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Laying a foundation

● Our goal for this lecture is pretty abstract.
– We want to talk about goals for software
– But we aren’t going to look at much code

● Instead, I want to lay a foundation that you should keep in mind 
consistently as we consider code throughout the course.
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Why do we care about software complexity?

● What even is software complexity?

● What is the goal of a software engineer?
Engineering = Scientific Theory + Practice + Engineering Economy
Engineering = Computer Science + Practice + Engineering Economy

● A good engineer needs to develop economical solutions.
– ↓ maintenance costs
– ↓ defect rates
– ↓ legal liabilities
– ↑ extensibility & reuse for new requirements

● Our intuition may capture these, but software complexity is nuanced

(Software)

[Steve Tockey, Construx]

https://www.youtube.com/watch?v=wdOavmxmye4
https://www.youtube.com/watch?v=wdOavmxmye4
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Good engineers must exercise judgment

● Every problem has multiple solutions
● Good software engineering requires

evaluating several forms of costs
across many different solutions
and choosing a cost effective solution

● Different solutions may be functionally equivalent
but the nonfunctional attributes can determine what is appropriate 
for a specific problem
– May differ radically in performance, maintainability, etc.
– A good solution for one problem may be disastrous for another
– Need to perform cost/benefit analysis of different solutions

● A modern classic example is  monolith  vs  microservices
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The ravages of time

● Worse still, costs must be considered over time
– A low cost immediate solution may be expensive to live with
– As much as we try to avoid it, requirements evolve and change

● But can’t our process include refactoring and redesign?
– In theory
– In practice, to a limit
– Much of the code in a bad design must be lived with & worked around

● Good judgment involves writing code that can cope with evolution
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The complexities we will not consider

● Complexity has many sources.
– Design and code is only one of them, but it will be our focus
– Just as important (maybe more) are requirements
– Clients often say they want A when they want B

● Requirements engineering & elicitation are more out of scope for us
– Supposedly CMPT 475 dives into those?

● But I will still change requirements on you deliberately
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So what is complexity?

● If we want to judge and assess it, it would be nice to define it but...
we don’t have a single good answer. It is openly researched & debated.

● The goal is to capture the idea that software is hard to work with.
● There are some classic definitions & even tools to check them.
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● A classic measure available in tools is McCabe or cyclomatic complexity
– Idea: complexity may be about the number of independent behaviors
– So count the linearly independent paths through a program.

(each path has at least one unique edge)

c1
if c1:

...(x)
else:

...(y)
if c2:

...(z)

x y

c2

c2’

z

– Consider the control flow graph
– M = Edges – Nodes + 2*Connected Components

M = 7 – 6 + 2*1 = 3
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● A classic measure available in tools is McCabe or cyclomatic complexity
– Idea: complexity may be about the number of independent behaviors
– So count the linearly independent paths through a program.

(each path has at least one unique edge)

● Halstead complexity instead applies physics metaphors over
– Distinct # operators
– Distinct # operands
– Total # operators
– Total # operands

● These are easily automated & some companies use them. Are they good?
– Well, not really



  

Classic McCabe & Halstead measures

● McCabe & Halstead metrics mostly just measure function size
– There is a bit more going on, but its utility is not considered cost effective



  

Classic McCabe & Halstead measures

● McCabe & Halstead metrics mostly just measure function size
– There is a bit more going on, but its utility is not considered cost effective

● They also have counterintuitive scenarios
●void foo() {
  if (c1) { m } else { n } 
  if (c2) { o } else { p } 
  if (c3) { q } else { r } 
  if (c4) { s } else { t }
  return;
}

M = 16 – 13 + 2*1 = 5



  

Classic McCabe & Halstead measures

● McCabe & Halstead metrics mostly just measure function size
– There is a bit more going on, but its utility is not considered cost effective

● They also have counterintuitive scenarios
●void foo() {
  if (c1) { m } else { n } 
  if (c2) { o } else { p } 
  if (c3) { q } else { r } 
  if (c4) { s } else { t }
  return;
}

void mn() { if (c1) { m } else { n } }
void op() { if (c1) { o } else { p } }
void qr() { if (c1) { q } else { r } }
void st() { if (c1) { s } else { t } }

void foo() {
  mn(); 
  op(); 
  qr(); 
  st();
  return;
}

M = 16 – 13 + 2*1 = 5

M = 4 – 4 + 2*1 = 2
M = 4 – 4 + 2*1 = 2
M = 4 – 4 + 2*1 = 2
M = 4 – 4 + 2*1 = 2

M = 0 – 1 + 2*1 = 1
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Classic McCabe & Halstead measures

● McCabe & Halstead metrics mostly just measure function size
– There is a bit more going on, but its utility is not considered cost effective

● They also have obvious counterintuitive scenarios
● In practice just using whitespace & the shape of code

– is as effective
– is more intuitive for people

● This is still clearly limited in meaning, so it isn’t on the track we want
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More philosophical definitions

● Being too specific may get in the way of defining a general concept
● Instead, we can start to consider it by its intuitive effects

– Complexity grows with size
– It also grows as pieces of a system are connected or woven together
– It grows as individual clarity is muddled by the bigger picture

[Watch “Simple Made Easy” for more on this perspective]

● We also have some general forms of complexity to consider
– Inherent (essential) complexity
– Incidental (accidental) complexity

http://www.infoq.com/presentations/Simple-Made-Easy
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Refining these for code

● We can consider more specific symptoms for code [Ousterhout 2018]
– Change Amplification

An apparently simple change requires modifying many locations
– Cognitive Load

The developer needs to know a great deal in order to complete a task
– Unknown unknowns

Portions of code to modify for a task may be hard to identify

● We can then look for common causes to attack them
– Dependencies

Code cannot be understood in isolation because of relationships to other code.
– Obscurity

Important information about code is not obvious.
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● Content (accessing implementation of another component)

...
goto yourcode
...

...
yourcode:
...
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Signs of complexity

● These may present themselves in many ways
– Coupling

● Content
● Common global data

int global = ...

global = ...

int global = ...

global = ...

... = global

... = global

Singletons have these constraints and worse.
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We will spend a day in the future on this.
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Signs of complexity

● These may present themselves in many ways
– Coupling

● Content
● Common global data
● Subclassing
● Temporal

Cat cat = new Cat;
...
delete cat;

Process p;
p.doStep1();
p.doStep2();
p.doStep3();

This is more insidious!

Process p;
p.foo();
p.bar();
p.baz();



  

Signs of complexity

● These may present themselves in many ways
– Coupling

● Content
● Common global data
● Subclassing
● Temporal
● Passing data to/from each other

x = foo(1,2)
def foo(a, b):
    ...



  

Signs of complexity

● These may present themselves in many ways
– Coupling

● Content
● Common global data
● Subclassing
● Temporal
● Passing data to/from each other
● Independence
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Signs of complexity

● These may present themselves in many ways
– Coupling
– Fan in vs fan out

foo()

bar() baz()

vsfoo()

bar()

Do you agree?
Why?
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Signs of complexity

● These may present themselves in many ways
– Coupling
– Fan in vs fan out
– Layers & stratification

New / Greenfield
Code

Wrapper API

External Library

What impact does this have on
invariants & types?



  

Signs of complexity

● These may present themselves in many ways
– Coupling
– Fan in vs fan out
– Layers & stratification
– Cohesion

vs



  

Signs of complexity

● These may present themselves in many ways
– Coupling
– Fan in vs fan out
– Layers & stratification
– Cohesion

● These are only some of the signals.
In fact you can analyze your workflow to search for other signs!
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(Some) ways to seek out complexity [Tornhill 2015]

● Analyzing your version control logs
– Which files tend to change together?
– Which files change frequently?

● Whitespace analysis & visual complexity
● Visualizing static coupling to assess potential risk
● More guidance can be found in “Your Code as a Crime Scene”
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Technical Debt

● Temporarily allowing complexity can be useful
in order to provide more value along another dimension
– Perhaps it is to enable progress and exploration before refinement
– Perhaps efficiency requirements are not well understood yet
– ...

● Making a temporarily bad choice that you know will have to be 
changed later is known as technical debt

● Just like financial debt, it can be a useful tool,
but the longer it goes unpaid, the greater the damages can be
– And sometimes you may have unintended debts!
– Teams that deliberately manage it may become 50% faster. [Gartner]

https://tanzu.vmware.com/content/intersect/app-modernization-101
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Where we will go

● Much of this semester will involve applying programming skills to 
explore these issues
– We presented things abstractly here,

but we will talk about concrete code.
– You must be comfortable with concrete code.

● You will end up making trade offs and having regret
● Regret is part of the point.

It indicates that you learned something along the way.
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Summary

● You should have an intuition about
classic & modern notions of complexity

● You should understand the high level challenges with complexity that 
we will be trying to address going forward

● You should understand that software engineering will involve judgments 
about trade offs and how to balance such objectives over time
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