
Assertions & Refactoring

CMPT 276
Intro to Software Engineering

Nick Sumner – Spring 2015

2

Assertions

● Assertions
– provide a way of checking invariants (internal

expectations)

3

Assertions

● Assertions
– provide a way of checking invariants (internal

expectations)

Check whether a condition is true.
Crash if it is not.

4

Assertions

● Assertions
– provide a way of checking invariants (internal

expectations)
– In Java (run using -enableassertions):
private void setScore(int score) {
 assert score >= 0 && score <= 100
 : “Score of ” + score + “is out of range”;

5

Assertions

● Assertions
– provide a way of checking invariants (internal

expectations)
– In Java (run using -enableassertions):

– In C/C++ (enabled by default):

● Disable by compiling with -DNDEBUG

private void setScore(int score) {
 assert score >= 0 && score <= 100
 : “Score of ” + score + “is out of range”;

void setScore(int score) {
 assert(score >= 0 && score <= 100
 && “Score is out of range”);

6

Assertions

● Why?

Why crash your own code?

7

Assertions

● Why?
– Software with assertions has fewer defects

8

Assertions

● Why?
– Software with assertions has fewer defects
– Documents the software via the code

9

Assertions

● Why?
– Software with assertions has fewer defects
– Documents the software via the code
– The defects that are there are easier to diagnose

● Incorrect values are spotted close to the defect

10

Assertions

● Why?
– Software with assertions has fewer defects
– Documents the software via the code
– The defects that are there are easier to diagnose

● Incorrect values are spotted close to the defect

A little work up front makes your life easier!

11

Assertions vs Exceptions

● You might instead throw an exception:
public void setScore(int score) {
 If (score < 0 || score > 100) {
 throw new InvalidArgumentException(“Score of ”
 + score + “is out of range”);

12

Assertions vs Exceptions

● You might instead throw an exception:

● Why use one vs the other?

public void setScore(int score) {
 If (score < 0 || score > 100) {
 throw new InvalidArgumentException(“Score of ”
 + score + “is out of range”);

13

Assertions vs Exceptions

● You might instead throw an exception:

● Why use one vs the other?

public void setScore(int score) {
 If (score < 0 || score > 100) {
 throw new InvalidArgumentException(“Score of ”
 + score + “is out of range”);

Internal invariants vs. External expectations
 (errors in your own code) vs. (errors in user input)

 assertions vs. exceptions

14

Assertions vs Exceptions

● You might instead throw an exception:

● Why use one vs the other?

public void setScore(int score) {
 If (score < 0 || score > 100) {
 throw new InvalidArgumentException(“Score of ”
 + score + “is out of range”);

Assertions indicate internal bugs.
Exceptions indicate misuse / corner cases.

Internal invariants vs. External expectations
 (errors in your own code) vs. (errors in user input)

 assertions vs. exceptions

15

Refactoring

● Refactoring
– Restructuring existing code for better:

● Readability
● Flexibility
● Testability
● … bility

16

Refactoring

● Refactoring
– Restructuring existing code for better:

● Readability
● Flexibility
● Testability
● … bility

– Changes to code that do not affect functional behavior

17

Refactoring – examples from Martin Fowler

● Extract Explaining Variable:
– http://refactoring.com/catalog/extractVariable.html

http://refactoring.com/catalog/extractVariable.html

18

Refactoring – examples from Martin Fowler

● Extract Explaining Variable:
– http://refactoring.com/catalog/extractVariable.html

● Split Temporary Variable:
– http://refactoring.com/catalog/splitTemporaryVariable.h

tml

http://refactoring.com/catalog/extractVariable.html
http://refactoring.com/catalog/splitTemporaryVariable.html
http://refactoring.com/catalog/splitTemporaryVariable.html

19

Refactoring – examples from Martin Fowler

● Extract Explaining Variable:
– http://refactoring.com/catalog/extractVariable.html

● Split Temporary Variable:
– http://refactoring.com/catalog/splitTemporaryVariable.h

tml
● Extract Method:

– http://refactoring.com/catalog/extractMethod.html

http://refactoring.com/catalog/extractVariable.html
http://refactoring.com/catalog/splitTemporaryVariable.html
http://refactoring.com/catalog/splitTemporaryVariable.html
http://refactoring.com/catalog/extractMethod.html

20

Refactoring – examples from Martin Fowler

● Extract Explaining Variable:
– http://refactoring.com/catalog/extractVariable.html

● Split Temporary Variable:
– http://refactoring.com/catalog/splitTemporaryVariable.h

tml
● Extract Method:

– http://refactoring.com/catalog/extractMethod.html
● Replace Temp with Query

– http://refactoring.com/catalog/replaceTempWithQuery.
html

http://refactoring.com/catalog/extractVariable.html
http://refactoring.com/catalog/splitTemporaryVariable.html
http://refactoring.com/catalog/splitTemporaryVariable.html
http://refactoring.com/catalog/extractMethod.html
http://refactoring.com/catalog/replaceTempWithQuery.html
http://refactoring.com/catalog/replaceTempWithQuery.html

21

Refactoring

The canonical resource is http://www.refactoring.com

http://www.refactoring.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

