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● Assertions 
– provide a way of checking  invariants (internal 

expectations)

Check whether a condition is true.
Crash if it is not.
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Assertions

● Assertions 
– provide a way of checking  invariants (internal 

expectations)
– In Java (run using -enableassertions):

– In C/C++ (enabled by default):

● Disable by compiling with -DNDEBUG

private void setScore(int score) {
    assert score >= 0 && score <= 100
      : “Score of ” + score + “is out of range”;

void setScore(int score) {
    assert(score >= 0 && score <= 100
           && “Score is out of range”);
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Assertions

● Why?

Why crash your own code?
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Assertions

● Why?
– Software with assertions has fewer defects
– Documents the software via the code
– The defects that are there are easier to diagnose

● Incorrect values are spotted close to the defect

A little work up front makes your life easier!
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Assertions vs Exceptions

● You might instead throw an exception:
public void setScore(int score) {
  If (score < 0 || score > 100) {
    throw new InvalidArgumentException(“Score of ”
            + score + “is out of range”);
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● You might instead throw an exception:

● Why use one vs the other?

public void setScore(int score) {
  If (score < 0 || score > 100) {
    throw new InvalidArgumentException(“Score of ”
            + score + “is out of range”);

Internal invariants vs. External expectations
 (errors in your own code) vs. (errors in user input)               

 assertions vs. exceptions      
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Assertions vs Exceptions

● You might instead throw an exception:

● Why use one vs the other?

public void setScore(int score) {
  If (score < 0 || score > 100) {
    throw new InvalidArgumentException(“Score of ”
            + score + “is out of range”);

Assertions indicate internal bugs.
Exceptions indicate misuse / corner cases.

Internal invariants vs. External expectations
 (errors in your own code) vs. (errors in user input)               

 assertions vs. exceptions      
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● Flexibility
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Refactoring

● Refactoring
– Restructuring existing code for better:

● Readability
● Flexibility
● Testability
● …  bility

– Changes to code that do not affect functional behavior
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Refactoring – examples from Martin Fowler

● Extract Explaining Variable:
– http://refactoring.com/catalog/extractVariable.html

http://refactoring.com/catalog/extractVariable.html
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Refactoring – examples from Martin Fowler

● Extract Explaining Variable:
– http://refactoring.com/catalog/extractVariable.html

● Split Temporary Variable:
– http://refactoring.com/catalog/splitTemporaryVariable.h

tml
● Extract Method:

– http://refactoring.com/catalog/extractMethod.html
● Replace Temp with Query

– http://refactoring.com/catalog/replaceTempWithQuery.
html

http://refactoring.com/catalog/extractVariable.html
http://refactoring.com/catalog/splitTemporaryVariable.html
http://refactoring.com/catalog/splitTemporaryVariable.html
http://refactoring.com/catalog/extractMethod.html
http://refactoring.com/catalog/replaceTempWithQuery.html
http://refactoring.com/catalog/replaceTempWithQuery.html
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Refactoring

The canonical resource is http://www.refactoring.com

http://www.refactoring.com/
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