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What does it take to build software?
/////////////////////////////////////////////////////////////////////////////
//                         Single Threaded Networking
//
// This file is distributed under the MIT License. See the LICENSE file
// for details.
/////////////////////////////////////////////////////////////////////////////

int
main(int argc, char* argv[]) {
  if (argc < 3) {
    std::cerr << "Usage: \n  " << argv[0] << " <ip address> <port>\n"
              << "  e.g. " << argv[0] << " localhost 4002\n";
    return 1;
  }

  networking::Client client{argv[1], argv[2]};

  bool done = false;
  auto onTextEntry = [&done, &client] (std::string text) {
    if ("exit" == text || "quit" == text) {
      done = true;
    } else {
      client.send(text);
    }
  };

  ChatWindow chatWindow(onTextEntry);
  while (!done && !client.isDisconnected()) {
    try {
      client.update();
    } catch (std::exception& e) {
      chatWindow.displayText("Exception from Client update:");
      chatWindow.displayText(e.what());
      done = true;
    }

    auto response = client.receive();
    if (!response.empty()) {
      chatWindow.displayText(response);
    }
    chatWindow.update();
  }

  return 0;
}
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gcc source1.c source2.c -o myprogram

CTRL + SHIFT + B or maybe F5?

But in a real project it can involve & do a lot more!
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A lot more.

Just getting something to compile 
reproducibly can be nontrivial
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– identifying dependencies & their versions
– configuring build commands for different build modes & environments
– writing instructions for how to configure & build
– test configuration & execution (performance & correctness)
– automated code quality checking
– scalable compilation & linking (caching, parallelism, scheduling, ...)
– possibly even deployment

● It is the foundation of getting anything done.
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Grunt? Gulp? Cmake? Bazel? Gradle? Maven? Scons?

Incredibuild? CloudBuild?
Travis? Jenkins? CircleCI?

Junit? Cucumber? Pytest? Gtest?
Coverity? Clang Static Analyzer?

OpenTelemetry? Prometheus? Jaeger?
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Modeling a Build

● To build software, we must consider:
– Components & Objectives
– Dependencies between them

Client Server

JSON Networking

Formatting

All

Program Program

LibraryLibrary

Library

Project

This defines the dependency graph 
of a project.
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● To build software, we must consider:
– Components & Objectives
– Dependencies between them

● The dependency graph can already
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● To build software, we must consider:
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Modeling a Build

● For each component, build management requires
– Direct build requirements
– Transitive usage requirements
– Note, these just separate interfaces from implementation

● The dependency graph allows us to use these to infer how to build a 
component correctly based on its dependencies
– NOTE:

Even if a dependency uses a new library, the build system should detect it.

JSON
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Client

NetworkingInclude directories for Networking should change
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Modeling a Build

● For each component, build management requires
– Direct build requirements
– Transitive usage requirements
– Note, these just separate interfaces from implementation

● The dependency graph allows us to use these to infer how to build a 
component correctly based on its dependencies
– NOTE:

Even if a dependency uses a new library, the build system should detect it.

● Let’s dive into one specific system to see how this is done....
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What will be be using? 

● CMake
– Cross-platform build management tool
– Used by large projects like KDE, Wireshark, LLVM, ...

● What does it do?
– Given a specification & configuration of your project, CMake creates the 

build commands for you
– Analogous to autoconf (but easier to use)

[DEMO]
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What does this add?

● Why not just write makefiles manually?
– May need different makefiles for different

● Operating Systems
● Compilers
● Libraries
● Build Modes
● ...

– May need different source files for different “”
– Specification can clearly capture

● Libraries, versions, & even how to download them automatically
● Semantics of compilation & how to use in analysis tools
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Preliminary: Out of source builds

● A common bad habit is “in source” building
– Why is this bad?

– May need multiple builds at once: debug, release, ...
– Pollutes version control
– Makes clean builds complicated

● Use “out of source” builds instead
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Using CMake

● CMakeLists.txt
– A script in every directory of your project that controls how to build 

“things” in that directory

● Simple syntax
– Case insensitive commands

– Let's revisit demo 1!
command( argument1 argument2 argument3 ...)



  

add_executable(helloworld)
add_library(hellohelper STATIC)

Targets & Commands

● CMake allows you to specify targets
– Executables, libraries, “objects”



  

Targets & Commands

● CMake allows you to specify targets
– Executables, libraries, “objects”

● And commands that can describe how to build those targets
– Automatic for executable & library
– add_custom_command can build others

● Documentation
● Media

add_executable(helloworld)
add_library(hellohelper STATIC)
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target_sources(hellohelper
  PRIVATE helloworld.cpp
)
target_include_directories(hellohelper
  INTERFACE ${CMAKE_CURRENT_SOURCE_DIR}/include/
)
target_link_libraries(helloworld
  PRIVATE hellohelper
)
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● You can simply specify the libraries that a target directly uses
helloworld

aaa bbb

Using Libraries

target_link_libraries(helloworld
  PRIVATE hellohelper aaa bbb
)
target_link_libraries(hellohelper
  INTERFACE fancyformatting ccc
)

hellohelper

fancyformatting ccc
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Using Libraries

● You can simply specify the libraries that a target directly uses

● Transitive interface dependencies of libraries will be linked in as required
● Include directories, etc. from libraries will also be inferred

bin/helloworld

hello.cpp <...>/hello.h <...>/libfancyformatting.a
<...>/libhellohelper.a ...

target_link_libraries(helloworld
  PRIVATE hellohelper aaa bbb
)
target_link_libraries(hellohelper
  INTERFACE fancyformatting ccc
)
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Using Libraries

● You can simply specify the libraries that a target directly uses

● Transitive interface dependencies of libraries will be linked in as required
● Include directories, etc. from libraries will also be inferred

bin/helloworld

hello.cpp <...>/hello.h <...>/libfancyformatting.a
<...>/libhellohelper.a ...<...>/hellohelper.h<...>/format.h

target_link_libraries(helloworld
  PRIVATE hellohelper aaa bbb
)
target_link_libraries(hellohelper
  INTERFACE fancyformatting ccc
)

helloworld

hellohelper aaa bbb

fancyformatting ccc
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Consider how this relates to SOA
and microservices as well!
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Using Libraries

● Note: This means using creating & defining new libraries is easy!
● How might this affect program structure and design?
● How might it help us begin to handle complexity?

CMake has several other mundane build system facilities...
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General project management

● Specifying project properties
– Define a project to access variables that control that project

● Print information out during the build process

● Controlling where things are built

project(projectname)

message(“Built with flags: ${CMAKE_CXX_FLAGS}”)

set(CMAKE_RUNTIME_OUTPUT_DIRECTORY
    "${PROJECT_BINARY_DIR}/bin")
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY
    "${PROJECT_BINARY_DIR}/lib")



  

General project management

● Finding a resource that you need to use
find_package(externalproject)
find_library(library)



  

General project management

● Finding a resource that you need to use

● Installation

find_package(externalproject)
find_library(library)

install(TARGETS target1 target2 ...
  DESTINATION /tmp/
)
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elsif(condition2)
else()
endif()



  

Control structures

● IF if(condition)
elsif(condition2)
else()
endif()

Why might you want 
conditionals in a build process?



  

Control structures

● IF

● Looping

if(condition)
elsif(condition2)
else()
endif()

foreach(loop_var arg1 arg2 ...)
  command(${loop_var})
endforeach(loop_var)
while(condition)...



  

Control structures

● IF

● Looping

● Functions

foreach(loop_var arg1 arg2 ...)
  command(${loop_var})
endforeach(loop_var)
while(condition)...

function(function_name arg1 arg2 ...)
  command(${arg1})
endFunction(function_name)

if(condition)
elsif(condition2)
else()
endif()



  

Pulling Remote Dependencies
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include(cmake/CPM.cmake)

https://github.com/cpm-cmake/CPM.cmake
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Pulling Remote Dependencies

● Managing dependencies (e.g. with CPM)

include(cmake/CPM.cmake)

CPMAddPackage(
  NAME something
  GIT_REPOSITORY https://github.com/nsumner/something.git
  GIT_TAG v0.0.1
)

target_link_libraries(demo
  PRIVATE something
)

https://github.com/cpm-cmake/CPM.cmake


  

Pulling Remote Dependencies

● Managing dependencies (e.g. with CPM)

include(cmake/CPM.cmake)

CPMAddPackage(
  NAME something
  GIT_REPOSITORY https://github.com/nsumner/something.git
  GIT_TAG v0.0.1
)

target_link_libraries(demo
  PRIVATE something
)

What are the tradeoffs of this?

https://github.com/cpm-cmake/CPM.cmake


  

Analyzing Project Structure

● CMake can dump out the dependence graph in graphviz format
– cmake –graphviz=deps.gv <path to project>

– dot -Tpng deps.gv -o deps.svg



  

Analyzing Project Structure

● CMake can dump out the dependence graph in graphviz format
– cmake –graphviz=deps.gv <path to project>

– dot -Tpng deps.gv -o deps.svg

CMake has extensive documentation,
and you can find additional CMake specific information online
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MS CloudBuild & IncrediBuild

Larger companies like Google have their own.
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– Parallel & distributed
– Caching
– Unification

Suppose different component change frequently.
(high velocity, API churn, ...)

↓value of incremental
↑cost of parsing + dependencies

Just inline everything
into one file!

“Unity builds” can be
popular in game dev.
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In Summary

● A modern build system leverages the dependency graph of a project
● Dependency graphs enable

1) inference of build and usage requirements
2) compositional reasoning about modules and build management

● One dominant system for C and C++ is Cmake
● You will get more personal experience with it over the semester if you 

have not already
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