
Design

CMPT 373
Software Development Methods

Nick Sumner
wsumner@sfu.ca

What is design?

● Not referring to UX (even though it’s important)

What is design?

● Not referring to UX (even though it’s important)

● Includes many things:

What is design?

● Not referring to UX (even though it’s important)

● Includes many things:
– The components of the system

Audio

Input

Network Persistence

Graphics

Client
Logic

Server
Logic

What is design?

● Not referring to UX (even though it’s important)

● Includes many things:
– The components of the system

– How they interact

Audio

Input

Network Persistence

Graphics

Client
Logic

Server
Logic

What is design?

● Not referring to UX (even though it’s important)

● Includes many things:
– The components of the system

– How they interact ?

What is design?

● Not referring to UX (even though it’s important)

● Includes many things:
– The components of the system

– How they interact architecture

What is design?

● Not referring to UX (even though it’s important)

● Includes many things:
– The components of the system

– How they interact

– The interfaces & abstractions they expose (or hide!)

What is design?

● Not referring to UX (even though it’s important)

● Includes many things:
– The components of the system

– How they interact

– The interfaces & abstractions they expose (or hide!)

What is an abstraction?

What is design?

● Not referring to UX (even though it’s important)

● Includes many things:
– The components of the system

– How they interact

– The interfaces & abstractions they expose (or hide!)

Server server{port};
while (true) {
 auto incoming = server.receive();
 ...
 server.send(outgoing);
}

What does the networking library
that I gave to you expose/hide?

What is design?

● Not referring to UX (even though it’s important)

● Includes many things:
– The components of the system

– How they interact

– The interfaces & abstractions they expose (or hide!)

Is design UML?

What is design?

● Not referring to UX (even though it’s important)

● Includes many things:
– The components of the system

– How they interact

– The interfaces & abstractions they expose (or hide!)

Is design UML?

Is UML design?

Why does design matter?

Why does design matter?

● Translating requirements and stories to code

As a X
I can Y
So that ZAs a X

I can Y
So that ZAs a X

I can Y
So that ZAs a X

I can Y
So that ZAs a X

I can Y
So that Z

Performance
Availability

Security
...

Design

///
// Single Threaded Networking
//
// This file is distributed under the MIT License. See the LICENSE file
// for details.
///

#include <unistd.h>
#include "ChatWindow.h"
#include "Client.h"

int
main(int argc, char* argv[]) {
 if (argc < 3) {
 printf("Usage:\n%s <ip address> <port>\ne.g. %s localhost 4002\n",
 argv[0], argv[0]);
 return 1;
 }

 networking::Client client{argv[1], argv[2]};

 bool done = false;
 auto onTextEntry = [&done, &client] (std::string text) {
 if ("exit" == text || "quit" == text) {
 done = true;
 } else {
 client.send(text);
 }
 };

 ChatWindow chatWindow(onTextEntry);
 while (!done && !client.isDisconnected()) {
 try {
 client.update();
 } catch (std::exception& e) {
 chatWindow.displayText("Exception from Client update:");
 chatWindow.displayText(e.what());
 done = true;
 }

 auto response = client.receive();
 if (!response.empty()) {
 chatWindow.displayText(response);
 }
 chatWindow.update();
 }

 return 0;
}

Why does design matter?

● Translating requirements and stories to code

● Understandability

Why does design matter?

● Translating requirements and stories to code

● Understandability

How much time do professional
programmers spend reading code?

Why does design matter?

● Translating requirements and stories to code

● Understandability

● Performance & reliability

Why does design matter?

● Translating requirements and stories to code

● Understandability

● Performance & reliability

● Reusability

Why does design matter?

● Translating requirements and stories to code

● Understandability

● Performance & reliability

● Reusability

● Determines ease & risk for change.

Why does design matter?

● Translating requirements and stories to code

● Understandability

● Performance & reliability

● Reusability

● Determines ease & risk for change.
– Understanding of requirements will change

Why does design matter?

● Translating requirements and stories to code

● Understandability

● Performance & reliability

● Reusability

● Determines ease & risk for change.
– Understanding of requirements will change

– Requirements will change

Why does design matter?

● Translating requirements and stories to code

● Understandability

● Performance & reliability

● Reusability

● Determines ease & risk for change.
– Understanding of requirements will change

– Requirements will change

– Your code may outlast your time at a company

Why does design matter?

● Translating requirements and stories to code

● Understandability

● Performance & reliability

● Reusability

● Determines ease & risk for change.
– Understanding of requirements will change

– Requirements will change

– Your code may outlast your time at a company

● Once software is too complex to reason about,
it is too late

What makes a design bad?

● Too many possible ways to design poorly to list

What makes a design bad?

● Too many possible ways to design poorly to list

● Common attributes of a bad design: [Ousterhout 2018]

What makes a design bad?

● Too many possible ways to design poorly to list

● Common attributes of a bad design: [Ousterhout 2018]

– Change Amplification
An apparently simple change requires modifying many locations

What makes a design bad?

● Too many possible ways to design poorly to list

● Common attributes of a bad design: [Ousterhout 2018]

– Change Amplification
An apparently simple change requires modifying many locations

– Cognitive Load
The developer needs to know a great deal in order to complete a task

What makes a design bad?

● Too many possible ways to design poorly to list

● Common attributes of a bad design: [Ousterhout 2018]

– Change Amplification
An apparently simple change requires modifying many locations

– Cognitive Load
The developer needs to know a great deal in order to complete a task

– Unknown unknowns
Potions of code to modify for a task may be hard to identify

What makes a design bad?

● Too many possible ways to design poorly to list

● Common attributes of a bad design: [Ousterhout 2018]

– Change Amplification
An apparently simple change requires modifying many locations

– Cognitive Load
The developer needs to know a great deal in order to complete a task

– Unknown unknowns
Potions of code to modify for a task may be hard to identify

These are symptoms of complexity.

What makes a design good?

● It identifies & manages complexity
– Inherent (essential) complexity

What makes a design good?

● It identifies & manages complexity
– Inherent (essential) complexity

– Incidental (accidental) complexity

What makes a design good?

● It identifies & manages complexity
– Inherent (essential) complexity

– Incidental (accidental) complexity

hide

What makes a design good?

● It identifies & manages complexity
– Inherent (essential) complexity

– Incidental (accidental) complexity

minimize

hide

What makes a design good?

● It identifies & manages complexity
– Inherent (essential) complexity

– Incidental (accidental) complexity

● What is complexity?

What makes a design good?

● It identifies & manages complexity
– Inherent (essential) complexity

– Incidental (accidental) complexity

● What is complexity?
– No agreed upon universal definition; many variants

What makes a design good?

● It identifies & manages complexity
– Inherent (essential) complexity

– Incidental (accidental) complexity

● What is complexity?
– No agreed upon universal definition; many variants

– Grows as entities/concepts in project are connected/woven together

What makes a design good?

● It identifies & manages complexity
– Inherent (essential) complexity

– Incidental (accidental) complexity

● What is complexity?
– No agreed upon universal definition; many variants

– Grows as entities/concepts in project are connected/woven together

[Watch “Simple Made Easy” for one interesting perspective]

http://www.infoq.com/presentations/Simple-Made-Easy

What makes a design good?

● It identifies & manages complexity
– Inherent (essential) complexity

– Incidental (accidental) complexity

● What is complexity?
– No agreed upon universal definition; many variants

– Grows as entities/concepts in project are connected/woven together

[Watch “Simple Made Easy” for one interesting perspective]
– One other heuristic is risk of change

http://www.infoq.com/presentations/Simple-Made-Easy

What makes a design good?

Broadly

● Divides the system into independent components

What makes a design good?

Broadly

● Divides the system into independent components

● Makes it easy for developers to get their jobs done

What makes a design good?

● Not clever

What makes a design good?

● Not clever!

int x = foo(bar(baz(bam(a), b), c), d);

What makes a design good?

● Not clever!!

// this subroutine is called thousands of times.
// use longjmp instead of loops to increase speed.

void
calculate(struct salesinfo* sales){
 jmp_buf buffer;
 int i=setjmp(buffer);
 if (!(i<sales->count)) RETURN_NOTHING;
 addvaluetosubtotal(sales->values[i]);
 if (i<sales->count) longjmp(buffer,i+1);
}

int x = foo(bar(baz(bam(a), b), c), d);

http://thedailywtf.com/articles/Longjmp--FOR-SPEED!!!

http://thedailywtf.com/articles/Longjmp--FOR-SPEED!!!

What makes a design good?

● Not clever!!!

// this subroutine is called thousands of times.
// use longjmp instead of loops to increase speed.

void
calculate(struct salesinfo* sales){
 jmp_buf buffer;
 int i=setjmp(buffer);
 if (!(i<sales->count)) RETURN_NOTHING;
 addvaluetosubtotal(sales->values[i]);
 if (i<sales->count) longjmp(buffer,i+1);
}

int x = foo(bar(baz(bam(a), b), c), d);

http://thedailywtf.com/articles/Longjmp--FOR-SPEED!!!

http://thedailywtf.com/articles/Longjmp--FOR-SPEED!!!

What makes a design good?

● Not clever

● Loose coupling

vs

What makes a design good?

● Not clever

● Loose coupling

vs

Why?

What makes a design good?

● Not clever

● Loose coupling

– Content (accessing implementation of another component)

What makes a design good?

● Not clever

● Loose coupling

– Content (accessing implementation of another component)

...
goto yourcode
... ...

yourcode:
...

What makes a design good?

● Not clever

● Loose coupling

– Content (accessing implementation of another component)
– Common global data

What makes a design good?

● Not clever

● Loose coupling

– Content (accessing implementation of another component)
– Common global data

int global = ...

global = ...

int global = ...

global = ...

... = global

... = global

What makes a design good?

● Not clever

● Loose coupling

– Content (accessing implementation of another component)
– Common global data

int global = ...

global = ...

int global = ...

global = ...

... = global

... = global

What makes a design good?

● Not clever

● Loose coupling

– Content (accessing implementation of another component)
– Common global data

int global = ...

global = ...

int global = ...

global = ...

... = global

... = global
Singletons have these constraints and worse.

What makes a design good?

● Not clever

● Loose coupling

– Content (accessing implementation of another component)
– Common global data

– Subclassing

We will spend a day in the future on this.

What makes a design good?

● Not clever

● Loose coupling

– Content (accessing implementation of another component)
– Common global data

– Subclassing

– Temporal

What makes a design good?

● Not clever

● Loose coupling

– Content (accessing implementation of another component)
– Common global data

– Subclassing

– Temporal

Cat cat = new Cat;
...
delete cat;

What makes a design good?

● Not clever

● Loose coupling

– Content (accessing implementation of another component)
– Common global data

– Subclassing

– Temporal

Cat cat = new Cat;
...
delete cat;

Process p;
p.doStep1();
p.doStep2();
p.doStep3();

What makes a design good?

● Not clever

● Loose coupling

– Content (accessing implementation of another component)
– Common global data

– Subclassing

– Temporal

Cat cat = new Cat;
...
delete cat;

Process p;
p.doStep1();
p.doStep2();
p.doStep3();

This is more insidious!

Process p;
p.foo();
p.bar();
p.baz();

What makes a design good?

● Not clever

● Loose coupling

– Content (accessing implementation of another component)
– Common global data

– Subclassing

– Temporal

– Passing data to/from each other

What makes a design good?

● Not clever

● Loose coupling

– Content (accessing implementation of another component)
– Common global data

– Subclassing

– Temporal

– Passing data to/from each other

x = foo(1,2)
def foo(a, b):
 ...

What makes a design good?

● Not clever

● Loose coupling

– Content (accessing implementation of another component)
– Common global data

– Subclassing

– Temporal

– Passing data to/from each other

– Independence

What makes a design good?

● Not clever

● Loose coupling

● High fan in / low fan out

foo()

bar() baz()

vs
foo()

bar()

What makes a design good?

● Not clever

● Loose coupling

● High fan in / low fan out

foo()

bar() baz()

vs
foo()

bar()

Do you agree?
Why?

What makes a design good?

● Not clever

● Loose coupling

● High fan in / low fan out

● Layers / Stratification

What makes a design good?

● Not clever

● Loose coupling

● High fan in / low fan out

● Layers / Stratification

& a consistent, self contained view per level

What makes a design good?

● Not clever

● Loose coupling

● High fan in / low fan out

● Layers / Stratification

New / Greenfield
Code

Wrapper API

Legacy / Sketchy Code

What makes a design good?

● Not clever

● Loose coupling

● High fan in / low fan out

● Layers / Stratification

New / Greenfield
Code

Wrapper API

External Library

What makes a design good?

● Not clever

● Loose coupling

● High fan in / low fan out

● Layers / Stratification

New / Greenfield
Code

Wrapper API

External Library

What impact does this have on
invariants & types?

What makes a design good?

● Not clever

● Loose coupling

● High fan in / low fan out

● Layers / Stratification

● Cohesion

● ...

vs

What makes a design good?

● Not clever

● Loose coupling

● High fan in / low fan out

● Layers / Stratification

● Cohesion

● ...

But these are the ends, not the means

Revisiting Complexity

● We can characterize causes of complex designs [Ousterhout 2018]

Revisiting Complexity

● We can characterize causes of complex designs [Ousterhout 2018]

– Dependencies
Code cannot be understood in isolation because of relationships to other
code.

Revisiting Complexity

● We can characterize causes of complex designs [Ousterhout 2018]

– Dependencies
Code cannot be understood in isolation because of relationships to other
code.

– Obscurity
Important information about code is not obvious.

Revisiting Complexity

● We can characterize causes of complex designs [Ousterhout 2018]

– Dependencies
Code cannot be understood in isolation because of relationships to other
code.

– Obscurity
Important information about code is not obvious.

These directly relate to the
qualities of good code we just saw.

Consider a design

User
Interface Graphics

Data
Storage

Business
Logic

Enterprise
Backbone

Consider a design

User
Interface Graphics

Data
Storage

Business
Logic

Enterprise
Backbone

Is this simple? Why?

Consider a design

● What if you want to modify the business logic?

User
Interface Graphics

Data
Storage

Business
Logic

Enterprise
Backbone

Consider a design

● What if you want to modify the business logic?

● What if you want to reuse the business logic?

User
Interface Graphics

Data
Storage

Business
Logic

Enterprise
Backbone

Consider a design

● What if you want to modify the business logic?

● What if you want to reuse the business logic?

● What if you want to replace the display?

User
Interface Graphics

Data
Storage

Business
Logic

Enterprise
Backbone

Consider a design

● What if you want to modify the business logic?

● What if you want to reuse the business logic?

● What if you want to replace the display?

User
Interface Graphics

Data
Storage

Business
Logic

Enterprise
Backbone

Like a basket woven together,
you get everything or nothing.

Consider a design

Graphics

Data
Storage

Business
Logic

Enterprise
Backbone

User
Interface

Consider a design

Is this simpler? Why?

Graphics

Data
Storage

Business
Logic

Enterprise
Backbone

User
Interface

Consider a design

What is still complex? Why?Is this simpler? Why?

Graphics

Data
Storage

Business
Logic

Enterprise
Backbone

User
Interface

Consider a design

● The fewer connected or conflated concepts, the better

Consider a function
bool
isFasterThanSound(double speed) {
 return speed > MACH1;
}

Consider a function
bool
isFasterThanSound(double speed) {
 return speed > MACH1;
}

Is this simple or complex? Why?

bool
isFasterThanSound(double speed) {
 return speed > MACH1;
}

 (double speed, double angle) {

}

Consider a function

Is this simple or complex? Why?

Consider a function
bool
isFasterThanSound(double speed) {
 return speed > MACH1;
}

A good design should be hard to misuse

 (double speed, double angle) {

}
Is this simple or complex? Why?

Consider a class
class Student {
public:
 ...
 ID getID() const;
 Name getName() const;
 Address getAddress() const;

 void storeToDatabase() const;
 static Student readFromDatabase();

 bool canApplyForCoOp();
 bool meetsDegreeRequirements();
};

Consider a class
class Student {
public:
 ...
 ID getID() const;
 Name getName() const;
 Address getAddress() const;

 void storeToDatabase() const;
 static Student readFromDatabase();

 bool canApplyForCoOp();
 bool meetsDegreeRequirements();
};What is good about this class?

Consider a class
class Student {
public:
 ...
 ID getID() const;
 Name getName() const;
 Address getAddress() const;

 void storeToDatabase() const;
 static Student readFromDatabase();

 bool canApplyForCoOp();
 bool meetsDegreeRequirements();
};What is good about this class? What is bad about this class?

What are our simplifying tools?

● Metaphors – identify “real world” objects & relations

What are our simplifying tools?

● Metaphors – identify “real world” objects & relations

Be careful.
This can be a good place to start,

but a poor place to end.

What are our simplifying tools?

● Metaphors – identify “real world” objects & relations

● Abstraction – use high level concepts

What are our simplifying tools?

● Metaphors – identify “real world” objects & relations

● Abstraction – use high level concepts

● Encapsulation – hide the details

This is the Code Complete definition,
not a universal one!

What are our simplifying tools?

● Metaphors – identify “real world” objects & relations

● Abstraction – use high level concepts

● Encapsulation – hide the details

Deeply tied to information hiding

What are our simplifying tools?

● Metaphors – identify “real world” objects & relations

● Abstraction – use high level concepts

● Encapsulation – hide the details

● Consistency

What are our simplifying tools?

● Metaphors – identify “real world” objects & relations

● Abstraction – use high level concepts

● Encapsulation – hide the details

● Consistency

● Inheritance?

What are our simplifying tools?

● Metaphors – identify “real world” objects & relations

● Abstraction – use high level concepts

● Encapsulation – hide the details

● Consistency

● Inheritance?
– In small, constrained doses

– Ideally through interfaces

What are our simplifying tools?

● Metaphors – identify “real world” objects & relations

● Abstraction – use high level concepts

● Encapsulation – hide the details

● Consistency

● Inheritance?
– In small, constrained doses

– Ideally through interfaces

Use especially for:
1) likely/risky to change code
2) frequently used code

Key Strategy: Mitigate change

● Identify potential areas of change

class Student {
public:
 ...
 int getID() const;
 ...
};

Key Strategy: Mitigate change

● Identify potential areas of change

class Student {
public:
 ...
 int getID() const;
 ...
};

Key Strategy: Mitigate change

● Identify potential areas of change

● Separate them structurally

class Student {
public:
 ...
 int getID() const;
 ...
};

Key Strategy: Mitigate change

● Identify potential areas of change

● Separate them structurally

class Student {
public:
 ...
 ID getID() const;
 ...
};

class Student {
public:
 ...
 int getID() const;
 ...
};

Key Strategy: Mitigate change

● Identify potential areas of change

● Separate them structurally

● Isolate their impact through interfaces

Key Strategy: Mitigate change

● Identify potential areas of change

● Separate them structurally

● Isolate their impact through interfaces

class IDCreator {
public:
 ...
 virtual ID createID() = 0;
 ...
};

Key Strategy: Mitigate change

 ...
 ID studentID = student.getID();
 ...

How might this hinder change?

Key Strategy: Mitigate change

 ...
 ID studentID = student.getID();
 ...

How might this hinder change?

How can it be resolved?

Key Strategy: Mitigate change

 ...
 ID studentID = student.getID();
 ...

How might this hinder change?

How can it be resolved?

What are the trade offs?

Constant Vigilance

● Avoiding complexity requires a planned process

Constant Vigilance

● Avoiding complexity requires a planned process
– Code review everything

[metaphors, abstraction, encapsulation, consistency, inheritance]

Constant Vigilance

● Avoiding complexity requires a planned process
– Code review everything

[metaphors, abstraction, encapsulation, consistency, inheritance]
– Write tests (simple code is easier to test)

Constant Vigilance

● Avoiding complexity requires a planned process
– Code review everything

[metaphors, abstraction, encapsulation, consistency, inheritance]
– Write tests (simple code is easier to test)

● Know when & where you make bad decisions

– technical debt

Constant Vigilance

● Avoiding complexity requires a planned process
– Code review everything

[metaphors, abstraction, encapsulation, consistency, inheritance]
– Write tests (simple code is easier to test)

● Know when & where you make bad decisions

– technical debt
● You end up paying it back!

Design Smells

● A design smell is a clue that better design is needed

Design Smells

● A design smell is a clue that better design is needed

● Such as: (adapted from John Ousterhout)

– Thin components
● Is it really hiding an implementation?
● Is complexity arising from having to many small classes?

Design Smells

● A design smell is a clue that better design is needed

● Such as: (adapted from John Ousterhout)

– Thin components
● Is it really hiding an implementation?
● Is complexity arising from having to many small classes?

– Information leaks
● Can I see the implementation details? (unintentional interface)
● Repeated similar code

Design Smells

● A design smell is a clue that better design is needed

● Such as: (adapted from John Ousterhout)

– Thin components
● Is it really hiding an implementation?
● Is complexity arising from having to many small classes?

– Information leaks
● Can I see the implementation details? (unintentional interface)
● Repeated similar code

– Difficulty making a change

Experience

● Experience hones your sense of design.
– Hopefully, our discussions this semester will help you be aware of it.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118

