1;
  Stack<int> s2;
};TearDown() will be called after

all tests using the fixture
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GoogleTest - Fixtures

Use the fixture in test cases defined with TEST_F:

TEST_F(StackTest, popOfOneIsEmpty) {
  s1.pop();
  EXPECT_EQ(0, s1.size());
}
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GoogleTest - Fixtures

Use the fixture in test cases defined with TEST_F:

TEST_F(StackTest, popOfOneIsEmpty) {
  s1.pop();
  EXPECT_EQ(0, s1.size());
}

{
  StackTest t;
  t.SetUp();
  t.popOfOneIsEmpty();
  t.TearDown();
}

Behaves like
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GoogleTest - Fixtures

Use the fixture in test cases defined with TEST_F:

TEST_F(StackTest, popOfOneIsEmpty) {
  s1.pop();
  EXPECT_EQ(0, s1.size());
}

A different expectation than before!
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GoogleTest - Fixtures

Use the fixture in test cases defined with TEST_F:

TEST_F(StackTest, popOfOneIsEmpty) {
  s1.pop();
  EXPECT_EQ(0, s1.size());
}

expected
value
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GoogleTest - Fixtures

Use the fixture in test cases defined with TEST_F:

TEST_F(StackTest, popOfOneIsEmpty) {
  s1.pop();
  EXPECT_EQ(0, s1.size());
}

expected
value

observed
value
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GoogleTest

● Many different assertions and expectations available

ASSERT_TRUE(condition);
ASSERT_FALSE(condition);
ASSERT_EQ(expected,actual);
ASSERT_NE(val1,val2);
ASSERT_LT(val1,val2);
ASSERT_LE(val1,val2);
ASSERT_GT(val1,val2);
ASSERT_GE(val1,val2);

EXPECT_TRUE(condition);
EXPECT_FALSE(condition);
EXPECT_EQ(expected,actual);
EXPECT_NE(val1,val2);
EXPECT_LT(val1,val2);
EXPECT_LE(val1,val2);
EXPECT_GT(val1,val2);
EXPECT_GE(val1,val2);

…
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GoogleTest

● Many different assertions and expectations available

● More information available online
– github.com/google/googletest/blob/master/googletest/docs/Primer.md

– github.com/google/googletest/blob/master/googletest/docs/AdvancedGuide.md

https://github.com/google/googletest/blob/master/googletest/docs/Primer.md
https://github.com/google/googletest/blob/master/googletest/docs/AdvancedGuide.md
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Common Patterns (Ammonn & Offutt)

● Checking State
– Final State

● Prepare initial state
● Run test
● Check final state
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Common Patterns (Ammonn & Offutt)

● Checking State
– Final State

● Prepare initial state
● Run test
● Check final state

– Pre and Post conditions
● Check initial state as well as final state

– Relative effects
● Check final state relative to some initial state

– Round trips
● Check behavior on transform/inverse transform pairs
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Common Patterns (Ammonn & Offutt)

● Checking Interactions/Behavior
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Common Patterns (Ammonn & Offutt)

● Checking Interactions/Behavior

void walkAroundSquare(Person& person) {
  person.step();
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  person.turnRight();
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  // Skipped: person.turnRight();
  person.step();
}
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void walkAroundSquare(Person& person) {
  person.step();
  person.turnRight();
  person.step();
  person.turnRight();
  person.step();
  // Skipped: person.turnRight();
  person.step();
}

Common Patterns (Ammonn & Offutt)

● Checking Interactions/Behavior

Intended

How can we test walkAroundSquare()?

Actual...
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Common Patterns (Ammonn & Offutt)

● Checking Interactions/Behavior
– Use mocks
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Common Patterns (Ammonn & Offutt)

● Checking Interactions/Behavior
– Use mocks

● Testing 'fakes' that verify expected interactions

e.g. a fake Person that looks for correct steps & turns

class MockPerson : public Person {
  // Override methods to check for
  // expected behavior.
};
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Common Patterns (Ammonn & Offutt)

● Checking Interactions/Behavior
– Use mocks

● Testing 'fakes' that verify expected interactions

e.g. a fake Person that looks for correct steps & turns

● http://martinfowler.com/articles/mocksArentStubs.html
● http://googletesting.blogspot.ca/2013/03/testing-on-toilet-testing-state-vs

.html

http://martinfowler.com/articles/mocksArentStubs.html
http://googletesting.blogspot.ca/2013/03/testing-on-toilet-testing-state-vs.html
http://googletesting.blogspot.ca/2013/03/testing-on-toilet-testing-state-vs.html
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Mocking Framework Example

● Frameworks exist that can automate the boilerplate behind:
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Mocking Framework Example

● Frameworks exist that can automate the boilerplate behind:

– Mocking
● e.g. GoogleMock, Mockito, etc.

– Dependency Injection

e.g. Google Guice, Pico Container, etc.
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Using GoogleMock

● Steps:

1) Derive a mock class from the class you wish to fake

class MockThing : public Thing {
  ...
};
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Using GoogleMock

● Steps:

1) Derive a mock class from the class you wish to fake

2) Replace virtual calls with uses of MOCK_METHODn() or 

MOCK_CONST_METHODn().

class MockThing : public Thing {
 public:
  ...
  MOCK_METHOD1(foo, int(int));
  MOCK_METHOD1(bar, void(int));
};
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Using GoogleMock

● Steps:

1) Derive a mock class from the class you wish to fake

2) Replace virtual calls with uses of MOCK_METHODn() or 

MOCK_CONST_METHODn().

3) Use the mock class in your tests.
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Using GoogleMock

● Steps:

1) Derive a mock class from the class you wish to fake

2) Replace virtual calls with uses of MOCK_METHODn() or 

MOCK_CONST_METHODn().

3) Use the mock class in your tests.

4) Specify expectations before use via EXPECT_CALL().
● What arguments? How many times? In what order?InSequence dummy;
EXPECT_CALL(mockThing, foo(Ge(20)))
    .Times(2)
    .WillOnce(Return(100))
    .WillOnce(Return(200));
EXPECT_CALL(mockThing, bar(Lt(5)));
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Using GoogleMock

● Steps:

1) Derive a mock class from the class you wish to fake

2) Replace virtual calls with uses of MOCK_METHODn() or 

MOCK_CONST_METHODn().

3) Use the mock class in your tests.

4) Specify expectations before use via EXPECT_CALL().
● What arguments? How many times? In what order?

5) Expectations are automatically checked in the destructor of the mock.
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Using GoogleMock

● Precisely specifying mock behavior

InSequence dummy;
EXPECT_CALL(mockThing, foo(Ge(20)))
    .Times(2) // Can be omitted here
    .WillOnce(Return(100))
    .WillOnce(Return(200));
EXPECT_CALL(mockThing, bar(Lt(5)));
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Using GoogleMock

● Precisely specifying mock behavior
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Using GoogleMock

● Precisely specifying mock behavior

InSequence dummy;
EXPECT_CALL(mockThing, foo(Ge(20)))
    .Times(2) // Can be omitted here
    .WillOnce(Return(100))
    .WillOnce(Return(200));
EXPECT_CALL(mockThing, bar(Lt(5)));

Complex behaviors can be checked
using these basic pieces.
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Using GoogleMock
TEST(walkingTests, testWalkAroundSquare) {
  
  

  
}
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Using GoogleMock
TEST(walkingTests, testWalkAroundSquare) {
  MockPerson mockPerson;
  

  walkAroundSquare(mockPerson);
}
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Using GoogleMock
TEST(walkingTests, testWalkAroundSquare) {
  MockPerson mockPerson;
  InSequence dummy;
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Using GoogleMock
TEST(walkingTests, testWalkAroundSquare) {
  MockPerson mockPerson;
  InSequence dummy;
  EXPECT_CALL(mockPerson, step());
  EXPECT_CALL(mockPerson, turnRight());
  …
  EXPECT_CALL(mockPerson, turnRight());
  EXPECT_CALL(mockPerson, step());

  walkAroundSquare(mockPerson);
}
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Using GoogleMock
TEST(walkingTests, testWalkAroundSquare) {
  MockPerson mockPerson;
  InSequence dummy;
  EXPECT_CALL(mockPerson, step());
  EXPECT_CALL(mockPerson, turnRight());
  …
  EXPECT_CALL(mockPerson, turnRight());
  EXPECT_CALL(mockPerson, step());

  walkAroundSquare(mockPerson);
}

Note: Mocking couples implementation to tests.
In practice it should be used carefully.
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Common Guidelines

● Have your unit tests mirror/shadow your source

– Foo.cpp → test/FooTest.cpp
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Common Guidelines

● Have your unit tests mirror/shadow your source

– Foo.cpp → test/FooTest.cpp

● Keep each test case focused

● Try to test all conditions & lines

– Much more on this in CMPT 473
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Summary

● Unit testing provides a way to automate much of the testing process.

● Testing small components bootstraps confidence in the system on 
confidence in its constituents.

● Tests can verify state or behaviors.

And this only scratches the surface.
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