Topics

Coping with Change and Risk

Chapter 2.3 & 2.4

CMPT 276
© Dr. B. Fraser
Based on slides from Software Engineering 9™ ed, Sommerville.

1) How can software projects manage change?
a) What is prototyping?
b) What is incremental development?

2) What is the Rational Unified Process?

15-01-19

1 ‘ ‘ 15-01-19 2

Coping with change

Reducing the cost of rework

« Change is inevitable in all large software projects:

lead to new (or changed) system requirements.
- open up new possibilities.

« Cost of change =
Cost of reworking completed work
(re-analysing requirements, design, recoding)
+
Cost of..

« Change avoidance:
— software development process includes..

before significant rework is required.
— Example: develop a prototype system to show a key
(uncertain?) features to customers.

o Change tolerance:
- software development process is designed to..

— Usually incremental development.
— Changes may be in a future increment (no rework),
or may have to alter part of the existing system.

15-01-19

3 ‘ ‘ 15-01-19 4




Software prototyping

Change avoidance with

Software Prototyping

e Prototype:

used to try out options.

e "Throw-away" code:

— Prototypes could ignore things like

code quality, error-handling, or testability.
— Built to answer a specific question,

not to see if the whole system will work.

15-01-19

5 ‘ ‘ 15-01-19

Software prototyping

Benefits of prototyping

o A prototype can be used in:

to help with requirements elicitation and validation;
- to explore options;
« For example, a paper prototype of the Ul.

Prototyping Process:

C GG

« Benefits of Prototyping:
— Improved system usability.
— A closer match to users’ real needs.
— Improved design quality.
— Improved maintainability.

— Reduced development effort.

Send Text Message

Hey there, this is my
message!

’15—01—19

7 ‘ ‘ 15-01-19




Prototype development

— Focus on poorly understood areas of the product;
— Error checking and recovery may be omitted,;
- Focus on rather than

requirements. : .
Accessing hardware, Security,
screen layouts, performance, etc.
database access.

e Prototypes..
not a good basis for a production system:

- Very hard to tune it to meet non-functional requirements. Change tolerance with
— Normally undocumented; .
— Degraded structure from rapid change (no refactoring) Incremental Del Ivery

— Likely below software quality standards.

15-01-19 9‘ ‘15—01—19

Incremental delivery Incremental development and delivery
e Development and delivery are e Incremental development
— Develop the system in increments.
— Each increment delivers some required functionality. - increment before proceeding
. el . to development of next increment;
« Prioritized user requirements _ Normal approach used in...

— highest priority ones included in early increments. .
e Incremental delivery

« Requirement changes . . — Deploy an increment for..
— Once the development of an increment is started, — More realistic evaluation because of..
) ) ) — Difficult to implement for replacement systems as
— Requirements for later increments continue to increments have less functionality than old system.

evolve.

15-01-19 11 ‘ ‘15—01—19




Incremental delivery advantages

Incremental Delivery

/ N

. B —— .

Fina

The increment could fit into a
larger system plan (BDUF), or be
developed on the fly with

Start | system

« Benefits Include:

— New functionality delivered with each increment so
system functionality is available earlier.

— Early increments act..
to help elicit requirements for later increments.

— Lower risk of overall project failure.

— Highest priority requirements implemented first and..

What is a difference
between an early
increment and a

prototype?

15-01-19 _ evolutionary planning (Agile)./ ‘15_01_19

] Incremental delivery problems

o Common Functionality:
— Most systems require a set of basic facilities that are
used by different parts of the system.
— Hard to identify common facilities because

requirements are not defined in detail until..

« Contracts:
— Specification developed iteratively with the software.
— Complete system specification can be needed as part

of the...

The Rational Unified Process

Brings together aspects of..

1. Waterfall

2. Incremental Delivery

3. Reuse-oriented Software Engineeering

15-01-19 15‘ ‘15—01—19




] RUP phases

RUP good practices

. (Small loops)
- Multiple iterations within a phase to complete its work.

. (Big loop on top)
- The whole set of phases be done incrementally

C Phase iteration

C =/

Construction

Elaboration

Inception Transition

Understand
the problem
domain and
the system

. architecture.

Establish the

System design,
programming
and testing.

the systemin
its operating
environment.

for the
system.

Plan increments based on customer priorities
and deliver highest priority increments first.

Document customer requirements and track its changes.

Organize system architecture as reusable components.

Use graphical UML models of the software.

Enforce development quality standards.

Manage changes using a change management system.

15-01-19

Summary

e Processes should cope with change.
- Change avoidance:
« Prototyping helps avoid poor decisions on
requirements and design.
- Change tolerance:
« Iterative development and delivery allows changes
without disrupting whole system.

e The Rational Unified Process:
- generic process model
- organized into phases
(inception, elaboration, construction and transition)
- separates activities within all phases.
(requirements, analysis and design, etc.)

15-01-19




