
A Crash Course in
(Some of) Modern C++

CMPT 373
Software Development Methods

Nick Sumner
wsumner@sfu.ca

With material from Bjarne Stroustrup & Herb Sutter

mailto:wsumner@sfu.ca

C++ was complicated/intimidating

● Pointers
– Arithmetic & indexing
– dangling
– when to new and delete

C++ was complicated/intimidating

● Pointers
– Arithmetic & indexing
– dangling
– when to new and delete

● Nontrivial types
– inheritance
– long names & scoping (iterators)
– templates

C++ was complicated/intimidating

● Pointers
– Arithmetic & indexing
– dangling
– when to new and delete

● Nontrivial types
– inheritance
– long names & scoping (iterators)
– templates

● Many proposed rules (of varying validity)
– Rule of 3
– Don’t pass/return objects to/from functions by value
– ...

Modern C++

● Significant effort has gone into revising C++ since C++03
– Identifying & simplifying unnecessary complexity
– Adopting features that help reduce complexity in large scale projects.

Modern C++

● Significant effort has gone into revising C++ since C++03
– Identifying & simplifying unnecessary complexity
– Adopting features that help reduce complexity in large scale projects.

● Safety
– types, bounds, lifetimes

Modern C++

● Significant effort has gone into revising C++ since C++03
– Identifying & simplifying unnecessary complexity
– Adopting features that help reduce complexity in large scale projects.

● Safety
– types, bounds, lifetimes

● Syntactic sugar (with safety benefits)

Modern C++

● Significant effort has gone into revising C++ since C++03
– Identifying & simplifying unnecessary complexity
– Adopting features that help reduce complexity in large scale projects.

● Safety
– types, bounds, lifetimes

● Syntactic sugar (with safety benefits)
● Now developed under a lightweight process with new revisions

every ~3 years.

Modern C++

● Significant effort has gone into revising C++ since C++03
– Identifying & simplifying unnecessary complexity
– Adopting features that help reduce complexity in large scale projects.

● Safety
– types, bounds, lifetimes

● Syntactic sugar (with safety benefits)
● Now developed under a lightweight process with new revisions

every ~3 years.
To get you (re)acquainted,

we will explore some of modern C++ for now.

I will assume familiarity with older C++,
constructors, destructors, etc.

Managing Object Lifetimes

Suppose I have a Widget class constructed from an int and a string.

Managing Object Lifetimes

Suppose I have a Widget class constructed from an int and a string.
● How might I create one?

Managing Object Lifetimes

Suppose I have a Widget class constructed from an int and a string.
● How might I create one?

Widget w{0, "fritter"};

Managing Object Lifetimes

Suppose I have a Widget class constructed from an int and a string.
● How might I create one?

Widget w{0, "fritter"};
Brace initialization was new in C++11

Managing Object Lifetimes

Suppose I have a Widget class constructed from an int and a string.
● How might I create one?

Where does w live in memory?
Is that good/bad?

Widget w{0, "fritter"};

Managing Object Lifetimes

Suppose I have a Widget class constructed from an int and a string.
● How might I create one?

– Automatic variables/management should be the default.

Widget w{0, "fritter"};

Managing Object Lifetimes

Suppose I have a Widget class constructed from an int and a string.
● How might I create one?

– Automatic variables/management should be the default.
● What about creating one on the heap?

Widget w{0, "fritter"};

Managing Object Lifetimes

Suppose I have a Widget class constructed from an int and a string.
● How might I create one?

– Automatic variables/management should be the default.
● What about creating one on the heap?

Widget* w = new Widget{0, "fritter"};Old:

Widget w{0, "fritter"};

Managing Object Lifetimes

Suppose I have a Widget class constructed from an int and a string.
● How might I create one?

– Automatic variables/management should be the default.
● What about creating one on the heap?

Old:

Widget w{0, "fritter"};

Widget* w = new Widget{0, "fritter"};
What problems does this create?

Managing Object Lifetimes

Suppose I have a Widget class constructed from an int and a string.
● How might I create one?

– Automatic variables/management should be the default.
● What about creating one on the heap?

– Need to delete everything.
– Need to delete everything only once.
– Complex object graphs make this harder

Old:

Widget w{0, "fritter"};

Widget* w = new Widget{0, "fritter"};

Managing Object Lifetimes

Object graphs/lifetimes are complex

Stack

Managing Object Lifetimes

Object graphs/lifetimes are complex

Stack

Which pointers can I
delete & when?

Managing Object Lifetimes

Object graphs/lifetimes are complex

Stack

Which pointers can I
delete & when?

Managing Object Lifetimes

Object graphs/lifetimes are complex

Stack

Which pointers can I
delete & when?

Managing Object Lifetimes

Object graphs/lifetimes are complex

Stack

A

B
Which pointers can I
delete & when?

Managing Object Lifetimes

Object graphs/lifetimes are complex

Stack

Which pointers can I
delete & when?

Managing Object Lifetimes

Object graphs/lifetimes are complex

Stack

Which pointers can I
delete & when?

Managing Object Lifetimes (Tangent)

Object graphs/lifetimes are complex

Stack

When you use a data structure,
do you usually worry about these?

Managing Object Lifetimes (Tangent)

{
 std::vector<Widget> widgets
 widgets.emplace_back(3, “Fritter”);
 widgets.emplace_back(2, “Double chocolate”);
 widgets.emplace_back(3, “Maple Cream”);
}

Stack

Managing Object Lifetimes (Tangent)

{
 std::vector<Widget> widgets
 widgets.emplace_back(3, “Fritter”);
 widgets.emplace_back(2, “Double chocolate”);
 widgets.emplace_back(3, “Maple Cream”);
}

Stack Heap

Managing Object Lifetimes (Tangent)

{
 std::vector<Widget> widgets
 widgets.emplace_back(3, “Fritter”);
 widgets.emplace_back(2, “Double chocolate”);
 widgets.emplace_back(3, “Maple Cream”);
}

Stack
3, Frit

Managing Object Lifetimes (Tangent)

{
 std::vector<Widget> widgets
 widgets.emplace_back(3, “Fritter”);
 widgets.emplace_back(2, “Double chocolate”);
 widgets.emplace_back(3, “Maple Cream”);
}

Stack
3, Frit 2, Doub

Managing Object Lifetimes (Tangent)

{
 std::vector<Widget> widgets
 widgets.emplace_back(3, “Fritter”);
 widgets.emplace_back(2, “Double chocolate”);
 widgets.emplace_back(4, “Maple Cream”);
}

Stack
3, Frit 2, Doub 4, Mapl

Managing Object Lifetimes (Tangent)

{
 std::vector<Widget> widgets
 widgets.emplace_back(3, “Fritter”);
 widgets.emplace_back(2, “Double chocolate”);
 widgets.emplace_back(4, “Maple Cream”);
}

Stack

Managing Object Lifetimes (Revisiting)

Object graphs/lifetimes are complex
● Could this problem be solved using only std::vector?

Stack

Managing Object Lifetimes

Object graphs/lifetimes are complex
● Could this problem be solved using only std::vector?

Stack

In a few different ways...

Object graphs/lifetimes are complex
● Could this problem be solved using only std::vector?

Managing Object Lifetimes

Stack
root

extra

a

c d

b

Stack
nodes

root

a c db

extra

Object graphs/lifetimes are complex
● Could this problem be solved using only std::vector?

Managing Object Lifetimes

Stack
root

extra

a

c d

b

Could instead have a, b, c, d
be vectors of 1 element.

Managing Object Lifetimes

Object graphs/lifetimes are complex
● Could this problem be solved using only std::vector?
● Are there any downsides to doing so?

Stack

Managing Object Lifetimes

Object graphs/lifetimes are complex
● Could this problem be solved using only std::vector?
● Are there any downsides to doing so?

– Unclear?
– Unnecessary overheads?
– Mismatched lifetimes?

Stack

Managing Object Lifetimes

Object graphs/lifetimes are complex
● Could this problem be solved using only std::vector?
● Are there any downsides to doing so?

– Unclear?
– Unnecessary overheads?
– Mismatched lifetimes?

Stack

What we want is a clear, intentional
way to express ownership.

Managing Object Lifetimes

● 2 types of ownership in modern C++

Managing Object Lifetimes

● 2 types of ownership in modern C++
– Unique ownership (std::unique_ptr<T>)

auto w = std::make_unique<Widget>(0, "cruller");

Managing Object Lifetimes

● 2 types of ownership in modern C++
– Unique ownership (std::unique_ptr<T>)

● deletes the object when w goes out of scope
● Automated (even with exceptions)

auto w = std::make_unique<Widget>(0, "cruller");

Managing Object Lifetimes

● 2 types of ownership in modern C++
– Unique ownership (std::unique_ptr<T>)

● deletes the object when w goes out of scope
● Automated (even with exceptions)
● Generally preferred

auto w = std::make_unique<Widget>(0, "cruller");

Managing Object Lifetimes

● 2 types of ownership in modern C++
– Unique ownership (std::unique_ptr<T>)

● deletes the object when w goes out of scope
● Automated (even with exceptions)
● Generally preferred

auto w = std::make_unique<Widget>(0, "cruller");

You can think of this as a vector of 1 item

Managing Object Lifetimes

● 2 types of ownership in modern C++
– Unique ownership (std::unique_ptr<T>)

● deletes the object when w goes out of scope
● Automated (even with exceptions)
● Generally preferred

– Shared ownership (std::shared_ptr<T>)

auto w = std::make_unique<Widget>(0, "cruller");

auto w = std::make_shared<Widget>(0, "ponchik");

Managing Object Lifetimes

● 2 types of ownership in modern C++
– Unique ownership (std::unique_ptr<T>)

● deletes the object when w goes out of scope
● Automated (even with exceptions)
● Generally preferred

– Shared ownership (std::shared_ptr<T>)

● Counts the number of owners
● deletes the object when # owners --> 0

auto w = std::make_unique<Widget>(0, "cruller");

auto w = std::make_shared<Widget>(0, "ponchik");

Managing Object Lifetimes

● 2 types of ownership in modern C++
– Unique ownership (std::unique_ptr<T>)

● deletes the object when w goes out of scope
● Automated (even with exceptions)
● Generally preferred

– Shared ownership (std::shared_ptr<T>)

● Counts the number of owners
● deletes the object when # owners --> 0

auto w = std::make_unique<Widget>(0, "cruller");

auto w = std::make_shared<Widget>(0, "ponchik");

What happens if you have a cycle?

Managing Object Lifetimes

● 2 types of ownership in modern C++
– Unique ownership (std::unique_ptr<T>)

● deletes the object when w goes out of scope
● Automated (even with exceptions)
● Generally preferred

– Shared ownership (std::shared_ptr<T>)

● Counts the number of owners
● deletes the object when # owners --> 0

● Ownership can also be transferred

auto w = std::make_shared<Widget>(0, "ponchik");

auto w = std::make_unique<Widget>(0, "cruller");

Managing Object Lifetimes

● A few rules:
– Every object has (preferably) one owner

Stack

Managing Object Lifetimes

● A few rules:
– Every object has (preferably) one owner

Stack

?

Managing Object Lifetimes

● A few rules:
– Every object has (preferably) one owner
– No object outlives the scope of its owning pointer

Stack

Managing Object Lifetimes

● A few rules:
– Every object has (preferably) one owner
– No object outlives the scope of its owning pointer
– Non-owning pointers/references can be unlimited

● But should not outlive the owning scope by design

Stack

Managing Object Lifetimes

● A few rules:
– Every object has (preferably) one owner
– No object outlives the scope of its owning pointer
– Non-owning pointers/references can be unlimited

● But should not outlive the owning scope by design

Stack
Note: Unique owning pointers form

a spanning tree within the heap.

Functions (a slight digression)

What is the signature to...
● pass an argument of class type X to a function?

Functions (a slight digression)

What is the signature to...
● pass an argument of class type X to a function?

foo(const X&)

Functions (a slight digression)

What is the signature to...
● pass an argument of class type X to a function?

● pass a mutable argument of class type X to a function?

foo(const X&)

Functions (a slight digression)

What is the signature to...
● pass an argument of class type X to a function?

● pass a mutable argument of class type X to a function?

foo(const X&)

foo(X&)

Functions (a slight digression)

What is the signature to...
● pass an argument of class type X to a function?

● pass a mutable argument of class type X to a function?

● pass an instance of X to a function making a copy?

foo(const X&)

foo(X&)

Functions (a slight digression)

What is the signature to...
● pass an argument of class type X to a function?

● pass a mutable argument of class type X to a function?

● pass an instance of X to a function making a copy?

foo(const X&)

foo(X&)

foo(X)

Using What You Know

● What should go in 1 and 2 to pass w to foo?
– (It may depend on what you want to do...)
– Do you just want to give foo access to the Widget?
– Do you want foo to modify the ownership?
– Do you want to transfer ownership to foo?

void foo();

void bar() {
 auto w = std::make_unique<Widget>(42, "churro");
 foo();
}

1

2

Using What You Know

● What should go in 1 and 2 to pass w to foo?
– (It may depend on what you want to do...)
– Do you just want to give foo access to the Widget?
– Do you want foo to modify the ownership?
– Do you want to transfer ownership to foo?

void foo();

void bar() {
 auto w = std::make_unique<Widget>(42, "churro");
 foo();
}

1

2

Note: These are behaviors that would already happen.
Smart pointers make them explicit and automatic.

General Resource Management

● Memory management is just one example of resource management.

General Resource Management

● Memory management is just one example of resource management.
– Properly acquiring & releasing resources

General Resource Management

● Memory management is just one example of resource management.
– Properly acquiring & releasing resources

● No double acquisition.
● No double free.
● No use after free.
● No leaks

General Resource Management

● Memory management is just one example of resource management.
– Properly acquiring & releasing resources

● No double acquisition.
● No double free.
● No use after free.
● No leaks

– What other resources do you manage?

General Resource Management

● Memory management is just one example of resource management.
– Properly acquiring & releasing resources

● No double acquisition.
● No double free.
● No use after free.
● No leaks

– What other resources do you manage?
● Files
● Locks
● Database connections
● Printers
● ...

General Resource Management

● The problem is pervasive enough to have general solutions

General Resource Management

● The problem is pervasive enough to have general solutions
– Python: ?

General Resource Management

● The problem is pervasive enough to have general solutions
– Python: with

General Resource Management

● The problem is pervasive enough to have general solutions
– Python: with
– C#: using
– Java: try-with-resources

General Resource Management

● The problem is pervasive enough to have general solutions
– Python: with
– C#: using
– Java: try-with-resources
– C++: ?

General Resource Management

● The problem is pervasive enough to have general solutions
– Python: with
– C#: using
– Java: try-with-resources
– C++: RAII (Resource Acquisition is Initialization)

General Resource Management

● The problem is pervasive enough to have general solutions
– Python: with
– C#: using
– Java: try-with-resources
– C++: RAII (Resource Acquisition is Initialization)

● Goal: Simplify & control the lifetimes of resources

General Resource Management

● The problem is pervasive enough to have general solutions
– Python: with
– C#: using
– Java: try-with-resources
– C++: RAII (Resource Acquisition is Initialization)

● Goal: Simplify & control the lifetimes of resources
● RAII

– Bind the lifetime of the resource to object lifetime

General Resource Management

● The problem is pervasive enough to have general solutions
– Python: with
– C#: using
– Java: try-with-resources
– C++: RAII (Resource Acquisition is Initialization)

● Goal: Simplify & control the lifetimes of resources
● RAII

– Bind the lifetime of the resource to object lifetime
– Acquire the resource in the constructor

General Resource Management

● The problem is pervasive enough to have general solutions
– Python: with
– C#: using
– Java: try-with-resources
– C++: RAII (Resource Acquisition is Initialization)

● Goal: Simplify & control the lifetimes of resources
● RAII

– Bind the lifetime of the resource to object lifetime
– Acquire the resource in the constructor
– Release the resource in the destructor

General Resource Management

● Memory
void memoryResource() {
 auto w = std::make_unique<Widget>(3, "bofrot");
 foo(*w);
}

void memoryResource() {
 auto w = std::make_unique<Widget>(3, "bofrot");
 foo(*w);
}

General Resource Management

● Memory

w is automatically deallocated here.

General Resource Management

● Memory

● Files
void fileResource() {
 auto out = std::ofstream{"output.txt"};
 out << "Boston cream\n";
}

void memoryResource() {
 auto w = std::make_unique<Widget>(3, "bofrot");
 foo(*w);
} w is automatically deallocated here.

General Resource Management

● Memory

● Files

void memoryResource() {
 auto w = std::make_unique<Widget>(3, "bofrot");
 foo(*w);
} w is automatically deallocated here.

void fileResource() {
 auto out = std::ofstream{"output.txt"};
 out << "Boston cream\n";
} out is automatically flushed & closed here.

General Resource Management

● Memory

● Files

● Because they are scoped, they handle exceptions & multiple return
statements!

void memoryResource() {
 auto w = std::make_unique<Widget>(3, "bofrot");
 foo(*w);
} w is automatically deallocated here.

void fileResource() {
 auto out = std::ofstream{"output.txt"};
 out << "Boston cream\n";
} out is automatically flushed & closed here.

General Resource Management

● How does RAII relate to managing complexity?

General Resource Management

● How does RAII relate to managing complexity?
– It makes resource designs explicit
– It makes managing them automatic
– It removes temporal coupling
– It promotes composition & independence

General Resource Management

● How does RAII relate to managing complexity?
– It makes resource designs explicit
– It makes managing them automatic
– It removes temporal coupling
– It promotes composition & independence

● NOTE: What happens when you copy a resource object?

General Resource Management

● How does RAII relate to managing complexity?
– It makes resource designs explicit
– It makes managing them automatic
– It removes temporal coupling
– It promotes composition & independence

● NOTE: What happens when you copy a resource object?
– In many cases, it is explicitly forbidden

Why?

General Resource Management

● How does RAII relate to managing complexity?
– It makes resource designs explicit
– It makes managing them automatic
– It removes temporal coupling
– It promotes composition & independence

● NOTE: What happens when you copy a resource object?
– In many cases, it is explicitly forbidden
– You can use std::move() to transfer resource ownership

Operating on Collections

● Iterating over collections can be painful
void oops() {
 std::vector numbers = {0, 1, 2, 3, 4};
 for (unsigned i = 0, e = 4; i <= 4; ++i) {
 std::cout << numbers[i] << "\n";
 }
}

Operating on Collections

● Iterating over collections can be painful

● Range based for loops are preferable
void nice() {
 std::vector numbers = {0, 1, 2, 3, 4};
 for (auto number : numbers) {
 std::cout << number << "\n";
 }
}

void oops() {
 std::vector numbers = {0, 1, 2, 3, 4};
 for (unsigned i = 0, e = 4; i <= 4; ++i) {
 std::cout << numbers[i] << "\n";
 }
}

Operating on Collections

● Iterating over collections can be painful

● Range based for loops are preferable
void nice() {
 std::vector numbers = {0, 1, 2, 3, 4};
 for (auto number : numbers) {
 std::cout << number << "\n";
 }
}

void oops() {
 std::vector numbers = {0, 1, 2, 3, 4};
 for (unsigned i = 0, e = 4; i <= 4; ++i) {
 std::cout << numbers[i] << "\n";
 }
}

The “collection” can be anything with
begin() and end() methods.

Operating on Collections

● Passing collections around can be error prone.
void oops(const std::vector<int> numbers) {
 ...
}

Operating on Collections

● Passing collections around can be error prone.

● Avoid unnecessary copies.

void oops(const std::vector<int> numbers) {
 ...
}

void better(const std::vector<int>& numbers) {
 ...
}

Operating on Collections

● Passing collections around can be error prone.

● Avoid unnecessary copies.

● Use std::span in C++20 for flexibility & correctness by design

void oops(const std::vector<int> numbers) {
 ...
}

void better(const std::vector<int>& numbers) {
 ...
}

void good(const std::span<int> numbers) {
 ...
}

Guideline Support Library

Some common classes for better code, specifically:

Guideline Support Library

Some common classes for better code, specifically:

● std::span<T>, gsl::span<T>
– Makes interfaces generic & safer if you do not have C++20

[demo]

Guideline Support Library

Some common classes for better code, specifically:

● std::span<T>, gsl::span<T>
– Makes interfaces generic & safer if you do not have c++20

[demo]

● std::string_view<T>
– Avoid copying strings
– Avoid conversions to and from C strings

(a common mistake!)

Guideline Support Library

Some common classes for better code, specifically:

● std::span<T>, gsl::span<T>
– Makes interfaces generic & safer

[demo]

● std::string_view<T>
– Avoid copying strings
– Avoid conversions to and from C strings

(a common mistake!)
● Both of these abstractions are non-owning

λ (Lambdas)

● How should you check whether a list contains a number
greater than 3?

λ (Lambdas)

● How should you check whether a list contains a number
greater than 3?

bool hasGreaterThan3 = false;
for (auto number : numbers) {
 if (number > 3) {
 hasGreaterThan3 = true;
 }
}

λ (Lambdas)

● How should you check whether a list contains a number
greater than 3?

bool hasGreaterThan3 = false;
for (auto number : numbers) {
 if (number > 3) {
 hasGreaterThan3 = true;
 }
}

Using a general purpose loop
hides the high level intentions.

λ (Lambdas)

● How should you check whether a list contains a number
greater than 3?

bool hasGreaterThan3 = false;
for (auto number : numbers) {
 if (number > 3) {
 hasGreaterThan3 = true;
 }
}

Using a general purpose loop
hides the high level intentions.

bool hasGreaterThan3 =
 std::any_of(numbers.begin(), numbers.end(),
 [](auto number) { return number > 3; });

λ (Lambdas)

● How should you check whether a list contains a number
greater than 3?

bool hasGreaterThan3 = false;
for (auto number : numbers) {
 if (number > 3) {
 hasGreaterThan3 = true;
 }
}

Using a general purpose loop
hides the high level intentions.

bool hasGreaterThan3 =
 std::any_of(numbers.begin(), numbers.end(),
 [](auto number) { return number > 3; });

bool hasGreaterThan3 =
 std::ranges::any_of(numbers,
 [](auto number) { return number > 3; });

In C++20:

λ (Lambdas)

● Lambdas allow you to create small, self contained functions local to
other code

[local1, local2](auto arg1, auto arg2) {
 ...
}

λ (Lambdas)

● Lambdas allow you to create small, self contained functions local to
other code

[local1, local2](auto arg1, auto arg2) {
 ...
}

You can capture arguments
from the local scope.

λ (Lambdas)

● Lambdas allow you to create small, self contained functions local to
other code

[local1, local2](auto arg1, auto arg2) {
 ...
}

Additional arguments are
passed in when invoked.

λ (Lambdas)

● Lambdas allow you to create small, self contained functions local to
other code

● Lambdas allow you to use generic library functions in a clear, well
localized fashion.

[local1, local2](auto arg1, auto arg2) {
 ...
}

λ (Lambdas)

● Lambdas allow you to create small, self contained functions local to
other code

● Lambdas allow you to use generic library functions in a clear, well
localized fashion.

[local1, local2](auto arg1, auto arg2) {
 ...
}

auto found =
 std::ranges::find_if(numbers,
 [](auto number) { return number > 3; });
std::cout << *found << " is greater than 3.\n";

λ (Lambdas)

● Lambdas allow you to create small, self contained functions local to
other code

● Lambdas allow you to use generic library functions in a clear, well
localized fashion.

[local1, local2](auto arg1, auto arg2) {
 ...
}

auto found =
 std::ranges::find_if(numbers,
 [](auto number) { return number > 3; });
std::cout << *found << " is greater than 3.\n";See <algorithm>

λ (Lambdas)

● Lambdas allow you to create small, self contained functions local to
other code

● Lambdas allow you to use generic library functions in a clear, well
localized fashion.

[local1, local2](auto arg1, auto arg2) {
 ...
}

auto found =
 std::ranges::find_if(numbers,
 [](auto number) { return number > 3; });
std::cout << *found << " is greater than 3.\n";See <algorithm>

I will expect you to make use of built in algorithms
and lambdas instead of raw loops from now on.

Exceptions

● Not new, but maybe new to you in C++

Exceptions

● Not new, but maybe new to you in C++

● Can use existing exception types <stdexcept>

http://www.cplusplus.com/reference/exception/exception/
http://www.cplusplus.com/reference/stdexcept/

Exceptions

● Not new, but maybe new to you in C++

● Can use existing exception types <stdexcept>
try {
 throw std::runtime_error("uh oh...");
} catch (const std::runtime_error& e) {
 std::cout << "Exception message: " << e.what();
}

http://www.cplusplus.com/reference/exception/exception/
http://www.cplusplus.com/reference/stdexcept/

Exceptions

● Not new, but maybe new to you in C++

● Can use existing exception types <stdexcept>
try {
 throw std::runtime_error("uh oh...");
} catch (const std::runtime_error& e) {
 std::cout << "Exception message: " << e.what();
}

Throw by value.

http://www.cplusplus.com/reference/exception/exception/
http://www.cplusplus.com/reference/stdexcept/

Exceptions

● Not new, but maybe new to you in C++

● Can use existing exception types <stdexcept>
try {
 throw std::runtime_error("uh oh...");
} catch (const std::runtime_error& e) {
 std::cout << "Exception message: " << e.what();
}

Catch by reference.

http://www.cplusplus.com/reference/exception/exception/
http://www.cplusplus.com/reference/stdexcept/

Exceptions

● Not new, but maybe new to you in C++

● Can use existing exception types <stdexcept>
try {
 throw std::runtime_error("uh oh...");
} catch (const std::runtime_error& e) {
 std::cout << "Exception message: " << e.what();
}

Error messages.

http://www.cplusplus.com/reference/exception/exception/
http://www.cplusplus.com/reference/stdexcept/

Exceptions

● Not new, but maybe new to you in C++

● Can use existing exception types <stdexcept>
● Or you can create custom exceptions

http://www.cplusplus.com/reference/exception/exception/
http://www.cplusplus.com/reference/stdexcept/

Exceptions

● Not new, but maybe new to you in C++

● Can use existing exception types <stdexcept>
● Or you can create custom exceptions

class MyException : public std::runtime_error {
public:
 const char * what() const override {
 ...
 }
};

http://www.cplusplus.com/reference/exception/exception/
http://www.cplusplus.com/reference/stdexcept/

Exceptions

● Not new, but maybe new to you in C++

● Can use existing exception types <stdexcept>
● Or you can create custom exceptions

class MyException : public std::runtime_error {
public:
 const char * what() const override {
 ...
 }
};

http://www.cplusplus.com/reference/exception/exception/
http://www.cplusplus.com/reference/stdexcept/

Exceptions

● Not new, but maybe new to you in C++

● Can use existing exception types <stdexcept>
● Or you can create custom exceptions

class MyException : public std::runtime_error {
public:
 const char * what() const override {
 ...
 }
};

http://www.cplusplus.com/reference/exception/exception/
http://www.cplusplus.com/reference/stdexcept/

More...

● std::array<T,N>

More...

● std::array<T,N>
● nullptr

More...

● std::array<T,N>
● nullptr
● auto (even for return & lambda arg types)

More...

● std::array<T,N>
● nullptr
● auto (even for return & lambda arg types)

● constexpr
● type safe enums
● delegating constructors
● using instead of typedef

More...

● std::array<T,N>
● nullptr
● auto (even for return & lambda arg types)

● constexpr
● type safe enums
● delegating constructors
● using instead of typedef
● Destructuring: auto [x, y] = std::make_pair(3,4);
● ...

More...

● std::array<T,N>
● nullptr
● auto (even for return & lambda arg types)

● constexpr
● type safe enums
● delegating constructors
● using instead of typedef
● Destructuring: auto [x, y] = std::make_pair(3,4);
● ... And these are from almost a decade ago.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126

