
Building Software

CMPT 373
Software Development Methods

Nick Sumner
wsumner@sfu.ca

mailto:wsumner@sfu.ca

What does it take to build software?
///
// Single Threaded Networking
//
// This file is distributed under the MIT License. See the LICENSE file
// for details.
///

int
main(int argc, char* argv[]) {
 if (argc < 3) {
 std::cerr << "Usage: \n " << argv[0] << " <ip address> <port>\n"
 << " e.g. " << argv[0] << " localhost 4002\n";
 return 1;
 }

 networking::Client client{argv[1], argv[2]};

 bool done = false;
 auto onTextEntry = [&done, &client] (std::string text) {
 if ("exit" == text || "quit" == text) {
 done = true;
 } else {
 client.send(text);
 }
 };

 ChatWindow chatWindow(onTextEntry);
 while (!done && !client.isDisconnected()) {
 try {
 client.update();
 } catch (std::exception& e) {
 chatWindow.displayText("Exception from Client update:");
 chatWindow.displayText(e.what());
 done = true;
 }

 auto response = client.receive();
 if (!response.empty()) {
 chatWindow.displayText(response);
 }
 chatWindow.update();
 }

 return 0;
}

///
// Single Threaded Networking
//
// This file is distributed under the MIT License. See the LICENSE file
// for details.
///

int
main(int argc, char* argv[]) {
 if (argc < 3) {
 std::cerr << "Usage: \n " << argv[0] << " <ip address> <port>\n"
 << " e.g. " << argv[0] << " localhost 4002\n";
 return 1;
 }

 networking::Client client{argv[1], argv[2]};

 bool done = false;
 auto onTextEntry = [&done, &client] (std::string text) {
 if ("exit" == text || "quit" == text) {
 done = true;
 } else {
 client.send(text);
 }
 };

 ChatWindow chatWindow(onTextEntry);
 while (!done && !client.isDisconnected()) {
 try {
 client.update();
 } catch (std::exception& e) {
 chatWindow.displayText("Exception from Client update:");
 chatWindow.displayText(e.what());
 done = true;
 }

 auto response = client.receive();
 if (!response.empty()) {
 chatWindow.displayText(response);
 }
 chatWindow.update();
 }

 return 0;
}

///
// Single Threaded Networking
//
// This file is distributed under the MIT License. See the LICENSE file
// for details.
///

int
main(int argc, char* argv[]) {
 if (argc < 3) {
 std::cerr << "Usage: \n " << argv[0] << " <ip address> <port>\n"
 << " e.g. " << argv[0] << " localhost 4002\n";
 return 1;
 }

 networking::Client client{argv[1], argv[2]};

 bool done = false;
 auto onTextEntry = [&done, &client] (std::string text) {
 if ("exit" == text || "quit" == text) {
 done = true;
 } else {
 client.send(text);
 }
 };

 ChatWindow chatWindow(onTextEntry);
 while (!done && !client.isDisconnected()) {
 try {
 client.update();
 } catch (std::exception& e) {
 chatWindow.displayText("Exception from Client update:");
 chatWindow.displayText(e.what());
 done = true;
 }

 auto response = client.receive();
 if (!response.empty()) {
 chatWindow.displayText(response);
 }
 chatWindow.update();
 }

 return 0;
}

?

What does it take to build software?
///
// Single Threaded Networking
//
// This file is distributed under the MIT License. See the LICENSE file
// for details.
///

int
main(int argc, char* argv[]) {
 if (argc < 3) {
 std::cerr << "Usage: \n " << argv[0] << " <ip address> <port>\n"
 << " e.g. " << argv[0] << " localhost 4002\n";
 return 1;
 }

 networking::Client client{argv[1], argv[2]};

 bool done = false;
 auto onTextEntry = [&done, &client] (std::string text) {
 if ("exit" == text || "quit" == text) {
 done = true;
 } else {
 client.send(text);
 }
 };

 ChatWindow chatWindow(onTextEntry);
 while (!done && !client.isDisconnected()) {
 try {
 client.update();
 } catch (std::exception& e) {
 chatWindow.displayText("Exception from Client update:");
 chatWindow.displayText(e.what());
 done = true;
 }

 auto response = client.receive();
 if (!response.empty()) {
 chatWindow.displayText(response);
 }
 chatWindow.update();
 }

 return 0;
}

///
// Single Threaded Networking
//
// This file is distributed under the MIT License. See the LICENSE file
// for details.
///

int
main(int argc, char* argv[]) {
 if (argc < 3) {
 std::cerr << "Usage: \n " << argv[0] << " <ip address> <port>\n"
 << " e.g. " << argv[0] << " localhost 4002\n";
 return 1;
 }

 networking::Client client{argv[1], argv[2]};

 bool done = false;
 auto onTextEntry = [&done, &client] (std::string text) {
 if ("exit" == text || "quit" == text) {
 done = true;
 } else {
 client.send(text);
 }
 };

 ChatWindow chatWindow(onTextEntry);
 while (!done && !client.isDisconnected()) {
 try {
 client.update();
 } catch (std::exception& e) {
 chatWindow.displayText("Exception from Client update:");
 chatWindow.displayText(e.what());
 done = true;
 }

 auto response = client.receive();
 if (!response.empty()) {
 chatWindow.displayText(response);
 }
 chatWindow.update();
 }

 return 0;
}

///
// Single Threaded Networking
//
// This file is distributed under the MIT License. See the LICENSE file
// for details.
///

int
main(int argc, char* argv[]) {
 if (argc < 3) {
 std::cerr << "Usage: \n " << argv[0] << " <ip address> <port>\n"
 << " e.g. " << argv[0] << " localhost 4002\n";
 return 1;
 }

 networking::Client client{argv[1], argv[2]};

 bool done = false;
 auto onTextEntry = [&done, &client] (std::string text) {
 if ("exit" == text || "quit" == text) {
 done = true;
 } else {
 client.send(text);
 }
 };

 ChatWindow chatWindow(onTextEntry);
 while (!done && !client.isDisconnected()) {
 try {
 client.update();
 } catch (std::exception& e) {
 chatWindow.displayText("Exception from Client update:");
 chatWindow.displayText(e.what());
 done = true;
 }

 auto response = client.receive();
 if (!response.empty()) {
 chatWindow.displayText(response);
 }
 chatWindow.update();
 }

 return 0;
}

?

gcc source1.c source2.c -o myprogram

What does it take to build software?
///
// Single Threaded Networking
//
// This file is distributed under the MIT License. See the LICENSE file
// for details.
///

int
main(int argc, char* argv[]) {
 if (argc < 3) {
 std::cerr << "Usage: \n " << argv[0] << " <ip address> <port>\n"
 << " e.g. " << argv[0] << " localhost 4002\n";
 return 1;
 }

 networking::Client client{argv[1], argv[2]};

 bool done = false;
 auto onTextEntry = [&done, &client] (std::string text) {
 if ("exit" == text || "quit" == text) {
 done = true;
 } else {
 client.send(text);
 }
 };

 ChatWindow chatWindow(onTextEntry);
 while (!done && !client.isDisconnected()) {
 try {
 client.update();
 } catch (std::exception& e) {
 chatWindow.displayText("Exception from Client update:");
 chatWindow.displayText(e.what());
 done = true;
 }

 auto response = client.receive();
 if (!response.empty()) {
 chatWindow.displayText(response);
 }
 chatWindow.update();
 }

 return 0;
}

///
// Single Threaded Networking
//
// This file is distributed under the MIT License. See the LICENSE file
// for details.
///

int
main(int argc, char* argv[]) {
 if (argc < 3) {
 std::cerr << "Usage: \n " << argv[0] << " <ip address> <port>\n"
 << " e.g. " << argv[0] << " localhost 4002\n";
 return 1;
 }

 networking::Client client{argv[1], argv[2]};

 bool done = false;
 auto onTextEntry = [&done, &client] (std::string text) {
 if ("exit" == text || "quit" == text) {
 done = true;
 } else {
 client.send(text);
 }
 };

 ChatWindow chatWindow(onTextEntry);
 while (!done && !client.isDisconnected()) {
 try {
 client.update();
 } catch (std::exception& e) {
 chatWindow.displayText("Exception from Client update:");
 chatWindow.displayText(e.what());
 done = true;
 }

 auto response = client.receive();
 if (!response.empty()) {
 chatWindow.displayText(response);
 }
 chatWindow.update();
 }

 return 0;
}

///
// Single Threaded Networking
//
// This file is distributed under the MIT License. See the LICENSE file
// for details.
///

int
main(int argc, char* argv[]) {
 if (argc < 3) {
 std::cerr << "Usage: \n " << argv[0] << " <ip address> <port>\n"
 << " e.g. " << argv[0] << " localhost 4002\n";
 return 1;
 }

 networking::Client client{argv[1], argv[2]};

 bool done = false;
 auto onTextEntry = [&done, &client] (std::string text) {
 if ("exit" == text || "quit" == text) {
 done = true;
 } else {
 client.send(text);
 }
 };

 ChatWindow chatWindow(onTextEntry);
 while (!done && !client.isDisconnected()) {
 try {
 client.update();
 } catch (std::exception& e) {
 chatWindow.displayText("Exception from Client update:");
 chatWindow.displayText(e.what());
 done = true;
 }

 auto response = client.receive();
 if (!response.empty()) {
 chatWindow.displayText(response);
 }
 chatWindow.update();
 }

 return 0;
}

?

gcc source1.c source2.c -o myprogram

CTRL + SHIFT + B or maybe F5?

What does it take to build software?
///
// Single Threaded Networking
//
// This file is distributed under the MIT License. See the LICENSE file
// for details.
///

int
main(int argc, char* argv[]) {
 if (argc < 3) {
 std::cerr << "Usage: \n " << argv[0] << " <ip address> <port>\n"
 << " e.g. " << argv[0] << " localhost 4002\n";
 return 1;
 }

 networking::Client client{argv[1], argv[2]};

 bool done = false;
 auto onTextEntry = [&done, &client] (std::string text) {
 if ("exit" == text || "quit" == text) {
 done = true;
 } else {
 client.send(text);
 }
 };

 ChatWindow chatWindow(onTextEntry);
 while (!done && !client.isDisconnected()) {
 try {
 client.update();
 } catch (std::exception& e) {
 chatWindow.displayText("Exception from Client update:");
 chatWindow.displayText(e.what());
 done = true;
 }

 auto response = client.receive();
 if (!response.empty()) {
 chatWindow.displayText(response);
 }
 chatWindow.update();
 }

 return 0;
}

///
// Single Threaded Networking
//
// This file is distributed under the MIT License. See the LICENSE file
// for details.
///

int
main(int argc, char* argv[]) {
 if (argc < 3) {
 std::cerr << "Usage: \n " << argv[0] << " <ip address> <port>\n"
 << " e.g. " << argv[0] << " localhost 4002\n";
 return 1;
 }

 networking::Client client{argv[1], argv[2]};

 bool done = false;
 auto onTextEntry = [&done, &client] (std::string text) {
 if ("exit" == text || "quit" == text) {
 done = true;
 } else {
 client.send(text);
 }
 };

 ChatWindow chatWindow(onTextEntry);
 while (!done && !client.isDisconnected()) {
 try {
 client.update();
 } catch (std::exception& e) {
 chatWindow.displayText("Exception from Client update:");
 chatWindow.displayText(e.what());
 done = true;
 }

 auto response = client.receive();
 if (!response.empty()) {
 chatWindow.displayText(response);
 }
 chatWindow.update();
 }

 return 0;
}

///
// Single Threaded Networking
//
// This file is distributed under the MIT License. See the LICENSE file
// for details.
///

int
main(int argc, char* argv[]) {
 if (argc < 3) {
 std::cerr << "Usage: \n " << argv[0] << " <ip address> <port>\n"
 << " e.g. " << argv[0] << " localhost 4002\n";
 return 1;
 }

 networking::Client client{argv[1], argv[2]};

 bool done = false;
 auto onTextEntry = [&done, &client] (std::string text) {
 if ("exit" == text || "quit" == text) {
 done = true;
 } else {
 client.send(text);
 }
 };

 ChatWindow chatWindow(onTextEntry);
 while (!done && !client.isDisconnected()) {
 try {
 client.update();
 } catch (std::exception& e) {
 chatWindow.displayText("Exception from Client update:");
 chatWindow.displayText(e.what());
 done = true;
 }

 auto response = client.receive();
 if (!response.empty()) {
 chatWindow.displayText(response);
 }
 chatWindow.update();
 }

 return 0;
}

?

gcc source1.c source2.c -o myprogram

CTRL + SHIFT + B or maybe F5?

What does it take to build software?
///
// Single Threaded Networking
//
// This file is distributed under the MIT License. See the LICENSE file
// for details.
///

int
main(int argc, char* argv[]) {
 if (argc < 3) {
 std::cerr << "Usage: \n " << argv[0] << " <ip address> <port>\n"
 << " e.g. " << argv[0] << " localhost 4002\n";
 return 1;
 }

 networking::Client client{argv[1], argv[2]};

 bool done = false;
 auto onTextEntry = [&done, &client] (std::string text) {
 if ("exit" == text || "quit" == text) {
 done = true;
 } else {
 client.send(text);
 }
 };

 ChatWindow chatWindow(onTextEntry);
 while (!done && !client.isDisconnected()) {
 try {
 client.update();
 } catch (std::exception& e) {
 chatWindow.displayText("Exception from Client update:");
 chatWindow.displayText(e.what());
 done = true;
 }

 auto response = client.receive();
 if (!response.empty()) {
 chatWindow.displayText(response);
 }
 chatWindow.update();
 }

 return 0;
}

///
// Single Threaded Networking
//
// This file is distributed under the MIT License. See the LICENSE file
// for details.
///

int
main(int argc, char* argv[]) {
 if (argc < 3) {
 std::cerr << "Usage: \n " << argv[0] << " <ip address> <port>\n"
 << " e.g. " << argv[0] << " localhost 4002\n";
 return 1;
 }

 networking::Client client{argv[1], argv[2]};

 bool done = false;
 auto onTextEntry = [&done, &client] (std::string text) {
 if ("exit" == text || "quit" == text) {
 done = true;
 } else {
 client.send(text);
 }
 };

 ChatWindow chatWindow(onTextEntry);
 while (!done && !client.isDisconnected()) {
 try {
 client.update();
 } catch (std::exception& e) {
 chatWindow.displayText("Exception from Client update:");
 chatWindow.displayText(e.what());
 done = true;
 }

 auto response = client.receive();
 if (!response.empty()) {
 chatWindow.displayText(response);
 }
 chatWindow.update();
 }

 return 0;
}

///
// Single Threaded Networking
//
// This file is distributed under the MIT License. See the LICENSE file
// for details.
///

int
main(int argc, char* argv[]) {
 if (argc < 3) {
 std::cerr << "Usage: \n " << argv[0] << " <ip address> <port>\n"
 << " e.g. " << argv[0] << " localhost 4002\n";
 return 1;
 }

 networking::Client client{argv[1], argv[2]};

 bool done = false;
 auto onTextEntry = [&done, &client] (std::string text) {
 if ("exit" == text || "quit" == text) {
 done = true;
 } else {
 client.send(text);
 }
 };

 ChatWindow chatWindow(onTextEntry);
 while (!done && !client.isDisconnected()) {
 try {
 client.update();
 } catch (std::exception& e) {
 chatWindow.displayText("Exception from Client update:");
 chatWindow.displayText(e.what());
 done = true;
 }

 auto response = client.receive();
 if (!response.empty()) {
 chatWindow.displayText(response);
 }
 chatWindow.update();
 }

 return 0;
}

?

gcc source1.c source2.c -o myprogram

CTRL + SHIFT + B or maybe F5?

But in a real project it can involve & do a lot more!

What does it take to build software?

● Build Engineering?
● Release Engineering?
● Build Configuration?
● Build Automation?
● Dependency Management?
● Continuous Integration?

A lot more.

What does it take to build software?

● Build Engineering?
● Release Engineering?
● Build Configuration?
● Build Automation?
● Dependency Management?
● Continuous Integration?

A lot more.

Just getting something to compile
reproducibly can be nontrivial

What does it mean to build software?

● Building software includes (at least):

What does it mean to build software?

● Building software includes (at least):
– version control integration

What does it mean to build software?

● Building software includes (at least):
– version control integration
– identifying dependencies & their versions

What does it mean to build software?

● Building software includes (at least):
– version control integration
– identifying dependencies & their versions
– configuring build commands for different build modes & environments

What does it mean to build software?

● Building software includes (at least):
– version control integration
– identifying dependencies & their versions
– configuring build commands for different build modes & environments
– writing instructions for how to configure & build

What does it mean to build software?

● Building software includes (at least):
– version control integration
– identifying dependencies & their versions
– configuring build commands for different build modes & environments
– writing instructions for how to configure & build
– test configuration & execution (performance & correctness)

What does it mean to build software?

● Building software includes (at least):
– version control integration
– identifying dependencies & their versions
– configuring build commands for different build modes & environments
– writing instructions for how to configure & build
– test configuration & execution (performance & correctness)
– automated code quality checking

What does it mean to build software?

● Building software includes (at least):
– version control integration
– identifying dependencies & their versions
– configuring build commands for different build modes & environments
– writing instructions for how to configure & build
– test configuration & execution (performance & correctness)
– automated code quality checking
– scalable compilation & linking (caching, parallelism, scheduling, ...)

What does it mean to build software?

● Building software includes (at least):
– version control integration
– identifying dependencies & their versions
– configuring build commands for different build modes & environments
– writing instructions for how to configure & build
– test configuration & execution (performance & correctness)
– automated code quality checking
– scalable compilation & linking (caching, parallelism, scheduling, ...)
– possibly even deployment

What does it mean to build software?

● Building software includes (at least):
– version control integration
– identifying dependencies & their versions
– configuring build commands for different build modes & environments
– writing instructions for how to configure & build
– test configuration & execution (performance & correctness)
– automated code quality checking
– scalable compilation & linking (caching, parallelism, scheduling, ...)
– possibly even deployment

● It is the foundation of getting anything done.

What does it mean to build software?

● How many of you know how to build software?

What does it mean to build software?

● How many of you know how to build software?
● You should at least ask yourself:

– What tools do you use?

What does it mean to build software?

● How many of you know how to build software?
● You should at least ask yourself:

– What tools do you use?
Grunt? Gulp? Cmake? Bazel? Gradle? Maven? Scons?

Incredibuild? CloudBuild?
Travis? Jenkins? CircleCI?

Junit? Cucumber? Pytest? Gtest?
Coverity? Clang Static Analyzer?

OpenTelemetry? Prometheus? Jaeger?
...

What does it mean to build software?

● How many of you know how to build software?
● You should at least ask yourself:

– What tools do you use?
– What workflow?
– What are the painful points?
– What are the risks?
– What benefits do you get?
– Why haven't you made them less painful?

What does it mean to build software?

● How many of you know how to build software?
● You should at least ask yourself:

– What tools do you use?
– What workflow?
– What are the painful points?
– What are the risks?
– What benefits do you get?
– Why haven't you made them less painful?

What does it mean to build software?

● How many of you know how to build software?
● You should at least ask yourself:

– What tools do you use?
– What workflow?
– What are the painful points?
– What are the risks?
– What benefits do you get?
– Why haven't you made them less painful?

What does it mean to build software?

● How many of you know how to build software?
● You should at least ask yourself:

– What tools do you use?
– What workflow?
– What are the painful points?
– What are the risks?
– What benefits do you get?
– Why haven't you made them less painful?

What does it mean to build software?

● How many of you know how to build software?
● You should at least ask yourself:

– What tools do you use?
– What workflow?
– What are the painful points?
– What are the risks?
– What benefits do you get?
– Why haven't you made them less painful?

Modeling a Build

● To build software, we must consider:

Modeling a Build

● To build software, we must consider:
– Components & Objectives

Modeling a Build

● To build software, we must consider:
– Components & Objectives

Client Server
Program Program

Modeling a Build

● To build software, we must consider:
– Components & Objectives

Client Server

JSON Networking

Program Program

LibraryLibrary

Modeling a Build

● To build software, we must consider:
– Components & Objectives

Client Server

JSON Networking

Formatting

Program Program

LibraryLibrary

Library

Modeling a Build

● To build software, we must consider:
– Components & Objectives

Client Server

JSON Networking

Formatting

All

Program Program

LibraryLibrary

Library

Project

Modeling a Build

● To build software, we must consider:
– Components & Objectives
– Dependencies between them

Client Server

JSON Networking

Formatting

All

Program Program

LibraryLibrary

Library

Project

Modeling a Build

● To build software, we must consider:
– Components & Objectives
– Dependencies between them

Client Server

JSON Networking

Formatting

All

Program Program

LibraryLibrary

Library

Project

Modeling a Build

● To build software, we must consider:
– Components & Objectives
– Dependencies between them

Client Server

JSON Networking

Formatting

All

Program Program

LibraryLibrary

Library

Project

Modeling a Build

● To build software, we must consider:
– Components & Objectives
– Dependencies between them

Client Server

JSON Networking

Formatting

All

Program Program

LibraryLibrary

Library

Project

Modeling a Build

● To build software, we must consider:
– Components & Objectives
– Dependencies between them

Client Server

JSON Networking

Formatting

All

Program Program

LibraryLibrary

Library

Project

This defines the dependency graph
of a project.

Modeling a Build

● To build software, we must consider:
– Components & Objectives
– Dependencies between them

● The dependency graph can already
help to analyze our project!

Client Server

JSON Networking

Formatting

All

Program Program

LibraryLibrary

Library

Project

Modeling a Build

● To build software, we must consider:
– Components & Objectives
– Dependencies between them

● The dependency graph can already
help to analyze our project!

Client Server

JSON Networking

Formatting

All

Program Program

LibraryLibrary

Library

Project

Modeling a Build

● To build software, we must consider:
– Components & Objectives
– Dependencies between them

● The dependency graph can already
help to analyze our project!
– A good dependency graph is a DAG

Client Server

JSON Networking

Formatting

All

Program Program

LibraryLibrary

Library

Project

Modeling a Build

Client Server

JSON Networking

Formatting

All

Program Program

LibraryLibrary

Library

Project● To build software, we must consider:
– Components & Objectives
– Dependencies between them

● The dependency graph can already
help to analyze our project!
– A good dependency graph is a DAG

● Modern build management uses the
dependency DAG to drive build process

● To build software, we must consider:
– Components & Objectives
– Dependencies between them

● The dependency graph can already
help to analyze our project!
– A good dependency graph is a DAG

● Modern build management uses the
dependency DAG to drive build process

Modeling a Build

Server

All

Program

Project

What must the build system perform?

Client

JSON Networking

Formatting

Program

LibraryLibrary

Library

We can consider C++, but it applies in general
(even for many dynamic languages)

used / required

generated

● To build software, we must consider:
– Components & Objectives
– Dependencies between them

● The dependency graph can already
help to analyze our project!
– A good dependency graph is a DAG

● Modern build management uses the
dependency DAG to drive build process

Library

Library Library

Program

Modeling a Build

Server

All

Program

Project

What must the build system perform?

Client

JSON Networking

Formatting
format.cpp

libformat.a

used / required

generated

● To build software, we must consider:
– Components & Objectives
– Dependencies between them

● The dependency graph can already
help to analyze our project!
– A good dependency graph is a DAG

● Modern build management uses the
dependency DAG to drive build process

Library

Library Library

Program

Modeling a Build

Server

All

Program

Project

What must the build system perform?

Client

JSON Networking

Formatting
format.cpp

libformat.a

libjson.a

used / required

generated

● To build software, we must consider:
– Components & Objectives
– Dependencies between them

● The dependency graph can already
help to analyze our project!
– A good dependency graph is a DAG

● Modern build management uses the
dependency DAG to drive build process

Library

Library Library

Program

Modeling a Build

Server

All

Program

Project

What must the build system perform?

Client

JSON Networking

Formatting
format.cpp

libformat.a

libjson.a

json.cpp

used / required

generated

● To build software, we must consider:
– Components & Objectives
– Dependencies between them

● The dependency graph can already
help to analyze our project!
– A good dependency graph is a DAG

● Modern build management uses the
dependency DAG to drive build process

Library

Library Library

Program

Modeling a Build

Server

All

Program

Project

What must the build system perform?

Client

JSON Networking

Formatting
format.cpp

libformat.a

libjson.a

json.cpp <...>/format.h

used / required

generated

● To build software, we must consider:
– Components & Objectives
– Dependencies between them

● The dependency graph can already
help to analyze our project!
– A good dependency graph is a DAG

● Modern build management uses the
dependency DAG to drive build process

Library

Library Library

Program

Modeling a Build

Server

All

Program

Project

What must the build system perform?

Client

JSON Networking

Formatting
format.cpp

libformat.a

<...>/libformat.a

libjson.a

json.cpp <...>/format.h

used / required

generated

● To build software, we must consider:
– Components & Objectives
– Dependencies between them

● The dependency graph can already
help to analyze our project!
– A good dependency graph is a DAG

● Modern build management uses the
dependency DAG to drive build process

Library

Library Library

Program

Modeling a Build

Server

All

Program

Project

What must the build system perform?

Client

JSON Networking

Formatting
format.cpp

libformat.a

<...>/libformat.a

libjson.a

json.cpp <...>/format.h ?

used / required

generated

● To build software, we must consider:
– Components & Objectives
– Dependencies between them

● The dependency graph can already
help to analyze our project!
– A good dependency graph is a DAG

● Modern build management uses the
dependency DAG to drive build process

Library

Library Library

Program

Modeling a Build

Server

All

Program

Project

What must the build system perform?

Client

JSON Networking

Formatting
format.cpp

libformat.a

libjson.a

json.cpp <...>/format.h

used / required

generated

● To build software, we must consider:
– Components & Objectives
– Dependencies between them

● The dependency graph can already
help to analyze our project!
– A good dependency graph is a DAG

● Modern build management uses the
dependency DAG to drive build process

Library

Library Library

Program

Modeling a Build

Server

All

Program

Project

What must the build system perform?

Client

JSON Networking

Formatting
format.cpp

libformat.a

libjson.a

json.cpp <...>/format.h
libnetworking.a

net.cpp <...>/format.h

used / required

generated

● To build software, we must consider:
– Components & Objectives
– Dependencies between them

● The dependency graph can already
help to analyze our project!
– A good dependency graph is a DAG

● Modern build management uses the
dependency DAG to drive build process

Library

Library Library

Program

Modeling a Build

Server

All

Program

Project

What must the build system perform?

Client

JSON Networking

Formatting
format.cpp

libformat.a

libjson.a

json.cpp <...>/format.h
libnetworking.a

net.cpp <...>/format.h

<...>/libformat.a

bin/client

client.cpp <...>/net.h
<...>/json.h <...>/libnetworking.a

<...>/libjson.a

used / required

generated

● To build software, we must consider:
– Components & Objectives
– Dependencies between them

● The dependency graph can already
help to analyze our project!
– A good dependency graph is a DAG

● Modern build management uses the
dependency DAG to drive build process

Modeling a Build

Server

All

Program

Project

What must the build system perform?

Client

JSON Networking

Formatting

Program

LibraryLibrary

Library
Can you think of problems that may arise?

● To build software, we must consider:
– Components & Objectives
– Dependencies between them

● The dependency graph can already
help to analyze our project!
– A good dependency graph is a DAG

● Modern build management uses the
dependency DAG to drive build process

Modeling a Build

Server

All

Program

Project

What must the build system perform?

Client

JSON Networking

Formatting

Program

LibraryLibrary

Library
Can you think of problems that may arise?

● To build software, we must consider:
– Components & Objectives
– Dependencies between them

● The dependency graph can already
help to analyze our project!
– A good dependency graph is a DAG

● Modern build management uses the
dependency DAG to drive build process

Modeling a Build

Server

All

Program

Project

What must the build system perform?

Client

Formatting

Program

Library
Can you think of problems that may arise?

bin/client

client.cpp <...>/net.h
<...>/json.h <...>/libnetworking.a

<...>/libjson.a

<...>/libformat.a <...>/libformat.a

JSON
Library

Networking
Library

● To build software, we must consider:
– Components & Objectives
– Dependencies between them

● The dependency graph can already
help to analyze our project!
– A good dependency graph is a DAG

● Modern build management uses the
dependency DAG to drive build process

Modeling a Build

Server

All

Program

Project

What must the build system perform?

Client

Formatting

Program

Library
Can you think of problems that may arise?

bin/client

client.cpp <...>/net.h
<...>/json.h <...>/libnetworking.a

<...>/libjson.a

<...>/libformat.a <...>/libformat.a

Conflicts

JSON
Library

Networking
Library

● To build software, we must consider:
– Components & Objectives
– Dependencies between them

● The dependency graph can already
help to analyze our project!
– A good dependency graph is a DAG

● Modern build management uses the
dependency DAG to drive build process

Modeling a Build

Server

All

Program

Project

What must the build system perform?

Client

JSON Networking

Formatting

Program

LibraryLibrary

Library
Can you think of problems that may arise?

foo/<...>/format.h

bar/<...>/format.h

● To build software, we must consider:
– Components & Objectives
– Dependencies between them

● The dependency graph can already
help to analyze our project!
– A good dependency graph is a DAG

● Modern build management uses the
dependency DAG to drive build process

Modeling a Build

Server

All

Program

Project

What must the build system perform?

Client

JSON Networking

Formatting

Program

LibraryLibrary

Library
Can you think of problems that may arise?

foo/<...>/format.h

bar/<...>/format.h

libjson.a

json.cpp ?/format.h

● To build software, we must consider:
– Components & Objectives
– Dependencies between them

● The dependency graph can already
help to analyze our project!
– A good dependency graph is a DAG

● Modern build management uses the
dependency DAG to drive build process

Modeling a Build

Server

All

Program

Project

What must the build system perform?

Client

JSON Networking

Formatting

Program

LibraryLibrary

Library
Can you think of problems that may arise?

foo/<...>/format.h

bar/<...>/format.h

libjson.a

json.cpp ?/format.h

Decoupled
Evolution

● To build software, we must consider:
– Components & Objectives
– Dependencies between them

● The dependency graph can already
help to analyze our project!
– A good dependency graph is a DAG

● Modern build management uses the
dependency DAG to drive build process

Modeling a Build

Server

All

Program

Project

What must the build system perform?

Client

JSON Networking

Formatting

Program

LibraryLibrary

Library
Can you think of problems that may arise?

Modeling a Build

● For each component, build management requires
– Direct build requirements

Client

JSON Networking

Formatting

Modeling a Build

● For each component, build management requires
– Direct build requirements

libformat.a

format.cpp

Client

JSON Networking

Formatting

Modeling a Build

● For each component, build management requires
– Direct build requirements
– Transitive usage requirements

Client

JSON Networking

Formatting

Modeling a Build

● For each component, build management requires
– Direct build requirements
– Transitive usage requirements

Client

JSON Networking

Formattinglibformat.a<...>/format.h

Modeling a Build

● For each component, build management requires
– Direct build requirements
– Transitive usage requirements
– Note, these just separate interfaces from implementation

Client

JSON Networking

Formatting

Modeling a Build

● For each component, build management requires
– Direct build requirements
– Transitive usage requirements
– Note, these just separate interfaces from implementation

● The dependency graph allows us to use these to infer how to build a
component correctly based on its dependencies

Client

JSON Networking

Formatting

Modeling a Build

● For each component, build management requires
– Direct build requirements
– Transitive usage requirements
– Note, these just separate interfaces from implementation

● The dependency graph allows us to use these to infer how to build a
component correctly based on its dependencies
– NOTE:

Even if a dependency uses a new library, the build system should detect it.
Client

JSON Networking

Formatting

Modeling a Build

● For each component, build management requires
– Direct build requirements
– Transitive usage requirements
– Note, these just separate interfaces from implementation

● The dependency graph allows us to use these to infer how to build a
component correctly based on its dependencies
– NOTE:

Even if a dependency uses a new library, the build system should detect it.
Client

JSON Networking

Formatting FancyIO

Modeling a Build

● For each component, build management requires
– Direct build requirements
– Transitive usage requirements
– Note, these just separate interfaces from implementation

● The dependency graph allows us to use these to infer how to build a
component correctly based on its dependencies
– NOTE:

Even if a dependency uses a new library, the build system should detect it.
Client

JSON

Formatting FancyIO

NetworkingInclude directories for Networking should change

Modeling a Build

● For each component, build management requires
– Direct build requirements
– Transitive usage requirements
– Note, these just separate interfaces from implementation

● The dependency graph allows us to use these to infer how to build a
component correctly based on its dependencies
– NOTE:

Even if a dependency uses a new library, the build system should detect it.

JSON

Formatting FancyIO

Client

NetworkingInclude directories for Networking should change
Linked libraries for Client should change

Modeling a Build

● For each component, build management requires
– Direct build requirements
– Transitive usage requirements
– Note, these just separate interfaces from implementation

● The dependency graph allows us to use these to infer how to build a
component correctly based on its dependencies
– NOTE:

Even if a dependency uses a new library, the build system should detect it.

● Let’s dive into one specific system to see how this is done....

What will be be using?

● CMake
– Cross-platform build management tool
– Used by large projects like KDE, Wireshark, LLVM, ...

What will be be using?

● CMake
– Cross-platform build management tool
– Used by large projects like KDE, Wireshark, LLVM, ...

● What does it do?
– Given a specification & configuration of your project, CMake creates the

build commands for you
– Analogous to autoconf (but easier to use)

What will be be using?

● CMake
– Cross-platform build management tool
– Used by large projects like KDE, Wireshark, LLVM, ...

● What does it do?
– Given a specification & configuration of your project, CMake creates the

build commands for you
– Analogous to autoconf (but easier to use)

You describe the dependency graph.
It figures out how to build the software.

What will be be using?

● CMake
– Cross-platform build management tool
– Used by large projects like KDE, Wireshark, LLVM, ...

● What does it do?
– Given a specification & configuration of your project, CMake creates the

build commands for you
– Analogous to autoconf (but easier to use)

[DEMO]

What does this add?

● Why not just write makefiles manually?

What does this add?

● Why not just write makefiles manually?
– May need different makefiles for different...

What does this add?

● Why not just write makefiles manually?
– May need different makefiles for different

● Operating Systems
● Compilers
● Libraries
● Build Modes
● ...

What does this add?

● Why not just write makefiles manually?
– May need different makefiles for different

● Operating Systems
● Compilers
● Libraries
● Build Modes
● ...

– May need different source files for different “”

What does this add?

● Why not just write makefiles manually?
– May need different makefiles for different

● Operating Systems
● Compilers
● Libraries
● Build Modes
● ...

– May need different source files for different “”
– Specification can clearly capture

● Libraries, versions, & even how to download them automatically
● Semantics of compilation & how to use in analysis tools

What does this add?

● Scalability
– Replace “make” with analogous scalable tools (“ninja”)

What does this add?

● Scalability
– Replace “make” with analogous scalable tools (“ninja”)

● Easier tool integration
– CMake can export compilation rules for other tools

What does this add?

● Scalability
– Replace “make” with analogous scalable tools (“ninja”)

● Easier tool integration
– CMake can export compilation rules for other tools

[DEMO]

Preliminary: Out of source builds

● A common bad habit is “in source” building

Preliminary: Out of source builds

● A common bad habit is “in source” building
– Why is this bad?

Preliminary: Out of source builds

● A common bad habit is “in source” building
– Why is this bad?

– May need multiple builds at once: debug, release, ...
– Pollutes version control
– Makes clean builds complicated

Preliminary: Out of source builds

● A common bad habit is “in source” building
– Why is this bad?

– May need multiple builds at once: debug, release, ...
– Pollutes version control
– Makes clean builds complicated

● Use “out of source” builds instead

Using CMake

● CMakeLists.txt
– A script in every directory of your project that controls how to build

“things” in that directory

Using CMake

● CMakeLists.txt
– A script in every directory of your project that controls how to build

“things” in that directory

● Simple syntax
– Case insensitive commands

– Let's revisit demo 1!
command(argument1 argument2 argument3 ...)

add_executable(helloworld)
add_library(hellohelper STATIC)

Targets & Commands

● CMake allows you to specify targets
– Executables, libraries, “objects”

Targets & Commands

● CMake allows you to specify targets
– Executables, libraries, “objects”

● And commands that can describe how to build those targets
– Automatic for executable & library
– add_custom_command can build others

● Documentation
● Media

add_executable(helloworld)
add_library(hellohelper STATIC)

Specifying Requirements

● Recall build requirements & usage requirements.

Specifying Requirements

● Recall build requirements & usage requirements.
● target_* commands allow you to specify the requirements of a target

Specifying Requirements

● Recall build requirements & usage requirements.
● target_* commands allow you to specify the requirements of a target

target_sources(hellohelper
 PRIVATE helloworld.cpp
)

Specifying Requirements

● Recall build requirements & usage requirements.
● target_* commands allow you to specify the requirements of a target

target_sources(hellohelper
 PRIVATE helloworld.cpp
)
target_include_directories(hellohelper
 INTERFACE ${CMAKE_CURRENT_SOURCE_DIR}/include/
)

Specifying Requirements

● Recall build requirements & usage requirements.
● target_* commands allow you to specify the requirements of a target

target_sources(hellohelper
 PRIVATE helloworld.cpp
)
target_include_directories(hellohelper
 INTERFACE ${CMAKE_CURRENT_SOURCE_DIR}/include/
)
target_link_libraries(helloworld
 PRIVATE hellohelper
)

Specifying Requirements

● Recall build requirements & usage requirements.
● target_* commands allow you to specify the requirements of a target

target_sources(hellohelper
 PRIVATE helloworld.cpp
)
target_include_directories(hellohelper
 INTERFACE ${CMAKE_CURRENT_SOURCE_DIR}/include/
)
target_link_libraries(helloworld
 PRIVATE hellohelper
)

Using Libraries

● You can simply specify the libraries that a target directly uses
target_link_libraries(helloworld
 PRIVATE hellohelper aaa bbb
)
target_link_libraries(hellohelper
 INTERFACE fancyformatting ccc
)

Using Libraries

● You can simply specify the libraries that a target directly uses
target_link_libraries(helloworld
 PRIVATE hellohelper aaa bbb
)
target_link_libraries(hellohelper
 INTERFACE fancyformatting ccc
)

helloworld

hellohelper aaa bbb

● You can simply specify the libraries that a target directly uses
helloworld

aaa bbb

Using Libraries

target_link_libraries(helloworld
 PRIVATE hellohelper aaa bbb
)
target_link_libraries(hellohelper
 INTERFACE fancyformatting ccc
)

hellohelper

fancyformatting ccc

Using Libraries

● You can simply specify the libraries that a target directly uses

● Transitive interface dependencies of libraries will be linked in as required

target_link_libraries(helloworld
 PRIVATE hellohelper aaa bbb
)
target_link_libraries(hellohelper
 INTERFACE fancyformatting ccc
)

helloworld

hellohelper aaa bbb

fancyformatting ccc

Using Libraries

● You can simply specify the libraries that a target directly uses

● Transitive interface dependencies of libraries will be linked in as required
● Include directories, etc. from libraries will also be inferred

target_link_libraries(helloworld
 PRIVATE hellohelper aaa bbb
)
target_link_libraries(hellohelper
 INTERFACE fancyformatting ccc
)

helloworld

hellohelper aaa bbb

fancyformatting ccc

Using Libraries

● You can simply specify the libraries that a target directly uses

● Transitive interface dependencies of libraries will be linked in as required
● Include directories, etc. from libraries will also be inferred

bin/helloworld

hello.cpp <...>/hello.h <...>/libfancyformatting.a
<...>/libhellohelper.a ...

target_link_libraries(helloworld
 PRIVATE hellohelper aaa bbb
)
target_link_libraries(hellohelper
 INTERFACE fancyformatting ccc
)

helloworld

hellohelper aaa bbb

fancyformatting ccc

Using Libraries

● You can simply specify the libraries that a target directly uses

● Transitive interface dependencies of libraries will be linked in as required
● Include directories, etc. from libraries will also be inferred

bin/helloworld

hello.cpp <...>/hello.h <...>/libfancyformatting.a
<...>/libhellohelper.a ...<...>/hellohelper.h<...>/format.h

target_link_libraries(helloworld
 PRIVATE hellohelper aaa bbb
)
target_link_libraries(hellohelper
 INTERFACE fancyformatting ccc
)

helloworld

hellohelper aaa bbb

fancyformatting ccc

Using Libraries

● Note: This means using creating & defining new libraries is easy!

Using Libraries

● Note: This means using creating & defining new libraries is easy!
● How might this affect program structure and design?

Using Libraries

● Note: This means using creating & defining new libraries is easy!
● How might this affect program structure and design?

Consider how this relates to SOA
and microservices as well!

Using Libraries

● Note: This means using creating & defining new libraries is easy!
● How might this affect program structure and design?
● How might it help us begin to handle complexity?

Using Libraries

● Note: This means using creating & defining new libraries is easy!
● How might this affect program structure and design?
● How might it help us begin to handle complexity?

CMake has several other mundane build system facilities...

General project management

● Specifying project properties
– Define a project to access variables that control that project

project(projectname)

General project management

● Specifying project properties
– Define a project to access variables that control that project

● Print information out during the build process
message(“Built with flags: ${CMAKE_CXX_FLAGS}”)

project(projectname)

General project management

● Specifying project properties
– Define a project to access variables that control that project

● Print information out during the build process

● Controlling where things are built

project(projectname)

message(“Built with flags: ${CMAKE_CXX_FLAGS}”)

set(CMAKE_RUNTIME_OUTPUT_DIRECTORY
 "${PROJECT_BINARY_DIR}/bin")
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY
 "${PROJECT_BINARY_DIR}/lib")

General project management

● Finding a resource that you need to use
find_package(externalproject)
find_library(library)

General project management

● Finding a resource that you need to use

● Installation

find_package(externalproject)
find_library(library)

install(TARGETS target1 target2 ...
 DESTINATION /tmp/
)

Control structures

● IF if(condition)
elsif(condition2)
else()
endif()

Control structures

● IF if(condition)
elsif(condition2)
else()
endif()

Why might you want
conditionals in a build process?

Control structures

● IF

● Looping

if(condition)
elsif(condition2)
else()
endif()

foreach(loop_var arg1 arg2 ...)
 command(${loop_var})
endforeach(loop_var)
while(condition)...

Control structures

● IF

● Looping

● Functions

foreach(loop_var arg1 arg2 ...)
 command(${loop_var})
endforeach(loop_var)
while(condition)...

function(function_name arg1 arg2 ...)
 command(${arg1})
endFunction(function_name)

if(condition)
elsif(condition2)
else()
endif()

Pulling Remote Dependencies

● Managing dependencies (e.g. with CPM)

include(cmake/CPM.cmake)

https://github.com/cpm-cmake/CPM.cmake

Pulling Remote Dependencies

● Managing dependencies (e.g. with CPM)

include(cmake/CPM.cmake)

CPMAddPackage(
 NAME something
 GIT_REPOSITORY https://github.com/nsumner/something.git
 GIT_TAG v0.0.1
)

https://github.com/cpm-cmake/CPM.cmake

Pulling Remote Dependencies

● Managing dependencies (e.g. with CPM)

include(cmake/CPM.cmake)

CPMAddPackage(
 NAME something
 GIT_REPOSITORY https://github.com/nsumner/something.git
 GIT_TAG v0.0.1
)

target_link_libraries(demo
 PRIVATE something
)

https://github.com/cpm-cmake/CPM.cmake

Pulling Remote Dependencies

● Managing dependencies (e.g. with CPM)

include(cmake/CPM.cmake)

CPMAddPackage(
 NAME something
 GIT_REPOSITORY https://github.com/nsumner/something.git
 GIT_TAG v0.0.1
)

target_link_libraries(demo
 PRIVATE something
)

What are the tradeoffs of this?

https://github.com/cpm-cmake/CPM.cmake

Analyzing Project Structure

● CMake can dump out the dependence graph in graphviz format
– cmake –graphviz=deps.gv <path to project>

– dot -Tpng deps.gv -o deps.svg

Analyzing Project Structure

● CMake can dump out the dependence graph in graphviz format
– cmake –graphviz=deps.gv <path to project>

– dot -Tpng deps.gv -o deps.svg

CMake has extensive documentation,
and you can find additional CMake specific information online

More Advanced Build Issues

● Build systems are a foundation of workflow and DevOps

More Advanced Build Issues

● Build systems are a foundation of workflow and DevOps
– They provide a “choke point” for controlling development

More Advanced Build Issues

● Build systems are a foundation of workflow and DevOps
– They provide a “choke point” for controlling development

Build System

Components

More Advanced Build Issues

● Build systems are a foundation of workflow and DevOps
– They provide a “choke point” for controlling development
– They can be a expensive & bottleneck when slow

More Advanced Build Issues

● Build systems are a foundation of workflow and DevOps
– They provide a “choke point” for controlling development
– They can be a expensive & bottleneck when slow

● Adding control

More Advanced Build Issues

● Build systems are a foundation of workflow and DevOps
– They provide a “choke point” for controlling development
– They can be a expensive & bottleneck when slow

● Adding control
– Automated testing
– Code analysis & metrics
– Polyglot management
– Deployment & rollout

More Advanced Build Issues

● Build systems are a foundation of workflow and DevOps
– They provide a “choke point” for controlling development
– They can be a expensive & bottleneck when slow

● Adding control
– Automated testing
– Code analysis & metrics
– Polyglot management
– Deployment & rollout

More Advanced Build Issues

● Build systems are a foundation of workflow and DevOps
– They provide a “choke point” for controlling development
– They can be a expensive & bottleneck when slow

● Adding control
– Automated testing
– Code analysis & metrics
– Polyglot management
– Deployment & rollout

More Advanced Build Issues

● Build systems are a foundation of workflow and DevOps
– They provide a “choke point” for controlling development
– They can be a expensive & bottleneck when slow

● Adding control
– Automated testing
– Code analysis & metrics
– Polyglot management
– Deployment & rollout

More Advanced Build Issues

● Build systems are a foundation of workflow and DevOps
– They provide a “choke point” for controlling development
– They can be a expensive & bottleneck when slow

● Adding control
– Automated testing
– Code analysis & metrics
– Polyglot management
– Deployment & rollout

● Improving performance

More Advanced Build Issues

● Build systems are a foundation of workflow and DevOps
– They provide a “choke point” for controlling development
– They can be a expensive & bottleneck when slow

● Adding control
– Automated testing
– Code analysis & metrics
– Polyglot management
– Deployment & rollout

● Improving performance
– Parallel & distributed

More Advanced Build Issues

● Build systems are a foundation of workflow and DevOps
– They provide a “choke point” for controlling development
– They can be a expensive & bottleneck when slow

● Adding control
– Automated testing
– Code analysis & metrics
– Polyglot management
– Deployment & rollout

● Improving performance
– Parallel & distributed

Client Server

JSON Networking

Formatting

All

More Advanced Build Issues

● Build systems are a foundation of workflow and DevOps
– They provide a “choke point” for controlling development
– They can be a expensive & bottleneck when slow

● Adding control
– Automated testing
– Code analysis & metrics
– Polyglot management
– Deployment & rollout

● Improving performance
– Parallel & distributed

Client Server

JSON Networking

Formatting

All

Task 1

Task 3Task 2

Task 4

More Advanced Build Issues

● Build systems are a foundation of workflow and DevOps
– They provide a “choke point” for controlling development
– They can be a expensive & bottleneck when slow

● Adding control
– Automated testing
– Code analysis & metrics
– Polyglot management
– Deployment & rollout

● Improving performance
– Parallel & distributed
– Caching

More Advanced Build Issues

● Build systems are a foundation of workflow and DevOps
– They provide a “choke point” for controlling development
– They can be a expensive & bottleneck when slow

● Adding control
– Automated testing
– Code analysis & metrics
– Polyglot management
– Deployment & rollout

● Improving performance
– Parallel & distributed
– Caching

Client Server

JSON Networking

Formatting

All

Client Server

JSON Networking

Formatting

All

More Advanced Build Issues

● Build systems are a foundation of workflow and DevOps
– They provide a “choke point” for controlling development
– They can be a expensive & bottleneck when slow

● Adding control
– Automated testing
– Code analysis & metrics
– Polyglot management
– Deployment & rollout

● Improving performance
– Parallel & distributed
– Caching

Client Server

JSON Networking

Formatting

All

Client Server

JSON Networking

Formatting

All

More Advanced Build Issues

● Build systems are a foundation of workflow and DevOps
– They provide a “choke point” for controlling development
– They can be a expensive & bottleneck when slow

● Adding control
– Automated testing
– Code analysis & metrics
– Polyglot management
– Deployment & rollout

● Improving performance
– Parallel & distributed
– Caching

Client

JSON

All

Client

JSON

All

Server

Networking

Formatting

Server

Networking

Formatting

More Advanced Build Issues

● Build systems are a foundation of workflow and DevOps
– They provide a “choke point” for controlling development
– They can be a expensive & bottleneck when slow

● Adding control
– Automated testing
– Code analysis & metrics
– Polyglot management
– Deployment & rollout

● Improving performance
– Parallel & distributed
– Caching

Client

JSON

All

Client

JSON

All

Server

Networking

Formatting

Server

Networking

FormattingDistributed & cached builds can be provided via, e.g.
MS CloudBuild & IncrediBuild

Larger companies like Google have their own.

More Advanced Build Issues

● Build systems are a foundation of workflow and DevOps
– They provide a “choke point” for controlling development
– They can be a expensive & bottleneck when slow

● Adding control
– Automated testing
– Code analysis & metrics
– Polyglot management
– Deployment & rollout

● Improving performance
– Parallel & distributed
– Caching
– Unification

More Advanced Build Issues

● Build systems are a foundation of workflow and DevOps
– They provide a “choke point” for controlling development
– They can be a expensive & bottleneck when slow

● Adding control
– Automated testing
– Code analysis & metrics
– Polyglot management
– Deployment & rollout

● Improving performance
– Parallel & distributed
– Caching
– Unification

A C

B

I

All

D

E

F H

G

More Advanced Build Issues

● Build systems are a foundation of workflow and DevOps
– They provide a “choke point” for controlling development
– They can be a expensive & bottleneck when slow

● Adding control
– Automated testing
– Code analysis & metrics
– Polyglot management
– Deployment & rollout

● Improving performance
– Parallel & distributed
– Caching
– Unification

A C

B

I

All

D

E

F H

G

Suppose different component change frequently.
(high velocity, API churn, ...)

More Advanced Build Issues

● Build systems are a foundation of workflow and DevOps
– They provide a “choke point” for controlling development
– They can be a expensive & bottleneck when slow

● Adding control
– Automated testing
– Code analysis & metrics
– Polyglot management
– Deployment & rollout

● Improving performance
– Parallel & distributed
– Caching
– Unification

A C

B

I

All

D

E

F H

G

Suppose different component change frequently.
(high velocity, API churn, ...)

↓value of incremental
↑cost of parsing + dependencies

More Advanced Build Issues

● Build systems are a foundation of workflow and DevOps
– They provide a “choke point” for controlling development
– They can be a expensive & bottleneck when slow

● Adding control
– Automated testing
– Code analysis & metrics
– Polyglot management
– Deployment & rollout

● Improving performance
– Parallel & distributed
– Caching
– Unification

All

Suppose different component change frequently.
(high velocity, API churn, ...)

↓value of incremental
↑cost of parsing + dependencies

Just inline everything
into one file!

More Advanced Build Issues

● Build systems are a foundation of workflow and DevOps
– They provide a “choke point” for controlling development
– They can be a expensive & bottleneck when slow

● Adding control
– Automated testing
– Code analysis & metrics
– Polyglot management
– Deployment & rollout

● Improving performance
– Parallel & distributed
– Caching
– Unification

Suppose different component change frequently.
(high velocity, API churn, ...)

↓value of incremental
↑cost of parsing + dependencies

Just inline everything
into one file!

“Unity builds” can be
popular in game dev.

All

In Summary

● A modern build system leverages the dependency graph of a project

In Summary

● A modern build system leverages the dependency graph of a project
● Dependency graphs enable

In Summary

● A modern build system leverages the dependency graph of a project
● Dependency graphs enable

1) inference of build and usage requirements

In Summary

● A modern build system leverages the dependency graph of a project
● Dependency graphs enable

1) inference of build and usage requirements
2) compositional reasoning about modules and build management

In Summary

● A modern build system leverages the dependency graph of a project
● Dependency graphs enable

1) inference of build and usage requirements
2) compositional reasoning about modules and build management

● One dominant system for C and C++ is Cmake

In Summary

● A modern build system leverages the dependency graph of a project
● Dependency graphs enable

1) inference of build and usage requirements
2) compositional reasoning about modules and build management

● One dominant system for C and C++ is Cmake
● You will get more personal experience with it over the semester if you

have not already

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153

