
Design

CMPT 373
Software Development Methods

Nick Sumner
wsumner@sfu.ca



  

What is design?

● Not referring to UX (even though it’s important)



  

What is design?

● Not referring to UX (even though it’s important)

● Includes many things:



  

What is design?

● Not referring to UX (even though it’s important)

● Includes many things:
– The components of the system

Audio

Input

Network Persistence

Graphics

Client
Logic

Server
Logic



  

What is design?

● Not referring to UX (even though it’s important)

● Includes many things:
– The components of the system

– How they interact

Audio

Input

Network Persistence

Graphics

Client
Logic

Server
Logic



  

What is design?

● Not referring to UX (even though it’s important)

● Includes many things:
– The components of the system

– How they interact ?



  

What is design?

● Not referring to UX (even though it’s important)

● Includes many things:
– The components of the system

– How they interact architecture



  

What is design?

● Not referring to UX (even though it’s important)

● Includes many things:
– The components of the system

– How they interact

– The interfaces & abstractions they expose (or hide!)



  

What is design?

● Not referring to UX (even though it’s important)

● Includes many things:
– The components of the system

– How they interact

– The interfaces & abstractions they expose (or hide!)

What is an abstraction?



  

What is design?

● Not referring to UX (even though it’s important)

● Includes many things:
– The components of the system

– How they interact

– The interfaces & abstractions they expose (or hide!)

Server server{port};
while (true) {
  auto incoming = server.receive();
  ...
  server.send(outgoing);
}

What does the networking library
that I gave to you expose/hide?
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Design

/////////////////////////////////////////////////////////////////////////////
//                         Single Threaded Networking
//
// This file is distributed under the MIT License. See the LICENSE file
// for details.
/////////////////////////////////////////////////////////////////////////////

#include <unistd.h>
#include "ChatWindow.h"
#include "Client.h"

int
main(int argc, char* argv[]) {
  if (argc < 3) {
    printf("Usage:\n%s <ip address> <port>\ne.g. %s localhost 4002\n",
           argv[0], argv[0]);
    return 1;
  }

  networking::Client client{argv[1], argv[2]};

  bool done = false;
  auto onTextEntry = [&done, &client] (std::string text) {
    if ("exit" == text || "quit" == text) {
      done = true;
    } else {
      client.send(text);
    }
  };

  ChatWindow chatWindow(onTextEntry);
  while (!done && !client.isDisconnected()) {
    try {
      client.update();
    } catch (std::exception& e) {
      chatWindow.displayText("Exception from Client update:");
      chatWindow.displayText(e.what());
      done = true;
    }

    auto response = client.receive();
    if (!response.empty()) {
      chatWindow.displayText(response);
    }
    chatWindow.update();
  }

  return 0;
}
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How much time do professional
programmers spend reading code?
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Why does design matter?

● Translating requirements and stories to code

● Understandability

● Performance & reliability

● Reusability

● Determines ease & risk for change.
– Understanding of requirements will change

– Requirements will change

– Your code may outlast your time at a company

● Once software is too complex to reason about,
it is too late
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What makes a design bad?

● Too many possible ways to design poorly to list

● Common attributes of a bad design: [Ousterhout 2018]

– Change Amplification
An apparently simple change requires modifying many locations

– Cognitive Load
The developer needs to know a great deal in order to complete a task

– Unknown unknowns
Potions of code to modify for a task may be hard to identify

These are symptoms of complexity.
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– Incidental (accidental) complexity

minimize

hide
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What makes a design good?

● It identifies & manages complexity
– Inherent (essential) complexity

– Incidental (accidental) complexity

● What is complexity?
– No agreed upon universal definition; many variants

– Grows as entities/concepts in project are connected/woven together

[Watch “Simple Made Easy” for one interesting perspective]
– One other heuristic is risk of change

http://www.infoq.com/presentations/Simple-Made-Easy
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What makes a design good?

Broadly

● Divides the system into independent components

● Makes it easy for developers to get their jobs done
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// use longjmp instead of loops to increase speed.
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  jmp_buf buffer;
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  addvaluetosubtotal(sales->values[i]);
  if (i<sales->count) longjmp(buffer,i+1);
}

int x = foo(bar(baz(bam(a), b), c), d);

http://thedailywtf.com/articles/Longjmp--FOR-SPEED!!!

http://thedailywtf.com/articles/Longjmp--FOR-SPEED!!!


  

What makes a design good?

● Not clever!!!

// this subroutine is called thousands of times.
// use longjmp instead of loops to increase speed.

void
calculate(struct salesinfo* sales){
  jmp_buf buffer;
  int i=setjmp(buffer);
  if (!(i<sales->count)) RETURN_NOTHING;
  addvaluetosubtotal(sales->values[i]);
  if (i<sales->count) longjmp(buffer,i+1);
}

int x = foo(bar(baz(bam(a), b), c), d);

http://thedailywtf.com/articles/Longjmp--FOR-SPEED!!!

http://thedailywtf.com/articles/Longjmp--FOR-SPEED!!!


  

What makes a design good?

● Not clever

● Loose coupling

vs



  

What makes a design good?

● Not clever

● Loose coupling

vs

Why?



  

What makes a design good?

● Not clever

● Loose coupling

– Content (accessing implementation of another component)



  

What makes a design good?

● Not clever

● Loose coupling

– Content (accessing implementation of another component)

...
goto yourcode
... ...

yourcode:
...
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What makes a design good?

● Not clever

● Loose coupling

– Content (accessing implementation of another component)
– Common global data

int global = ...

global = ...

int global = ...

global = ...

... = global

... = global
Singletons have these constraints and worse.
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We will spend a day in the future on this.
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What makes a design good?

● Not clever

● Loose coupling

– Content (accessing implementation of another component)
– Common global data

– Subclassing

– Temporal

Cat cat = new Cat;
...
delete cat;

Process p;
p.doStep1();
p.doStep2();
p.doStep3();

This is more insidious!

Process p;
p.foo();
p.bar();
p.baz();
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What makes a design good?

● Not clever

● Loose coupling

– Content (accessing implementation of another component)
– Common global data

– Subclassing

– Temporal

– Passing data to/from each other

x = foo(1,2)
def foo(a, b):
    ...



  

What makes a design good?

● Not clever

● Loose coupling

– Content (accessing implementation of another component)
– Common global data

– Subclassing

– Temporal

– Passing data to/from each other

– Independence



  

What makes a design good?

● Not clever

● Loose coupling

● High fan in / low fan out

foo()

bar() baz()
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What makes a design good?

● Not clever

● Loose coupling

● High fan in / low fan out

foo()

bar() baz()

vs
foo()

bar()

Do you agree?
Why?
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& a consistent, self contained view per level
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New / Greenfield
Code

Wrapper API

Legacy / Sketchy Code
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What makes a design good?

● Not clever

● Loose coupling

● High fan in / low fan out

● Layers / Stratification

New / Greenfield
Code

Wrapper API

External Library

What impact does this have on
invariants & types?
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What makes a design good?

● Not clever

● Loose coupling

● High fan in / low fan out

● Layers / Stratification

● Cohesion

● ...

But these are the ends, not the means
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Revisiting Complexity

● We can characterize causes of complex designs [Ousterhout 2018]

– Dependencies
Code cannot be understood in isolation because of relationships to other 
code.

– Obscurity
Important information about code is not obvious.

These directly relate to the
qualities of good code we just saw.
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Consider a design

● What if you want to modify the business logic?

● What if you want to reuse the business logic?

● What if you want to replace the display?

User
Interface Graphics

Data
Storage

Business
Logic

Enterprise
Backbone

Like a basket woven together,
you get everything or nothing.
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Consider a design

What is still complex? Why?Is this simpler? Why?

Graphics

Data
Storage

Business
Logic

Enterprise
Backbone

User
Interface



  

Consider a design

● The fewer connected or conflated concepts, the better
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Consider a function
bool
isFasterThanSound(double speed) {
  return speed > MACH1;
}

A good design should be hard to misuse

      (double speed, double angle) {

}
Is this simple or complex? Why?
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class Student {
public:
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  ID getID() const;
  Name getName() const;
  Address getAddress() const;

  void storeToDatabase() const;
  static Student readFromDatabase();

  bool canApplyForCoOp();
  bool meetsDegreeRequirements();
};
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Consider a class
class Student {
public:
  ...
  ID getID() const;
  Name getName() const;
  Address getAddress() const;

  void storeToDatabase() const;
  static Student readFromDatabase();

  bool canApplyForCoOp();
  bool meetsDegreeRequirements();
};What is good about this class? What is bad about this class?
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Be careful.
This can be a good place to start,

but a poor place to end.
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● Abstraction – use high level concepts

● Encapsulation – hide the details

This is the Code Complete definition,
not a universal one!
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What are our simplifying tools?

● Metaphors – identify “real world” objects & relations

● Abstraction – use high level concepts

● Encapsulation – hide the details

● Consistency

● Inheritance?
– In small, constrained doses

– Ideally through interfaces

Use especially for:
1) likely/risky to change code
2) frequently used code
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● Separate them structurally

class Student {
public:
  ...
  ID getID() const;
  ...
};

class Student {
public:
  ...
  int getID() const;
  ...
};
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Key Strategy: Mitigate change

● Identify potential areas of change

● Separate them structurally

● Isolate their impact through interfaces

class IDCreator {
public:
  ...
  virtual ID createID() = 0;
  ...
};
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Key Strategy: Mitigate change

  ...
  ID studentID = student.getID();
  ...

How might this hinder change?

How can it be resolved?

What are the trade offs?
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Constant Vigilance 

● Avoiding complexity requires a planned process
– Code review everything

[metaphors, abstraction, encapsulation, consistency, inheritance]
– Write tests (simple code is easier to test)

● Know when & where you make bad decisions

– technical debt
● You end up paying it back!
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Design Smells

● A design smell is a clue that better design is needed

● Such as: (adapted from John Ousterhout)

– Thin components
● Is it really hiding an implementation?
● Is complexity arising from having to many small classes?

– Information leaks
● Can I see the implementation details? (unintentional interface)
● Repeated similar code

– Difficulty making a change



  

Experience

● Experience hones your sense of design.
– Hopefully, our discussions this semester will help you be aware of it.
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