
A (hopefully brief) Intro to
Unit Testing

CMPT 373
Software Development Methods

Nick Sumner
with material from the GoogleTest documentation

2

Levels of Testing

● Many different levels of testing can be considered:
– Unit Tests

– Integration Tests

– System Tests

– Acceptance Tests

– …

3

Levels of Testing

● Many different levels of testing can be considered:
– Unit Tests

– Integration Tests

– System Tests

– Acceptance Tests

– …

● The simplest of these is Unit Testing
– Testing the smallest possible fragments of a program

4

Unit Testing

● Try to ensure that the functionality of each component works in
isolation

5

Unit Testing

● Try to ensure that the functionality of each component works in
isolation
– Unit Test a car:

Wheels work. Steering wheel works....

6

Unit Testing

● Try to ensure that the functionality of each component works in
isolation
– Unit Test a car:

Wheels work. Steering wheel works....
– Integration Test a car:

Steering wheel turns the wheels....

7

Unit Testing

● Try to ensure that the functionality of each component works in
isolation
– Unit Test a car:

Wheels work. Steering wheel works....
– Integration Test a car:

Steering wheel turns the wheels....
– System Test a car:

 Driving down the highway with the air conditioning on works...

8

Unit Testing

● Try to ensure that the functionality of each component works in
isolation
– Unit Test a car:

Wheels work. Steering wheel works....
– Integration Test a car:

Steering wheel turns the wheels....
– System Test a car:

 Driving down the highway with the air conditioning on works....

● Not testing how well things are glued together.

9

Unit Testing

● Try to ensure that the functionality of each component works in
isolation
– Unit Test a car:

Wheels work. Steering wheel works....
– Integration Test a car:

Steering wheel turns the wheels....
– System Test a car:

 Driving down the highway with the air conditioning on works....

● Not testing how well things are glued together.

Why? How is this beneficial?

10

Unit Tests

● A dual view:
– They specify the expected behavior of individual components

11

Unit Tests

● A dual view:
– They specify the expected behavior of individual components

– An executable specification

12

Unit Tests

● A dual view:
– They specify the expected behavior of individual components

– An executable specification

● Can even be built first & used to guide development
– Usually called Test Driven Development

13

Unit Tests

● Some guiding principles:
– Focus on one component in isolation

– Be simple to set up & run

– Be easy to understand

14

Unit Tests

● Some guiding principles:
– Focus on one component in isolation

– Be simple to set up & run

– Be easy to understand

● Usually managed by some automating framework

15

GoogleTest

● Increasingly used framework for C++
– Not dissimilar from JUnit

16

GoogleTest

● Increasingly used framework for C++
– Not dissimilar from JUnit

● Test cases are written as functions:

TEST(TriangleTest, isEquilateral) {
 Triangle tri{2,2,2};
 EXPECT_TRUE(tri.isEquilateral());
}

17

GoogleTest

● Increasingly used framework for C++
– Not dissimilar from JUnit

● Test cases are written as functions:

TEST(TriangleTest, isEquilateral) {
 Triangle tri{2,2,2};
 EXPECT_TRUE(tri.isEquilateral());
}The TEST macro defines
individual test cases.

18

GoogleTest

● Increasingly used framework for C++
– Not dissimilar from JUnit

● Test cases are written as functions:

TEST(TriangleTest, isEquilateral) {
 Triangle tri{2,2,2};
 EXPECT_TRUE(tri.isEquilateral());
}

The first argument
names related tests.

19

GoogleTest

● Increasingly used framework for C++
– Not dissimilar from JUnit

● Test cases are written as functions:

TEST(TriangleTest, isEquilateral) {
 Triangle tri{2,2,2};
 EXPECT_TRUE(tri.isEquilateral());
}

The second argument
names individual test cases.

20

GoogleTest

● Increasingly used framework for C++
– Not dissimilar from JUnit

● Test cases are written as functions:

TEST(TriangleTest, isEquilateral) {
 Triangle tri{2,2,2};
 EXPECT_TRUE(tri.isEquilateral());
}EXPECT and ASSERT macros

provide correctness oracles.

21

GoogleTest

● Increasingly used framework for C++
– Not dissimilar from JUnit

● Test cases are written as functions:

TEST(TriangleTest, isEquilateral) {
 Triangle tri{2,2,2};
 EXPECT_TRUE(tri.isEquilateral());
}
ASSERT oracles terminate the program when they fail.

EXPECT oracles allow the program to continue running.

22

GoogleTest

● Increasingly used framework for C++
– Not dissimilar from JUnit

● Test cases are written as functions.

● TEST() cases are automatically registered with GoogleTest and are
executed by the test driver.

23

GoogleTest

● Increasingly used framework for C++
– Not dissimilar from JUnit

● Test cases are written as functions.

● TEST() cases are automatically registered with GoogleTest and are
executed by the test driver.

● Some tests require common setUp & tearDown
– Group them into test fixtures

– A fresh fixture is created for each test

24

GoogleTest - Fixtures

class StackTest : public ::testing::Test {
 protected:
 void SetUp() override {
 s1.push(1);
 s2.push(2);
 s2.push(3);
 }

 void TearDown() override { }

 Stack<int> s1;
 Stack<int> s2;
}; Derive from the fixture base class

25

GoogleTest - Fixtures

class StackTest : public ::testing::Test {
 protected:
 void SetUp() override {
 s1.push(1);
 s2.push(2);
 s2.push(3);
 }

 void TearDown() override { }

 Stack<int> s1;
 Stack<int> s2;
}; SetUp() will be called before

all tests using the fixture

26

GoogleTest - Fixtures

class StackTest : public ::testing::Test {
 protected:
 void SetUp() override {
 s1.push(1);
 s2.push(2);
 s2.push(3);
 }

 void TearDown() override { }

 Stack<int> s1;
 Stack<int> s2;
};TearDown() will be called after

all tests using the fixture

27

GoogleTest - Fixtures

Use the fixture in test cases defined with TEST_F:

TEST_F(StackTest, popOfOneIsEmpty) {
 s1.pop();
 EXPECT_EQ(0, s1.size());
}

28

GoogleTest - Fixtures

Use the fixture in test cases defined with TEST_F:

TEST_F(StackTest, popOfOneIsEmpty) {
 s1.pop();
 EXPECT_EQ(0, s1.size());
}

29

GoogleTest - Fixtures

Use the fixture in test cases defined with TEST_F:

TEST_F(StackTest, popOfOneIsEmpty) {
 s1.pop();
 EXPECT_EQ(0, s1.size());
}

{
 StackTest t;
 t.SetUp();
 t.popOfOneIsEmpty();
 t.TearDown();
}

Behaves like

30

GoogleTest - Fixtures

Use the fixture in test cases defined with TEST_F:

TEST_F(StackTest, popOfOneIsEmpty) {
 s1.pop();
 EXPECT_EQ(0, s1.size());
}

A different expectation than before!

31

GoogleTest - Fixtures

Use the fixture in test cases defined with TEST_F:

TEST_F(StackTest, popOfOneIsEmpty) {
 s1.pop();
 EXPECT_EQ(0, s1.size());
}

expected
value

32

GoogleTest - Fixtures

Use the fixture in test cases defined with TEST_F:

TEST_F(StackTest, popOfOneIsEmpty) {
 s1.pop();
 EXPECT_EQ(0, s1.size());
}

expected
value

observed
value

33

GoogleTest

● Many different assertions and expectations available

ASSERT_TRUE(condition);
ASSERT_FALSE(condition);
ASSERT_EQ(expected,actual);
ASSERT_NE(val1,val2);
ASSERT_LT(val1,val2);
ASSERT_LE(val1,val2);
ASSERT_GT(val1,val2);
ASSERT_GE(val1,val2);

EXPECT_TRUE(condition);
EXPECT_FALSE(condition);
EXPECT_EQ(expected,actual);
EXPECT_NE(val1,val2);
EXPECT_LT(val1,val2);
EXPECT_LE(val1,val2);
EXPECT_GT(val1,val2);
EXPECT_GE(val1,val2);

…

34

GoogleTest

● Many different assertions and expectations available

● More information available online
– github.com/google/googletest/blob/master/googletest/docs/Primer.md

– github.com/google/googletest/blob/master/googletest/docs/AdvancedGuide.md

https://github.com/google/googletest/blob/master/googletest/docs/Primer.md
https://github.com/google/googletest/blob/master/googletest/docs/AdvancedGuide.md

35

Common Patterns (Ammonn & Offutt)

● Checking State
– Final State

● Prepare initial state
● Run test
● Check final state

36

Common Patterns (Ammonn & Offutt)

● Checking State
– Final State

● Prepare initial state
● Run test
● Check final state

– Pre and Post conditions
● Check initial state as well as final state

37

Common Patterns (Ammonn & Offutt)

● Checking State
– Final State

● Prepare initial state
● Run test
● Check final state

– Pre and Post conditions
● Check initial state as well as final state

– Relative effects
● Check final state relative to some initial state

38

Common Patterns (Ammonn & Offutt)

● Checking State
– Final State

● Prepare initial state
● Run test
● Check final state

– Pre and Post conditions
● Check initial state as well as final state

– Relative effects
● Check final state relative to some initial state

– Round trips
● Check behavior on transform/inverse transform pairs

39

Common Patterns (Ammonn & Offutt)

● Checking Interactions/Behavior

40

Common Patterns (Ammonn & Offutt)

● Checking Interactions/Behavior

void walkAroundSquare(Person& person) {
 person.step();
 person.turnRight();
 person.step();
 person.turnRight();
 person.step();
 // Skipped: person.turnRight();
 person.step();
}

41

void walkAroundSquare(Person& person) {
 person.step();
 person.turnRight();
 person.step();
 person.turnRight();
 person.step();
 // Skipped: person.turnRight();
 person.step();
}

Common Patterns (Ammonn & Offutt)

● Checking Interactions/Behavior

Intended

42

void walkAroundSquare(Person& person) {
 person.step();
 person.turnRight();
 person.step();
 person.turnRight();
 person.step();
 // Skipped: person.turnRight();
 person.step();
}

Common Patterns (Ammonn & Offutt)

● Checking Interactions/Behavior

Intended

43

void walkAroundSquare(Person& person) {
 person.step();
 person.turnRight();
 person.step();
 person.turnRight();
 person.step();
 // Skipped: person.turnRight();
 person.step();
}

Common Patterns (Ammonn & Offutt)

● Checking Interactions/Behavior

Intended

44

void walkAroundSquare(Person& person) {
 person.step();
 person.turnRight();
 person.step();
 person.turnRight();
 person.step();
 // Skipped: person.turnRight();
 person.step();
}

Common Patterns (Ammonn & Offutt)

● Checking Interactions/Behavior

Intended

45

void walkAroundSquare(Person& person) {
 person.step();
 person.turnRight();
 person.step();
 person.turnRight();
 person.step();
 // Skipped: person.turnRight();
 person.step();
}

Common Patterns (Ammonn & Offutt)

● Checking Interactions/Behavior

Intended

Actual...

46

void walkAroundSquare(Person& person) {
 person.step();
 person.turnRight();
 person.step();
 person.turnRight();
 person.step();
 // Skipped: person.turnRight();
 person.step();
}

Common Patterns (Ammonn & Offutt)

● Checking Interactions/Behavior

Intended

How can we test walkAroundSquare()?

Actual...

47

Common Patterns (Ammonn & Offutt)

● Checking Interactions/Behavior
– Use mocks

48

Common Patterns (Ammonn & Offutt)

● Checking Interactions/Behavior
– Use mocks

● Testing 'fakes' that verify expected interactions

e.g. a fake Person that looks for correct steps & turns

49

Common Patterns (Ammonn & Offutt)

● Checking Interactions/Behavior
– Use mocks

● Testing 'fakes' that verify expected interactions

e.g. a fake Person that looks for correct steps & turns

class MockPerson : public Person {
 // Override methods to check for
 // expected behavior.
};

50

Common Patterns (Ammonn & Offutt)

● Checking Interactions/Behavior
– Use mocks

● Testing 'fakes' that verify expected interactions

e.g. a fake Person that looks for correct steps & turns

● http://martinfowler.com/articles/mocksArentStubs.html
● http://googletesting.blogspot.ca/2013/03/testing-on-toilet-testing-state-vs

.html

http://martinfowler.com/articles/mocksArentStubs.html
http://googletesting.blogspot.ca/2013/03/testing-on-toilet-testing-state-vs.html
http://googletesting.blogspot.ca/2013/03/testing-on-toilet-testing-state-vs.html

51

Mocking Framework Example

● Frameworks exist that can automate the boilerplate behind:

52

Mocking Framework Example

● Frameworks exist that can automate the boilerplate behind:

– Mocking

e.g. GoogleMock, Mockito, etc.

53

Mocking Framework Example

● Frameworks exist that can automate the boilerplate behind:

– Mocking
● e.g. GoogleMock, Mockito, etc.

– Dependency Injection

e.g. Google Guice, Pico Container, etc.

54

Using GoogleMock

● Steps:

1) Derive a mock class from the class you wish to fake

class MockThing : public Thing {
 ...
};

55

Using GoogleMock

● Steps:

1) Derive a mock class from the class you wish to fake

2) Replace virtual calls with uses of MOCK_METHODn() or

MOCK_CONST_METHODn().

class MockThing : public Thing {
 public:
 ...
 MOCK_METHOD1(foo, int(int));
 MOCK_METHOD1(bar, void(int));
};

56

Using GoogleMock

● Steps:

1) Derive a mock class from the class you wish to fake

2) Replace virtual calls with uses of MOCK_METHODn() or

MOCK_CONST_METHODn().

3) Use the mock class in your tests.

57

Using GoogleMock

● Steps:

1) Derive a mock class from the class you wish to fake

2) Replace virtual calls with uses of MOCK_METHODn() or

MOCK_CONST_METHODn().

3) Use the mock class in your tests.

4) Specify expectations before use via EXPECT_CALL().
● What arguments? How many times? In what order?InSequence dummy;
EXPECT_CALL(mockThing, foo(Ge(20)))
 .Times(2)
 .WillOnce(Return(100))
 .WillOnce(Return(200));
EXPECT_CALL(mockThing, bar(Lt(5)));

58

Using GoogleMock

● Steps:

1) Derive a mock class from the class you wish to fake

2) Replace virtual calls with uses of MOCK_METHODn() or

MOCK_CONST_METHODn().

3) Use the mock class in your tests.

4) Specify expectations before use via EXPECT_CALL().
● What arguments? How many times? In what order?

5) Expectations are automatically checked in the destructor of the mock.

59

Using GoogleMock

● Precisely specifying mock behavior

InSequence dummy;
EXPECT_CALL(mockThing, foo(Ge(20)))
 .Times(2) // Can be omitted here
 .WillOnce(Return(100))
 .WillOnce(Return(200));
EXPECT_CALL(mockThing, bar(Lt(5)));

60

Using GoogleMock

● Precisely specifying mock behavior

InSequence dummy;
EXPECT_CALL(mockThing, foo(Ge(20)))
 .Times(2) // Can be omitted here
 .WillOnce(Return(100))
 .WillOnce(Return(200));
EXPECT_CALL(mockThing, bar(Lt(5)));

61

Using GoogleMock

● Precisely specifying mock behavior

InSequence dummy;
EXPECT_CALL(mockThing, foo(Ge(20)))
 .Times(2) // Can be omitted here
 .WillOnce(Return(100))
 .WillOnce(Return(200));
EXPECT_CALL(mockThing, bar(Lt(5)));

62

Using GoogleMock

● Precisely specifying mock behavior

InSequence dummy;
EXPECT_CALL(mockThing, foo(Ge(20)))
 .Times(2) // Can be omitted here
 .WillOnce(Return(100))
 .WillOnce(Return(200));
EXPECT_CALL(mockThing, bar(Lt(5)));

63

Using GoogleMock

● Precisely specifying mock behavior

InSequence dummy;
EXPECT_CALL(mockThing, foo(Ge(20)))
 .Times(2) // Can be omitted here
 .WillOnce(Return(100))
 .WillOnce(Return(200));
EXPECT_CALL(mockThing, bar(Lt(5)));

64

Using GoogleMock

● Precisely specifying mock behavior

InSequence dummy;
EXPECT_CALL(mockThing, foo(Ge(20)))
 .Times(2) // Can be omitted here
 .WillOnce(Return(100))
 .WillOnce(Return(200));
EXPECT_CALL(mockThing, bar(Lt(5)));

Complex behaviors can be checked
using these basic pieces.

65

Using GoogleMock
TEST(walkingTests, testWalkAroundSquare) {

}

66

Using GoogleMock
TEST(walkingTests, testWalkAroundSquare) {
 MockPerson mockPerson;

 walkAroundSquare(mockPerson);
}

67

Using GoogleMock
TEST(walkingTests, testWalkAroundSquare) {
 MockPerson mockPerson;
 InSequence dummy;

 walkAroundSquare(mockPerson);
}

68

Using GoogleMock
TEST(walkingTests, testWalkAroundSquare) {
 MockPerson mockPerson;
 InSequence dummy;
 EXPECT_CALL(mockPerson, step());
 EXPECT_CALL(mockPerson, turnRight());
 …
 EXPECT_CALL(mockPerson, turnRight());
 EXPECT_CALL(mockPerson, step());

 walkAroundSquare(mockPerson);
}

69

Using GoogleMock
TEST(walkingTests, testWalkAroundSquare) {
 MockPerson mockPerson;
 InSequence dummy;
 EXPECT_CALL(mockPerson, step());
 EXPECT_CALL(mockPerson, turnRight());
 …
 EXPECT_CALL(mockPerson, turnRight());
 EXPECT_CALL(mockPerson, step());

 walkAroundSquare(mockPerson);
}

Note: Mocking couples implementation to tests.
In practice it should be used carefully.

70

Common Guidelines

● Have your unit tests mirror/shadow your source

– Foo.cpp → test/FooTest.cpp

71

Common Guidelines

● Have your unit tests mirror/shadow your source

– Foo.cpp → test/FooTest.cpp

● Keep each test case focused

72

Common Guidelines

● Have your unit tests mirror/shadow your source

– Foo.cpp → test/FooTest.cpp

● Keep each test case focused

● Try to test all conditions & lines

– Much more on this in CMPT 473

73

Summary

● Unit testing provides a way to automate much of the testing process.

74

Summary

● Unit testing provides a way to automate much of the testing process.

● Testing small components bootstraps confidence in the system on
confidence in its constituents.

75

Summary

● Unit testing provides a way to automate much of the testing process.

● Testing small components bootstraps confidence in the system on
confidence in its constituents.

● Tests can verify state or behaviors.

76

Summary

● Unit testing provides a way to automate much of the testing process.

● Testing small components bootstraps confidence in the system on
confidence in its constituents.

● Tests can verify state or behaviors.

And this only scratches the surface.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76

