
Project 2: Version Control

Due Wednesday February 4 at 11:59pm

All projects in this course are submitted via CourSys(http://courses.cs.sfu.ca).
Submit a ZIP file of all project deliverables via CourSys by the project deadline.
For every 24 hours past the original deadline, 10% of the original score shall be
taken away, up to a maximum of two days.

This assignment is to be done individually. Do not share your code or so-
lution. Do not copy code found online. Do not post questions about the
assignment online. Please direct all questions to the instructor or TA(cmpt-276-
help@sfu.ca). You may make use of any code provide by the instructor, or in
help guides/documentation provided by the instructor.

Git Basics

1) Create A Local Repository

You already have a working project from Project 1. Now you need to create a
local repository for it. Android Studio helps to automate this process. Under
the VCS menu on the menu bar, select Enable Version Control:

Figure 1: Enabling version control within Android Studio

A dialog box will pop up asking you which version control system to use. Select
Git and continue.

2) Add your project files

Notice that most of the files in your projects are now colored red in the Project
View (the left frame). This means that they are not yet tracked by Git. In order
for Git to track their histories, you must identify exactly which files to track.

1

http://courses.cs.sfu.ca
http://courses.cs.sfu.ca
mailto://cmpt-276-help@sfu.ca
mailto://cmpt-276-help@sfu.ca
mailto://cmpt-276-help@sfu.ca

One easy way to do this is to use the menu item VCS→Show Changes View.
The bottom frame of the IDE now shows the present status that Git reports for
files. Clicking the triangle next to “Unversioned Files” shows all of the files that
you want to add to the project. Select all of them at once, right click, and select
“Add to VCS” fro the menu.

Select the files again, right click, and select “Commit Changes” to finish adding
these files to the tracked history in Git. Notice the “Commit Message” portion of
the dialog that pops up. This is where you should type a meaningful description
of the changes that you are committing to the project. This time, just type
“Initial commit of project files”. Enter your name into the Author field as well
and then continue.

3) Change and Commit

Add a new button labeled “Disclaimer of Liability” to the main screen of the
application, just below the title. Stretch the button so that it fills the width
of the screen. Notice that when you save the files, they turn blue within the
Project View. This indicates that the files have changed, and those changes have
not yet been committed to the local repository. Use VCS→Show Changes View
and notice that it lists all of the files that have changed (in blue).

Now add a background image to the main activity of the project. Save an
image in the app/src/main/res/drawable-hdpi/ subdirectory of your project.
You may use any image as the background, but your UI elements must still be
readable. Notice that the image file name shows up as red in the project view
because it is not tracked by Git. Right click it, find the Git menu, and choose
Add.

Now commit your changes to Git using VCS→Commit Changes to commit all of
the changes to the project as one event in the project history. Enter a meaningful
commit message and continue.

4) Log Into Your GitLab Account and Create a Remote Repository

For this class, we’ll be using a GitLab server to host remote repositories for our
projects. GitLab provides a web interface to creating and managing projects
using Git. Your account on the server will be created the first time that you
log in. Go to the CSIL Git Server and log in using your CSIL username and
password.

Now that you are logged in, you need to create a repository for your project.
Click on the New Project button, which looks like a plus sign in the upper right
corner of the page:

The following page lets you customize aspects of the project, such as its name,
description, and who else can view or modify the project. Make sure that the

2

https://csil-git1.cs.surrey.sfu.ca/

Figure 2: The New Project button in GitLab

Namespace for the project shows your name and that the Visibility Level for
the project is Private. This will prevent other people from being able to access
your code without your permission. When we have team projects, you can use
different settings to allow only your team to access your code, as well. Click
“Create Project” at the bottom to finish creating the remote repository.

This will take you to your project page in GitLab. Once you have pushed files
to the repository, this screen will contain useful information. For now, notice
that the upper right hand corner contains the address of the repository. Copy
this address. You will use it shortly to enable using Git within Android Studio.

At this point, you may also need to configure GitLab to recognize your ID and
computer by adding a security key. You can do this by clicking on the Profile
Settings button (near the New Project button), clicking on the SSH Keys tab,
and following the instructions for adding an SSH key.

5) Push to the Remote Repository

To push your project to the remote repository, you must first configure your
local repository to know where the remote repository is. There are two ways to
do this.

1) If we were starting a new project, we could have created our repository
using GitLab first and then cloned a local copy of the repository using
VCS→Checkout from Version Control→Git. This clone would automati-
cally know about the remote repository.

2) Since we already had our project, we are instead manually telling the local
repository where to find the remote one. This can be done on the terminal
by changing into the project directory and using the command: git remote
add origin git@csil-git1.cs.surrey.sfu.ca:<username>/<repository>
Note that the address at the end of the command is the same one you
copied at the end of creating the repository with GitLab.

Push your local changes to the remote repository from within Android Studio by
using VCS→Git→Push. In the dialog box that pops up, click the check box at
the bottom. This is only necessary the first time you push to a new repository.

3

If you now use VCS→Git→Pull to pull down any updates from the remote
repository, you should see the the Pull Info frame in Android Studio report that
no items were pulled because there haven’t been any additional changes to the
project.

You now know the basics of using Git with Android Studio. You can add and
commit your changes to your project as you go. At the end, your Git log will
need to show at least the changes made here.

Adding a Disclaimer

Backing an evil overlord could have negative consequences. Now would be a
good time to get the disclaimer in your app working. That way people will know
that there are risks in supporting the Daleks or the Cylons. Add a disclaimer
screen (activity) to your project. Chapters 2 and 8 of the Android book have
helpful information about adding and managing activities. You’ll also find that
Android Studio has many helpful right-click menus for performing tasks like this.

Disclaimer screen features:

1) Create a title that has text in the center and an icon on the left and
right sides. You must use a sublayout to do this for the project. Either
a horizontal linear layout or a relative layout is a good choice. Use the
gravity property of the text or layout to create the appropriate look. If
you want a line of text to break at a specific point, use a newline character
(’\n’) in the string. The displayed text must come from strings.xml.
You may choose the particular icon. You can find many free options on
the Crystal Clear Wikimedia page.

2) Make the Disclaimer of Liability button on the main activity launch the
disclaimer activity.

3) Below the title, add some descriptive text, as in Figure 3. Your text must
be long enough to take up multiple lines on the screen and must contain
at least your name. Do not put any sensitive personal identifiers such
as your student number in the application. This text must be stored in
strings.xml.

4) Add a TextView that shows how many times the application has been
started. The text (string) that is displayed in this view must be in
strings.xml. You will almost certainly want to use Java code to load
this string from strings.xml and then concatenate the number of starts
onto the string. Java can concatenate a string and a number such as:
String message = "Hello" + 42;
To load a string by resource number from strings.xml, use:
String message = (String)getResources().getText(R.string.string_resource_name);
When counting the number of times your application starts, you must use
SharedPreferences to save the value across runs. Increment it each time

4

http://commons.wikimedia.org/wiki/Crystal_Clear

the application starts. Recall from Chapter 2 that onCreate() in the
main activity executes once each time your app starts. You will again use
SharedPreferences on the disclaimer screen to load this value. You can
find additional information on SharedPreferences in Chapter 11 of the
Android book. You may also find Dr. Fraser’s video on SharedPreferences
to be helpful.

5) When the user taps anywhere on the screen, have it close the disclaimer
activity. Recall again from Chapter 2 that the finish() method can close
an activity. Android calls the onTouchEvent() method on your activity
when there is an unhandled touch event. Override this and add your own
code to the method. In Android Studio, you can use Code→Override
Methods. . . to find methods you may override and create a template
implementation.

6) Commit your changes with an appropriate message. (VCS→Commit
Changes)

Figure 3: Example disclaimer screen. Your text may differ.

Vibrate

Have your phone rumble with terror when you show your support: use Android’s
vibrate feature whenever a Support button is pressed. When the user presses
either of the Support buttons in the main activity, have the phone vibrate for 1
second (1000 ms). You will need to discover how to use the vibrate functionality

5

https://www.youtube.com/watch?v=8byyh8Lb_xc

on your own. There are many excellent guides online. Usually, the first place to
look for such features is the official documentation for the Android API. NOTE:
The emulator does not provide feedback for determining whether the vibrate
functionality is working correctly. If you test it using the emulator, it is up to
you to make sure it is behaving correctly. If the application crashes, make sure
that you gave it permission to use the vibrate features of the Android API. You
will need a “uses-permission” for android.permission.VIBRATE

Once you have the vibrate feature working, commit your changes with an
appropriate message and push them to your repository.

Tagging

Tag the contents of your Git repository with the name AS2_Complete. Use the
menu item VCS→Git→Tag Files and enter the tag name AS2_Complete as well
as a useful message.

Push your local repository to the remote GitLab repository one more time
(VCS→Git→Push). In GitLab, notice that the tags are not pushed to the remote
repository by default. You can push tags from the command line interface using
git push origin <tag name>

Examining The History

Now take a look at the repository history both locally and remotely. You can
view the local history of any file by right clicking on it and choosing Git→Show
History. You can see the history of the entire project by using VCS→Browse
VCS Repository. . .→Show Git Repository Log. . . .

Figure 4: Local Git history in Android Studio

View the history of the entire project and take a screenshot, making sure to
show your commit messages, tags, and time stamps. Save this screenshot as

6

AS2_LocalHistory.png in the docs directory. You can even add it to your
repository.

In GitLab, click on the Commits tag and take a screenshot, making sure to
capture the dates and commit messages of your commits. Save this screenshot
as AS2_RemoteHistory.png in the docs directory.

Deliverables

Submit a ZIP file of your Android Studio project through CourSys.

Locate your project directory in the file system. In Android Studio, you can find
the path to your project by right clicking on your project name in the path bar:

Figure 5: Project name in the path bar

and selecting “Copy Path”.

Create a ZIP file containing this directory. This ZIP file should contain not
only your code and .xml files, but also the docs/ folder including your new
screenshots. If your screen shots in the docs directory are also committed to
your local Git repository, then you can use Git in the project directory to create
an archive or the repository using:

git archive master --format zip --output /path/to/archive.zip

If you use this, double check that the archive contains your project directory
and screen shots. In Linux, this can also be done with the command:

zip -r project2 ProjectName/

This will create project2.zip containing the directory ProjectName and all of
its subdirectories.

Please remember that all submissions will automatically be compared for unex-
plainable similar submissions. Everyone’s submissions will be quite similar, given
the nature of this assignment, but please make sure you do your own original
work; we will still be checking.

7

https://courses.cs.sfu.ca/

	Project 2: Version Control
	Git Basics
	1) Create A Local Repository
	2) Add your project files
	3) Change and Commit
	4) Log Into Your GitLab Account and Create a Remote Repository
	5) Push to the Remote Repository

	Adding a Disclaimer
	Vibrate
	Tagging
	Examining The History
	Deliverables

