
15-03-16 1

Slides #17

Design Patterns &
Implementation Issues

Sections 7.2 – 7.4

CMPT 276
© Dr. B. Fraser

15-03-16 2

Topics

1) What are design patterns?

2) What are some general implementation issues?

3) What is open-source development?

15-03-16 3

Design patterns

15-03-16 4

Design patterns

● A pattern is:

– It should be sufficiently abstract to be reused...

– Pattern descriptions usually make use of object-
oriented characteristics such as inheritance and
polymorphism.

15-03-16 5

Observer pattern motivation

● Imagine you are writing an automatic day-planner:
– It can take the user's interests, plus information about the

world, and suggest what they should do.

● Possible design idea:
– You want to use different objects for cultural planning,

sports planning, and sight-seeing.
– Some objects bring in information about the world;

your planning-objects use these other objects.

● Challenge:
– All of these objects need to know the weather.
– Your weather object gets updates now and then.
– How do you tell..

For
billionaires!

15-03-16 6

Possible Idea

● Have the weather object call each other object:

● Bad because:
– Weather object is...

– Every new planner you get, you'll have to change
the weather object's code, recompile, and re-run.

void newDataUpdate() {
String weatherData = ...;
culturePlanner.update(weatherData);
sportsPlanner.update(weatherData);
sightseeingPlanner.update(weatherData);
// Change here EVERY time you get a new planner.

}

15-03-16 7

The observer pattern

● Observer Pattern:

● Produces a one to many relationship:
– one object observed (called the subject)
– many objects observing (called the observers).

● Great because it loosely couples objects:
– Object with something to report does not need a

hard-coded list of who to tell; ...

15-03-16 8

The observer pattern – weather data

15-03-16 9

The observer pattern – Android button
 // Handle yes button
 Button yesButton = (Button) findViewById(R.id.Button_Yes);
 yesButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 // do something useful!
 }
 });

15-03-16 10

Multiple observers

● Often have multiple observers listening to the same
subject.

15-03-16 11

Other design patterns in Android

● Android framework uses many design patterns:
– Observers – Button presses
– Singleton objects: Only ever one object.

– Factory:
Runtime decision as to which exact class to create.

● Ex: Intents
– ... Many more.

SharedPreferences settings =
 getSharedPreferences(GAME_PREFERENCES,

MODE_PRIVATE);

15-03-16 12

Implementation issues

15-03-16 13

Implementation issues

● We are not going to cover how to code; just mention
some issues that apply to software engineering.

●
– How can we use existing code to create our new

system?

●

– Revision control, component version control (releases...)

●

– How can we develop on one style of machine and run on
another? (Ex: PC to Android).

15-03-16 14

Levels of reuse
● The abstraction level:

– Reuse the...
in the design of the software.

– Ex: Design patterns, architectural patterns.

● The object level
– Reuse vs rewriting the code.
– Ex: Library objects: XML parsing, container classes.

● The component level
– Reuse a collection of objects such as...
– Ex: Android UI framework.

● The system level
– Reuse...

(COTS=Commercial off-the-shelf)

15-03-16 15

Reuse cost

● Cost of Software Reuse:
– time to find and evaluate COTS for reuse.
– $ to buy the software; can be expensive!
– $ to adapt, configure and integrate components.

● Reusing well tested component can...

● However:
– Many disasters caused by reusing software which

had an unknown bug.
– We tend not to test them well enough because..

15-03-16 16

Caution on reuse
● Therac-25: Canadian made radiation therapy

machine. Failure...
– Reused buggy software that *relied* on hardware

safeties, which were left out in the later version.

● Ariane 5 rocket: Initial test flight...
– Reused a module from Ariane 4 which converted a

floating point number to a 16bit integer.
– Ariane 4 rocket never encountered an error.
– Exception handling was turned off for efficiency.
– Both primary and backup computers encountered

the error at the same time and shutdown.

●

15-03-16 17

Configuration management
●

– Version control/source-code control.
– Ex: Git

●

– Control the version of components used to build
releases of the system.

● Select the Linux kernel version.
– Ex: Unix make, Java ANT, Gradle

●

– Track bugs: bug entry, priority, assignment,
investigation, fix, verification.

– Ex: Trac, Bugzilla, Phabricator
15-03-16 18

Host-target development

● Most software is developed on one computer...
but runs on a different target platform...

● A platform is more than just hardware.
– Includes operating system and database

management system.

● Host machine usually has:
– different... than target;
– different... than target.

15-03-16 19

Development platform (host) tools

● IDE (integrated development environment) :
Android Studio

● Compiler:
– Called a...

if compiling on one machine for another.
● A language debugging system : DDMS
● Emulation tools: Android emulator.
● Testing tools: Junit for automatic unit-testing.
● Version control tools: Git, SVN, CVS, ...

15-03-16 20

Open source development

15-03-16 21

Open source development

● Open source development is:
software development where the source code of a
system is published and volunteers are invited to
participate in its development.

● Open source systems
– Linux operating system:

● Used in servers, developers, mobile phones, etc
– Android, Apache web server, mySQL (database),

LibreOffice.

15-03-16 22

Open source issues

● Open Source Issues:
– Should our product...
– Should an open source approach be...

● More companies are using open source development.
– Business model is not reliant on selling software but on...

● Possible advantages of open source:
– developed cheaper and faster,
– creates a community of users for the software.

15-03-16 23

Open source licensing

● Open-source =
– Does not mean that anyone can do as they wish

with that code.

● Developer (company or individual) still owns the
code and can...

● Carefully consider the license of

– Ex: File-system, network "stacks", audio decoders,
etc.

15-03-16 24

License models

● GNU General Public License (GPL)
"Reciprocal" license, "copyleft", "Viral open source"

– If your program includes any GPL code, then..

● GNU Lesser General Public License (LGPL)
– If you statically-link to LGPL code, it too must be LGPL
– If you dynamically link to the code (like a DLL), it need

not be LGPL (could have any licence).

● Berkley Standard Distribution (BSD) License
– Non-reciprocal license...
– Code may be included in proprietary systems that are

sold for profit (closed-source).

15-03-16 25

Copyleft Licences

15-03-16 26

Summary

● Use observer pattern to decouple views from data.
● Consider possible reuse of existing software:

components, services or complete systems.
● Use configuration management to control system

development.
● Open source development allows others to see and

change the code
– Can add complex licensing issues.

