
CMPT 373
Software Development Methods

Nick Sumner
wsumner@sfu.ca

Complexity

mailto:wsumner@sfu.ca

Laying a foundation

● Our goal for this lecture is pretty abstract.
– We want to talk about goals for software
– But we aren’t going to look at much code

Laying a foundation

● Our goal for this lecture is pretty abstract.
– We want to talk about goals for software
– But we aren’t going to look at much code

● Instead, I want to lay a foundation that you should keep in mind
consistently as we consider code throughout the course.

Why do we care about software complexity?

● What even is software complexity?

Why do we care about software complexity?

● What even is software complexity?

● What is the goal of a software engineer?

Why do we care about software complexity?

● What even is software complexity?

● What is the goal of a software engineer?
Engineering = Scientific Theory + Practice + Engineering Economy

[Steve Tockey, Construx]

https://www.youtube.com/watch?v=wdOavmxmye4
https://www.youtube.com/watch?v=wdOavmxmye4

Why do we care about software complexity?

● What even is software complexity?

● What is the goal of a software engineer?
Engineering = Scientific Theory + Practice + Engineering Economy
Engineering = Computer Science + Practice + Engineering Economy(Software)

[Steve Tockey, Construx]

https://www.youtube.com/watch?v=wdOavmxmye4
https://www.youtube.com/watch?v=wdOavmxmye4

Why do we care about software complexity?

● What even is software complexity?

● What is the goal of a software engineer?
Engineering = Scientific Theory + Practice + Engineering Economy
Engineering = Computer Science + Practice + Engineering Economy(Software)

[Steve Tockey, Construx]

https://www.youtube.com/watch?v=wdOavmxmye4
https://www.youtube.com/watch?v=wdOavmxmye4

Why do we care about software complexity?

● What even is software complexity?

● What is the goal of a software engineer?
Engineering = Scientific Theory + Practice + Engineering Economy
Engineering = Computer Science + Practice + Engineering Economy

● A good engineer needs to develop economical solutions.
(Software)

[Steve Tockey, Construx]

https://www.youtube.com/watch?v=wdOavmxmye4
https://www.youtube.com/watch?v=wdOavmxmye4

Why do we care about software complexity?

● What even is software complexity?

● What is the goal of a software engineer?
Engineering = Scientific Theory + Practice + Engineering Economy
Engineering = Computer Science + Practice + Engineering Economy

● A good engineer needs to develop economical solutions.
– ↓ maintenance costs
– ↓ defect rates
– ↓ legal liabilities
– ↑ extensibility & reuse for new requirements

(Software)

[Steve Tockey, Construx]

https://www.youtube.com/watch?v=wdOavmxmye4
https://www.youtube.com/watch?v=wdOavmxmye4

Why do we care about software complexity?

● What even is software complexity?

● What is the goal of a software engineer?
Engineering = Scientific Theory + Practice + Engineering Economy
Engineering = Computer Science + Practice + Engineering Economy

● A good engineer needs to develop economical solutions.
– ↓ maintenance costs
– ↓ defect rates
– ↓ legal liabilities
– ↑ extensibility & reuse for new requirements

● Our intuition may capture these, but software complexity is nuanced

(Software)

[Steve Tockey, Construx]

https://www.youtube.com/watch?v=wdOavmxmye4
https://www.youtube.com/watch?v=wdOavmxmye4

Good engineers must exercise judgment

● Every problem has multiple solutions

Good engineers must exercise judgment

● Every problem has multiple solutions
● Good software engineering requires

evaluating several forms of costs
across many different solutions
and choosing a cost effective solution

Good engineers must exercise judgment

● Every problem has multiple solutions
● Good software engineering requires

evaluating several forms of costs
across many different solutions
and choosing a cost effective solution

● Different solutions may be functionally equivalent
but the nonfunctional attributes can determine what is appropriate
for a specific problem

Good engineers must exercise judgment

● Every problem has multiple solutions
● Good software engineering requires

evaluating several forms of costs
across many different solutions
and choosing a cost effective solution

● Different solutions may be functionally equivalent
but the nonfunctional attributes can determine what is appropriate
for a specific problem
– May differ radically in performance, maintainability, etc.
– A good solution for one problem may be disastrous for another

Good engineers must exercise judgment

● Every problem has multiple solutions
● Good software engineering requires

evaluating several forms of costs
across many different solutions
and choosing a cost effective solution

● Different solutions may be functionally equivalent
but the nonfunctional attributes can determine what is appropriate
for a specific problem
– May differ radically in performance, maintainability, etc.
– A good solution for one problem may be disastrous for another
– Need to perform cost/benefit analysis of different solutions

Good engineers must exercise judgment

● Every problem has multiple solutions
● Good software engineering requires

evaluating several forms of costs
across many different solutions
and choosing a cost effective solution

● Different solutions may be functionally equivalent
but the nonfunctional attributes can determine what is appropriate
for a specific problem
– May differ radically in performance, maintainability, etc.
– A good solution for one problem may be disastrous for another
– Need to perform cost/benefit analysis of different solutions

● A modern classic example is monolith vs microservices

The ravages of time

● Worse still, costs must be considered over time

The ravages of time

● Worse still, costs must be considered over time
– A low cost immediate solution may be expensive to live with
– As much as we try to avoid it, requirements evolve and change

The ravages of time

● Worse still, costs must be considered over time
– A low cost immediate solution may be expensive to live with
– As much as we try to avoid it, requirements evolve and change

● But can’t our process include refactoring and redesign?
– In theory
– In practice, to a limit
– Much of the code in a bad design must be lived with & worked around

The ravages of time

● Worse still, costs must be considered over time
– A low cost immediate solution may be expensive to live with
– As much as we try to avoid it, requirements evolve and change

● But can’t our process include refactoring and redesign?
– In theory
– In practice, to a limit
– Much of the code in a bad design must be lived with & worked around

● Good judgment involves writing code that can cope with evolution

The complexities we will not consider

● Complexity has many sources.

The complexities we will not consider

● Complexity has many sources.
– Design and code is only one of them, but it will be our focus
– Just as important (maybe more) are requirements
– Clients often say they want A when they want B

The complexities we will not consider

● Complexity has many sources.
– Design and code is only one of them, but it will be our focus
– Just as important (maybe more) are requirements
– Clients often say they want A when they want B

● Requirements engineering & elicitation are more out of scope for us
– Supposedly CMPT 475 dives into those?

The complexities we will not consider

● Complexity has many sources.
– Design and code is only one of them, but it will be our focus
– Just as important (maybe more) are requirements
– Clients often say they want A when they want B

● Requirements engineering & elicitation are more out of scope for us
– Supposedly CMPT 475 dives into those?

● But I will still change requirements on you deliberately

So what is complexity?

● If we want to judge and assess it, it would be nice to define it but...

So what is complexity?

● If we want to judge and assess it, it would be nice to define it but...
we don’t have a single good answer. It is openly researched & debated.

So what is complexity?

● If we want to judge and assess it, it would be nice to define it but...
we don’t have a single good answer. It is openly researched & debated.

● The goal is to capture the idea that software is hard to work with.

So what is complexity?

● If we want to judge and assess it, it would be nice to define it but...
we don’t have a single good answer. It is openly researched & debated.

● The goal is to capture the idea that software is hard to work with.
● There are some classic definitions & even tools to check them.

Classic McCabe & Halstead measures

● A classic measure available in tools is McCabe or cyclomatic complexity

Classic McCabe & Halstead measures

● A classic measure available in tools is McCabe or cyclomatic complexity
– Idea: complexity may be about the number of independent behaviors

Classic McCabe & Halstead measures

● A classic measure available in tools is McCabe or cyclomatic complexity
– Idea: complexity may be about the number of independent behaviors
– So count the linearly independent paths through a program.

(each path has at least one unique edge)

Classic McCabe & Halstead measures

● A classic measure available in tools is McCabe or cyclomatic complexity
– Idea: complexity may be about the number of independent behaviors
– So count the linearly independent paths through a program.

(each path has at least one unique edge)

c1
if c1:

...(x)
else:

...(y)
if c2:

...(z)

x y

c2

c2’

z

– Consider the control flow graph

Classic McCabe & Halstead measures

● A classic measure available in tools is McCabe or cyclomatic complexity
– Idea: complexity may be about the number of independent behaviors
– So count the linearly independent paths through a program.

(each path has at least one unique edge)

c1
if c1:

...(x)
else:

...(y)
if c2:

...(z)

x y

c2

c2’

z

– Consider the control flow graph

Classic McCabe & Halstead measures

● A classic measure available in tools is McCabe or cyclomatic complexity
– Idea: complexity may be about the number of independent behaviors
– So count the linearly independent paths through a program.

(each path has at least one unique edge)

c1
if c1:

...(x)
else:

...(y)
if c2:

...(z)

x y

c2

c2’

z

– Consider the control flow graph

Classic McCabe & Halstead measures

● A classic measure available in tools is McCabe or cyclomatic complexity
– Idea: complexity may be about the number of independent behaviors
– So count the linearly independent paths through a program.

(each path has at least one unique edge)

c1
if c1:

...(x)
else:

...(y)
if c2:

...(z)

x y

c2

c2’

z

– Consider the control flow graph

Classic McCabe & Halstead measures

● A classic measure available in tools is McCabe or cyclomatic complexity
– Idea: complexity may be about the number of independent behaviors
– So count the linearly independent paths through a program.

(each path has at least one unique edge)

c1
if c1:

...(x)
else:

...(y)
if c2:

...(z)

x y

c2

c2’

z

– Consider the control flow graph
– M = Edges – Nodes + 2*Connected Components

Classic McCabe & Halstead measures

● A classic measure available in tools is McCabe or cyclomatic complexity
– Idea: complexity may be about the number of independent behaviors
– So count the linearly independent paths through a program.

(each path has at least one unique edge)

c1
if c1:

...(x)
else:

...(y)
if c2:

...(z)

x y

c2

c2’

z

– Consider the control flow graph
– M = Edges – Nodes + 2*Connected Components

M = 7 – 6 + 2*1 = 3

Classic McCabe & Halstead measures

● A classic measure available in tools is McCabe or cyclomatic complexity
– Idea: complexity may be about the number of independent behaviors
– So count the linearly independent paths through a program.

(each path has at least one unique edge)

● Halstead complexity instead applies physics metaphors over
– Distinct # operators
– Distinct # operands
– Total # operators
– Total # operands

Classic McCabe & Halstead measures

● A classic measure available in tools is McCabe or cyclomatic complexity
– Idea: complexity may be about the number of independent behaviors
– So count the linearly independent paths through a program.

(each path has at least one unique edge)

● Halstead complexity instead applies physics metaphors over
– Distinct # operators
– Distinct # operands
– Total # operators
– Total # operands

● These are easily automated & some companies use them. Are they good?
– Well, not really

Classic McCabe & Halstead measures

● McCabe & Halstead metrics mostly just measure function size
– There is a bit more going on, but its utility is not considered cost effective

Classic McCabe & Halstead measures

● McCabe & Halstead metrics mostly just measure function size
– There is a bit more going on, but its utility is not considered cost effective

● They also have counterintuitive scenarios
●void foo() {
 if (c1) { m } else { n }
 if (c2) { o } else { p }
 if (c3) { q } else { r }
 if (c4) { s } else { t }
 return;
}

M = 16 – 13 + 2*1 = 5

Classic McCabe & Halstead measures

● McCabe & Halstead metrics mostly just measure function size
– There is a bit more going on, but its utility is not considered cost effective

● They also have counterintuitive scenarios
●void foo() {
 if (c1) { m } else { n }
 if (c2) { o } else { p }
 if (c3) { q } else { r }
 if (c4) { s } else { t }
 return;
}

void mn() { if (c1) { m } else { n } }
void op() { if (c1) { o } else { p } }
void qr() { if (c1) { q } else { r } }
void st() { if (c1) { s } else { t } }

void foo() {
 mn();
 op();
 qr();
 st();
 return;
}

M = 16 – 13 + 2*1 = 5

M = 4 – 4 + 2*1 = 2
M = 4 – 4 + 2*1 = 2
M = 4 – 4 + 2*1 = 2
M = 4 – 4 + 2*1 = 2

M = 0 – 1 + 2*1 = 1

Classic McCabe & Halstead measures

● McCabe & Halstead metrics mostly just measure function size
– There is a bit more going on, but its utility is not considered cost effective

● They also have obvious counterintuitive scenarios
● In practice just using whitespace & the shape of code

– is as effective
– is more intuitive for people

Classic McCabe & Halstead measures

● McCabe & Halstead metrics mostly just measure function size
– There is a bit more going on, but its utility is not considered cost effective

● They also have obvious counterintuitive scenarios
● In practice just using whitespace & the shape of code

– is as effective
– is more intuitive for people

● This is still clearly limited in meaning, so it isn’t on the track we want

More philosophical definitions

● Being too specific may get in the way of defining a general concept

More philosophical definitions

● Being too specific may get in the way of defining a general concept
● Instead, we can start to consider it by its intuitive effects

– Complexity grows with size
– It also grows as pieces of a system are connected or woven together

More philosophical definitions

● Being too specific may get in the way of defining a general concept
● Instead, we can start to consider it by its intuitive effects

– Complexity grows with size
– It also grows as pieces of a system are connected or woven together

More philosophical definitions

● Being too specific may get in the way of defining a general concept
● Instead, we can start to consider it by its intuitive effects

– Complexity grows with size
– It also grows as pieces of a system are connected or woven together
– It grows as individual clarity is muddled by the bigger picture

[Watch “Simple Made Easy” for more on this perspective]

http://www.infoq.com/presentations/Simple-Made-Easy

More philosophical definitions

● Being too specific may get in the way of defining a general concept
● Instead, we can start to consider it by its intuitive effects

– Complexity grows with size
– It also grows as pieces of a system are connected or woven together
– It grows as individual clarity is muddled by the bigger picture

[Watch “Simple Made Easy” for more on this perspective]

● We also have some general forms of complexity to consider
– Inherent (essential) complexity
– Incidental (accidental) complexity

http://www.infoq.com/presentations/Simple-Made-Easy

Refining these for code

● We can consider more specific symptoms for code [Ousterhout 2018]

Refining these for code

● We can consider more specific symptoms for code [Ousterhout 2018]
– Change Amplification

An apparently simple change requires modifying many locations

Refining these for code

● We can consider more specific symptoms for code [Ousterhout 2018]
– Change Amplification

An apparently simple change requires modifying many locations
– Cognitive Load

The developer needs to know a great deal in order to complete a task

Refining these for code

● We can consider more specific symptoms for code [Ousterhout 2018]
– Change Amplification

An apparently simple change requires modifying many locations
– Cognitive Load

The developer needs to know a great deal in order to complete a task
– Unknown unknowns

Portions of code to modify for a task may be hard to identify

Refining these for code

● We can consider more specific symptoms for code [Ousterhout 2018]
– Change Amplification

An apparently simple change requires modifying many locations
– Cognitive Load

The developer needs to know a great deal in order to complete a task
– Unknown unknowns

Portions of code to modify for a task may be hard to identify

● We can then look for common causes to attack them

Refining these for code

● We can consider more specific symptoms for code [Ousterhout 2018]
– Change Amplification

An apparently simple change requires modifying many locations
– Cognitive Load

The developer needs to know a great deal in order to complete a task
– Unknown unknowns

Portions of code to modify for a task may be hard to identify

● We can then look for common causes to attack them
– Dependencies

Code cannot be understood in isolation because of relationships to other code.

Refining these for code

● We can consider more specific symptoms for code [Ousterhout 2018]
– Change Amplification

An apparently simple change requires modifying many locations
– Cognitive Load

The developer needs to know a great deal in order to complete a task
– Unknown unknowns

Portions of code to modify for a task may be hard to identify

● We can then look for common causes to attack them
– Dependencies

Code cannot be understood in isolation because of relationships to other code.
– Obscurity

Important information about code is not obvious.

Signs of complexity

● These may present themselves in many ways

Signs of complexity

● These may present themselves in many ways
– Coupling

Signs of complexity

● These may present themselves in many ways
– Coupling

Why?

Signs of complexity

● These may present themselves in many ways
– Coupling

● Content (accessing implementation of another component)

...
goto yourcode
...

...
yourcode:
...

Signs of complexity

● These may present themselves in many ways
– Coupling

● Content
● Common global data

Signs of complexity

● These may present themselves in many ways
– Coupling

● Content
● Common global data

global = ...

int global = ...

global = ...

... = global

... = global

Signs of complexity

● These may present themselves in many ways
– Coupling

● Content
● Common global data

int global = ...

global = ...

int global = ...

global = ...

... = global

... = global

Signs of complexity

● These may present themselves in many ways
– Coupling

● Content
● Common global data

int global = ...

global = ...

int global = ...

global = ...

... = global

... = global

Singletons have these constraints and worse.

Signs of complexity

● These may present themselves in many ways
– Coupling

● Content
● Common global data
● Subclassing

We will spend a day in the future on this.

Signs of complexity

● These may present themselves in many ways
– Coupling

● Content
● Common global data
● Subclassing
● Temporal

Signs of complexity

● These may present themselves in many ways
– Coupling

● Content
● Common global data
● Subclassing
● Temporal

Cat cat = new Cat;
...
delete cat;

Signs of complexity

● These may present themselves in many ways
– Coupling

● Content
● Common global data
● Subclassing
● Temporal

Cat cat = new Cat;
...
delete cat;

Process p;
p.doStep1();
p.doStep2();
p.doStep3();

Signs of complexity

● These may present themselves in many ways
– Coupling

● Content
● Common global data
● Subclassing
● Temporal

Cat cat = new Cat;
...
delete cat;

Process p;
p.doStep1();
p.doStep2();
p.doStep3();

This is more insidious!

Process p;
p.foo();
p.bar();
p.baz();

Signs of complexity

● These may present themselves in many ways
– Coupling

● Content
● Common global data
● Subclassing
● Temporal
● Passing data to/from each other

x = foo(1,2)
def foo(a, b):
 ...

Signs of complexity

● These may present themselves in many ways
– Coupling

● Content
● Common global data
● Subclassing
● Temporal
● Passing data to/from each other
● Independence

Signs of complexity

● These may present themselves in many ways
– Coupling
– Fan in vs fan out

foo()

bar() baz()

vsfoo()

bar()

Signs of complexity

● These may present themselves in many ways
– Coupling
– Fan in vs fan out

foo()

bar() baz()

vsfoo()

bar()

Do you agree?
Why?

Signs of complexity

● These may present themselves in many ways
– Coupling
– Fan in vs fan out
– Layers & stratification

& a consistent, self contained view per level

Signs of complexity

● These may present themselves in many ways
– Coupling
– Fan in vs fan out
– Layers & stratification

New / Greenfield
Code

Legacy / Sketchy Code

Signs of complexity

● These may present themselves in many ways
– Coupling
– Fan in vs fan out
– Layers & stratification

New / Greenfield
Code

Wrapper API

Legacy / Sketchy Code

Signs of complexity

● These may present themselves in many ways
– Coupling
– Fan in vs fan out
– Layers & stratification

New / Greenfield
Code

Wrapper API

External Library

Signs of complexity

● These may present themselves in many ways
– Coupling
– Fan in vs fan out
– Layers & stratification

New / Greenfield
Code

Wrapper API

External Library

What impact does this have on
invariants & types?

Signs of complexity

● These may present themselves in many ways
– Coupling
– Fan in vs fan out
– Layers & stratification
– Cohesion

vs

Signs of complexity

● These may present themselves in many ways
– Coupling
– Fan in vs fan out
– Layers & stratification
– Cohesion

● These are only some of the signals.
In fact you can analyze your workflow to search for other signs!

(Some) ways to seek out complexity [Tornhill 2015]

● Analyzing your version control logs
– Which files tend to change together?
– Which files change frequently?

(Some) ways to seek out complexity [Tornhill 2015]

● Analyzing your version control logs
– Which files tend to change together?
– Which files change frequently?

● Whitespace analysis & visual complexity

(Some) ways to seek out complexity [Tornhill 2015]

● Analyzing your version control logs
– Which files tend to change together?
– Which files change frequently?

● Whitespace analysis & visual complexity
● Visualizing static coupling to assess potential risk

(Some) ways to seek out complexity [Tornhill 2015]

● Analyzing your version control logs
– Which files tend to change together?
– Which files change frequently?

● Whitespace analysis & visual complexity
● Visualizing static coupling to assess potential risk
● More guidance can be found in “Your Code as a Crime Scene”

Technical Debt

● Temporarily allowing complexity can be useful
in order to provide more value along another dimension
– Perhaps it is to enable progress and exploration before refinement
– Perhaps efficiency requirements are not well understood yet
– ...

Technical Debt

● Temporarily allowing complexity can be useful
in order to provide more value along another dimension
– Perhaps it is to enable progress and exploration before refinement
– Perhaps efficiency requirements are not well understood yet
– ...

● Making a temporarily bad choice that you know will have to be
changed later is known as technical debt

Technical Debt

● Temporarily allowing complexity can be useful
in order to provide more value along another dimension
– Perhaps it is to enable progress and exploration before refinement
– Perhaps efficiency requirements are not well understood yet
– ...

● Making a temporarily bad choice that you know will have to be
changed later is known as technical debt

● Just like financial debt, it can be a useful tool,
but the longer it goes unpaid, the greater the damages can be

Technical Debt

● Temporarily allowing complexity can be useful
in order to provide more value along another dimension
– Perhaps it is to enable progress and exploration before refinement
– Perhaps efficiency requirements are not well understood yet
– ...

● Making a temporarily bad choice that you know will have to be
changed later is known as technical debt

● Just like financial debt, it can be a useful tool,
but the longer it goes unpaid, the greater the damages can be
– And sometimes you may have unintended debts!

Technical Debt

● Temporarily allowing complexity can be useful
in order to provide more value along another dimension
– Perhaps it is to enable progress and exploration before refinement
– Perhaps efficiency requirements are not well understood yet
– ...

● Making a temporarily bad choice that you know will have to be
changed later is known as technical debt

● Just like financial debt, it can be a useful tool,
but the longer it goes unpaid, the greater the damages can be
– And sometimes you may have unintended debts!
– Teams that deliberately manage it may become 50% faster. [Gartner]

https://tanzu.vmware.com/content/intersect/app-modernization-101

Where we will go

● Much of this semester will involve applying programming skills to
explore these issues

Where we will go

● Much of this semester will involve applying programming skills to
explore these issues
– We presented things abstractly here,

but we will talk about concrete code.
– You must be comfortable with concrete code.

Where we will go

● Much of this semester will involve applying programming skills to
explore these issues
– We presented things abstractly here,

but we will talk about concrete code.
– You must be comfortable with concrete code.

● You will end up making trade offs and having regret

Where we will go

● Much of this semester will involve applying programming skills to
explore these issues
– We presented things abstractly here,

but we will talk about concrete code.
– You must be comfortable with concrete code.

● You will end up making trade offs and having regret
● Regret is part of the point.

It indicates that you learned something along the way.

Summary

● You should have an intuition about
classic & modern notions of complexity

Summary

● You should have an intuition about
classic & modern notions of complexity

● You should understand the high level challenges with complexity that
we will be trying to address going forward

Summary

● You should have an intuition about
classic & modern notions of complexity

● You should understand the high level challenges with complexity that
we will be trying to address going forward

● You should understand that software engineering will involve judgments
about trade offs and how to balance such objectives over time

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97

