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C++ was complicated/intimidating

● Pointers
– Arithmetic & indexing
– dangling
– when to new and delete

● Nontrivial types
– inheritance
– long names & scoping (iterators)
– templates

● Many proposed rules (of varying validity)
– Rule of 3
– Don’t pass/return objects to/from functions by value
– ...
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Modern C++

● Significant effort has gone into revising C++ since C++03
– Identifying & simplifying unnecessary complexity
– Adopting features that help reduce complexity in large scale projects.

● Safety
– types, bounds, lifetimes

● Syntactic sugar (with safety benefits)
● Now developed under a lightweight process with new revisions

every ~3 years.
To get you (re)acquainted,

we will explore some of modern C++ for now.

I will assume familiarity with older C++,
constructors, destructors, etc.
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Managing Object Lifetimes

Suppose I have a Widget class constructed from an int and a string.
● How might I create one?

Widget w{0, "fritter"};
Brace initialization was new in C++11



  

Managing Object Lifetimes

Suppose I have a Widget class constructed from an int and a string.
● How might I create one?

Where does w live in memory?
Is that good/bad?

Widget w{0, "fritter"};
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Managing Object Lifetimes

Suppose I have a Widget class constructed from an int and a string.
● How might I create one?

– Automatic variables/management should be the default.
● What about creating one on the heap?

Old:

Widget w{0, "fritter"};

Widget* w = new Widget{0, "fritter"};
What problems does this create?



  

Managing Object Lifetimes

Suppose I have a Widget class constructed from an int and a string.
● How might I create one?

– Automatic variables/management should be the default.
● What about creating one on the heap?

– Need to delete everything.
– Need to delete everything only once.
– Complex object graphs make this harder

Old:

Widget w{0, "fritter"};

Widget* w = new Widget{0, "fritter"};
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Managing Object Lifetimes

Object graphs/lifetimes are complex

Stack

Which pointers can I 
delete & when?



  

Managing Object Lifetimes (Tangent)

Object graphs/lifetimes are complex

Stack

When you use a data structure,
do you usually worry about these?



  

Managing Object Lifetimes (Tangent)

{
  std::vector<Widget> widgets
  widgets.emplace_back(3, “Fritter”);
  widgets.emplace_back(2, “Double chocolate”);
  widgets.emplace_back(3, “Maple Cream”);
}

Stack
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Stack Heap
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Managing Object Lifetimes (Tangent)

{
  std::vector<Widget> widgets
  widgets.emplace_back(3, “Fritter”);
  widgets.emplace_back(2, “Double chocolate”);
  widgets.emplace_back(4, “Maple Cream”);
}

Stack
3, Frit 2, Doub 4, Mapl



  

Managing Object Lifetimes (Tangent)

{
  std::vector<Widget> widgets
  widgets.emplace_back(3, “Fritter”);
  widgets.emplace_back(2, “Double chocolate”);
  widgets.emplace_back(4, “Maple Cream”);
}

Stack
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Object graphs/lifetimes are complex
● Could this problem be solved using only std::vector?

Stack

In a few different ways...
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Managing Object Lifetimes
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a
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b
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a c db

extra



  

Object graphs/lifetimes are complex
● Could this problem be solved using only std::vector?

Managing Object Lifetimes

Stack
root

extra

a

c d

b

Could instead have a, b, c, d 
be vectors of 1 element.
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Managing Object Lifetimes

Object graphs/lifetimes are complex
● Could this problem be solved using only std::vector?
● Are there any downsides to doing so?

– Unclear?
– Unnecessary overheads?
– Mismatched lifetimes?

Stack

What we want is a clear, intentional 
way to express ownership.
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Managing Object Lifetimes

● 2 types of ownership in modern C++
– Unique ownership (std::unique_ptr<T>)

● deletes the object when w goes out of scope
● Automated (even with exceptions)
● Generally preferred

auto w = std::make_unique<Widget>(0, "cruller");

You can think of this as a vector of 1 item
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Managing Object Lifetimes

● 2 types of ownership in modern C++
– Unique ownership (std::unique_ptr<T>)

● deletes the object when w goes out of scope
● Automated (even with exceptions)
● Generally preferred

– Shared ownership (std::shared_ptr<T>)

● Counts the number of owners
● deletes the object when # owners --> 0

auto w = std::make_unique<Widget>(0, "cruller");

auto w = std::make_shared<Widget>(0, "ponchik");

What happens if you have a cycle?



  

Managing Object Lifetimes

● 2 types of ownership in modern C++
– Unique ownership (std::unique_ptr<T>)

● deletes the object when w goes out of scope
● Automated (even with exceptions)
● Generally preferred

– Shared ownership (std::shared_ptr<T>)

● Counts the number of owners
● deletes the object when # owners --> 0

● Ownership can also be transferred

auto w = std::make_shared<Widget>(0, "ponchik");

auto w = std::make_unique<Widget>(0, "cruller");
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– Every object has (preferably) one owner

Stack
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Managing Object Lifetimes

● A few rules:
– Every object has (preferably) one owner
– No object outlives the scope of its owning pointer
– Non-owning pointers/references can be unlimited

● But should not outlive the owning scope by design

Stack
Note: Unique owning pointers form 

a spanning tree within the heap.
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Functions (a slight digression)

What is the signature to...
● pass an argument of class type X to a function?

● pass a mutable argument of class type X to a function?

● pass an instance of X to a function making a copy?

foo(const X&)

foo(X&)

foo(X)



  

Using What You Know

● What should go in 1 and 2 to pass w to foo?
– (It may depend on what you want to do...)
– Do you just want to give foo access to the Widget?
– Do you want foo to modify the ownership?
– Do you want to transfer ownership to foo?

void foo(                 );

void bar() {
  auto w = std::make_unique<Widget>(42, "churro");
  foo(                 );
}

1

2



  

Using What You Know

● What should go in 1 and 2 to pass w to foo?
– (It may depend on what you want to do...)
– Do you just want to give foo access to the Widget?
– Do you want foo to modify the ownership?
– Do you want to transfer ownership to foo?

void foo(                 );

void bar() {
  auto w = std::make_unique<Widget>(42, "churro");
  foo(                 );
}

1

2

Note: These are behaviors that would already happen.
Smart pointers make them explicit and automatic.
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General Resource Management

● Memory management is just one example of resource management.
– Properly acquiring & releasing resources

● No double acquisition.
● No double free.
● No use after free.
● No leaks

– What other resources do you manage?
● Files
● Locks
● Database connections
● Printers
● ...
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General Resource Management

● The problem is pervasive enough to have general solutions
– Python: with
– C#: using
– Java: try-with-resources
– C++: RAII (Resource Acquisition is Initialization)

● Goal: Simplify & control the lifetimes of resources
● RAII

– Bind the lifetime of the resource to object lifetime
– Acquire the resource in the constructor
– Release the resource in the destructor



  

General Resource Management

● Memory
void memoryResource() {
  auto w = std::make_unique<Widget>(3, "bofrot");
  foo(*w);
}
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● Memory

w is automatically deallocated here.



  

General Resource Management

● Memory

● Files
void fileResource() {
  auto out = std::ofstream{"output.txt"};
  out << "Boston cream\n";
}

void memoryResource() {
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  foo(*w);
} w is automatically deallocated here.



  

General Resource Management

● Memory

● Files

void memoryResource() {
  auto w = std::make_unique<Widget>(3, "bofrot");
  foo(*w);
} w is automatically deallocated here.

void fileResource() {
  auto out = std::ofstream{"output.txt"};
  out << "Boston cream\n";
} out is automatically flushed & closed here.



  

General Resource Management

● Memory

● Files

● Because they are scoped, they handle exceptions & multiple return 
statements!

void memoryResource() {
  auto w = std::make_unique<Widget>(3, "bofrot");
  foo(*w);
} w is automatically deallocated here.

void fileResource() {
  auto out = std::ofstream{"output.txt"};
  out << "Boston cream\n";
} out is automatically flushed & closed here.
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General Resource Management

● How does RAII relate to managing complexity?
– It makes resource designs explicit
– It makes managing them automatic
– It removes temporal coupling
– It promotes composition & independence

● NOTE: What happens when you copy a resource object?
– In many cases, it is explicitly forbidden

Why?



  

General Resource Management

● How does RAII relate to managing complexity?
– It makes resource designs explicit
– It makes managing them automatic
– It removes temporal coupling
– It promotes composition & independence

● NOTE: What happens when you copy a resource object?
– In many cases, it is explicitly forbidden
– You can use std::move() to transfer resource ownership



  

Operating on Collections

● Iterating over collections can be painful
void oops() {
  std::vector numbers = {0, 1, 2, 3, 4};
  for (unsigned i = 0, e = 4; i <= 4; ++i) {
    std::cout << numbers[i] << "\n";
  }
}
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    std::cout << number << "\n";
  }
}

void oops() {
  std::vector numbers = {0, 1, 2, 3, 4};
  for (unsigned i = 0, e = 4; i <= 4; ++i) {
    std::cout << numbers[i] << "\n";
  }
}



  

Operating on Collections

● Iterating over collections can be painful

● Range based for loops are preferable
void nice() {
  std::vector numbers = {0, 1, 2, 3, 4};
  for (auto number : numbers) {
    std::cout << number << "\n";
  }
}

void oops() {
  std::vector numbers = {0, 1, 2, 3, 4};
  for (unsigned i = 0, e = 4; i <= 4; ++i) {
    std::cout << numbers[i] << "\n";
  }
}

The “collection” can be anything with 
begin() and end() methods.



  

Operating on Collections

● Passing collections around can be error prone.
void oops(const std::vector<int> numbers) {
  ...
}



  

Operating on Collections

● Passing collections around can be error prone.

● Avoid unnecessary copies.

void oops(const std::vector<int> numbers) {
  ...
}

void better(const std::vector<int>& numbers) {
  ...
}



  

Operating on Collections

● Passing collections around can be error prone.

● Avoid unnecessary copies.

● Use std::span in C++20 for flexibility & correctness by design

void oops(const std::vector<int> numbers) {
  ...
}

void better(const std::vector<int>& numbers) {
  ...
}

void good(const std::span<int> numbers) {
  ...
}
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Guideline Support Library

Some common classes for better code, specifically:

● std::span<T>, gsl::span<T>
– Makes interfaces generic & safer

[demo]

● std::string_view<T>
– Avoid copying strings
– Avoid conversions to and from C strings

(a common mistake!)
● Both of these abstractions are non-owning



  

λ (Lambdas)

● How should you check whether a list contains a number
greater than 3?



  

λ (Lambdas)

● How should you check whether a list contains a number
greater than 3?

bool hasGreaterThan3 = false;
for (auto number : numbers) {
  if (number > 3) {
    hasGreaterThan3 = true;
  }
}



  

λ (Lambdas)

● How should you check whether a list contains a number
greater than 3?

bool hasGreaterThan3 = false;
for (auto number : numbers) {
  if (number > 3) {
    hasGreaterThan3 = true;
  }
}

Using a general purpose loop 
hides the high level intentions.



  

λ (Lambdas)

● How should you check whether a list contains a number
greater than 3?

bool hasGreaterThan3 = false;
for (auto number : numbers) {
  if (number > 3) {
    hasGreaterThan3 = true;
  }
}

Using a general purpose loop 
hides the high level intentions.

bool hasGreaterThan3 =
  std::any_of(numbers.begin(), numbers.end(),
    [](auto number) { return number > 3; });



  

λ (Lambdas)

● How should you check whether a list contains a number
greater than 3?

bool hasGreaterThan3 = false;
for (auto number : numbers) {
  if (number > 3) {
    hasGreaterThan3 = true;
  }
}

Using a general purpose loop 
hides the high level intentions.

bool hasGreaterThan3 =
  std::any_of(numbers.begin(), numbers.end(),
    [](auto number) { return number > 3; });

bool hasGreaterThan3 =
  std::ranges::any_of(numbers,
    [](auto number) { return number > 3; });

In C++20:
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[local1, local2](auto arg1, auto arg2) {
  ...
}
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● Lambdas allow you to create small, self contained functions local to 
other code

[local1, local2](auto arg1, auto arg2) {
  ...
}

You can capture arguments 
from the local scope.



  

λ (Lambdas)

● Lambdas allow you to create small, self contained functions local to 
other code

[local1, local2](auto arg1, auto arg2) {
  ...
}

Additional arguments are 
passed in when invoked.
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λ (Lambdas)

● Lambdas allow you to create small, self contained functions local to 
other code

● Lambdas allow you to use generic library functions in a clear, well 
localized fashion.

[local1, local2](auto arg1, auto arg2) {
  ...
}

auto found =
  std::ranges::find_if(numbers,
    [](auto number) { return number > 3; });
std::cout << *found << " is greater than 3.\n";See <algorithm>

I will expect you to make use of built in algorithms 
and lambdas instead of raw loops from now on.
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● Can use existing exception types <stdexcept>
try {
  throw std::runtime_error("uh oh...");
} catch (const std::runtime_error& e) {
  std::cout << "Exception message: " << e.what();
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Exceptions

● Not new, but maybe new to you in C++
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More...

● std::array<T,N>
● nullptr
● auto (even for return & lambda arg types)

● constexpr
● type safe enums
● delegating constructors
● using instead of typedef
● Destructuring: auto [x, y] = std::make_pair(3,4);
● ... And these are from almost a decade ago.
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