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Abstract—Dynamic analyses rely on the ability to identify
points within or across executions. In spite of this being a
core task for dynamic analyses, new solutions are frequently
developed without an awareness of existing solutions, their
strengths, their weaknesses, or their caveats. This paper sur-
veys the existing approaches for identifying execution points
and examines their analytical and empirical properties that
researchers and developers should be aware of when using
them within an analysis. In addition, based on limitations in
precision, correctness, and efficiency for techniques that identify
corresponding execution points across multiple executions, we
designed and implemented a new technique, Precise Execution
Point IDs. This technique avoids correctness and precision issues
in prior solutions, enabling analyses that use our approach to
also produce more correct results. Empirical comparison with the
surveyed techniques shows that our approach has 25% overhead
on average, several times less than existing solutions.

I. Introduction

Dynamic analyses help developers identify interesting pro-

gram behaviors at runtime. As a result, these analyses can

simplify or speed up common tasks like debugging [1] and

verification [2]. Because these problems are core development

tasks, improving them can lead to lower software development

costs [3], and this, in turn, has led to great interest and growth

within the field of dynamic analysis as a whole.

One fundamental task in dynamic analyses is identifying a

point within an execution of a program. Such execution points

are sometimes used to provide feedback to developers [4], [5].

For example, when a tool like Memcheck within Valgrind

[4] identifies an invalid memory access, it can provide an

execution point showing developers where in the execution

this invalid access occurred. Developers can use this infor-

mation to help fix the bug. Execution points also serve as

input to additional analyses. For instance, dual slicing uses

execution points to identify commonly executed instructions

across multiple executions [6]. It uses these common behaviors

to prune out irrelevant dependences from specialized slices that

concisely explain concurrency bugs.

In spite of this pervasiveness, dynamic analyses are inconsis-

tent and imprecise in how they identify and compute execution

points. Analyses create their own formulations of execution

point IDs (EPIDs) without understanding existing approaches,

and even among existing techniques, different types of EPIDs

have unexplored properties. Their strengths and weaknesses

are poorly understood and can lead to unexpected limitations

of precision or scalability. In addition, one definition of execu-

tion point may be preferable in one context but undesirable in

1 def action(x):
2 print(x)
3
4 def main():
5 for i in range(3):
6 x = input()
7 if x % 2:
8 action(x)

for i = 0:
x = 2
if False:

for i = 1:
x = 4
if False:

for i = 2:
x = 5
if True:

action(5)
print(5)

SIC+=1

SIC+=1

SIC+=1

for i = 0:
x = 1
if True:

action(1)
print(1)

for i = 1:
x = 4
if False:

for i = 2:
x = 5
if True:

action(5)
print(5)

SIC+=1

SIC+=1

SIC+=1

SIC+=1

(a) (b) (c)
Fig. 1. A program that prints odd numbers and two executions of the program.

another, yet these trade offs between the different techniques

are presently not well understood.

Consider the program in Fig. 1a. This program reads in

three numbers from the user. If a number is odd, as checked

on line 7, then the program calls action() to print the number out.

Notice that line 2 can execute many times because it is called

from within the loop. As a result, simply using the line number

to identify the execution point is ambiguous because the same

ID may appear multiple times within the same execution.

This is undesirable for many dynamic analyses, as it yields

imprecise or incorrect results [1], [7].

One approach, commonly used in the context of record and

replay techniques [7]–[10], is the Software Instruction Counter

(SIC). An SIC uses a single integer counter that increments at

function calls and loop backedges during the execution of a

program. Combining the current counter with the current line

number yields a pair (counter, line) that can uniquely identify

an execution point within one execution. For example, the

instances of the if statement on line 7 of execution (b) are

identified by (0,7), (1,7), and (2,7) because of the counter

increments on back edges as shown in Fig. 1b.

However, these identifiers only work within a single exe-

cution. The SICs used for execution (b) do not work for the

instructions of execution (c). This is because the executions

behave differently. The SIC is incremented at the call to action()

in the first iteration of execution (c), so the identifiers for the

if statements are (0,7), (2,7), and (3,7). Because the SIC was

incremented at the first call in (c) but not in (b), the SICs of

the two executions diverge and cannot be compared after this

point. This is a problem for analyses that compare information

across multiple executions [1], [6], [11], [12] because SICs can

only precisely identify points within one execution.

To address this problem, and enable comparison across



executions, other EPID techniques exploit program structure

[13], [14]. Using this information, they are often able to

align the corresponding instructions across multiple executions.

Unfortunately, these techniques also have limitations that cre-

ate ambiguous or meaningless relationships when identifying

the instructions that align across executions. They also have

substantial limitations in usability. In particular, Structural

Execution Indexing [13] has difficulties scaling to longer

executions, while STAT [14] requires a program core dump

at each point that requires an EPID. In addition, SEI can fail

to identify useful relationships between EPIDs.

In this paper we survey five existing approaches used to

compute EPIDs for dynamic analyses. The surveyed tech-

niques range in their precision and purpose from only being

able to imprecisely identify points even in one execution to

uniquely identifying points across multiple executions even

in the presence of concurrency and nondeterminism. They

range in runtime overhead from none, using only postmortem

analysis, to several times the cost of the original execution.

Based on the limitations of the existing techniques for cross-

execution EPIDs, we observed a need for a new technique

that provides meaningful and unambiguous relationships in

execution alignment and without the usability and scalability

limitations of existing approaches. We introduce a new tech-

nique for Precise Execution Point IDs (PEPIDs) that addresses

these goals and has a runtime overhead only slightly higher

than using calling contexts [15].

We have implemented all of these techniques, those sur-

veyed along with PEPID. We evaluated them empirically on

SPEC CINT2006 to illustrate their performance. We also

provide the first analytical comparison of these different ap-

proaches, weighing their costs, their benefits, and the scenarios

where one may be more desirable than another. Using this

information, a dynamic analysis designer can know in advance

which techniques are most appropriate for his or her purposes

and avoid inventing or reinventing an approach with known

problems. In summary, the contributions of this paper are:

1) We surveyed and implemented existing techniques for

computing EPIDs for dynamic analyses. We analytically

examine all of the different techniques and compare

them along several spectra in order to weigh their

relative costs, merits, and limitations.

2) We observed problems with producing meaningful, un-

ambiguous relationships between EPIDs as well as with

usability and scalability in existing techniques for cross-

execution EPIDs. To address these problems, we intro-

duce a new cross-execution technique (PEPID) and show

that it avoids the limitations of existing work while also

having lower runtime overhead.

3) We empirically compare the runtime and space over-

heads introduced by the different techniques, those sur-

veyed as well as PEPID, and we show that for cross

execution EPIDs, PEPID is the most efficient with 25%

average overhead. For intra-execution techniques, SICs

are the most efficient, with 9% overhead.

4) We illustrate how missing meaningful relationships be-

tween inter-execution EPIDs can result in undesirable or

incorrect results for dynamic analyses.

II. Existing EPID Techniques

In this section, we review the different approaches for

computing EPIDs that have appeared historically in the context

of dynamic analyses. We consider the intended use cases,

design, and requirements of each technique.

A. Calling Contexts

One of the traditional representations of EPIDs is the calling

context at a point within an execution. The calling context

consists of the list of active functions currently on the call

stack. Note, similar to using the line number or program

counter as an EPID in Fig. 1, the calling context is an am-

biguous representation. The same calling context may appear

multiple times even within one execution. As a result, calling

contexts are potentially ambiguous EPIDs, but they provide

a more detailed representation of the static program behavior

than just a line number. In spite of this, calling contexts are

already familiar to developers and can be easily collected by

walking over the call stack [4], [16]. As a result, many dynamic

analysis tools use calling contexts during analysis or while

generating reports for developers [4], [5], [17], [18].

In spite of their familiarity, calling contexts were tradition-

ally costly to collect. Walking over the call stack at every

point of interest can be costly, which has forced some dynamic

analyses to resort to sampling techniques that only analyze

portions of an execution [19]. More recently, efforts have

focused on efficient means of encoding calling contexts. These

include approaches that can probabilistically encode contexts

in constant space [20]–[22] as well as approaches that can

precisely encode calling contexts but can require a flexible

encoding size and a slightly higher runtime overhead [15].

In the context of dynamic analysis, more precise information

is usually preferred, so in this paper we only consider the latter

work, Precise Calling Context Encoding (PCCE) [15]. PCCE

works on the principle that calling contexts are equivalent

to paths through the call graph of a program. The technique

examines the call graph during compilation and numbers all of

the acyclic paths present in the graph. It then annotates every

edge, or call site, with an arithmetic operation that computes

the numerical ID of the current path in the call graph at

runtime, similar to Ball-Larus path profiling [23]. Combined

with the current instruction, these comprise a calling context.

PCCE handles recursion by pushing and popping the acyclic

path IDs onto a calling context stack as necessary.

main()

a() b() c()

1 3

1

def b():
...
contextID += 1
c()
contextID −= 1
...

(a) (b)
Fig. 2. (a) An annotated call graph that encodes all calling contexts into
unique integers. (b) Example instrumentation of the function b().

For example, consider the call graph presented in Fig. 2a.

The circle annotations on the call edges denote the amount



added to the context ID before each call and subtracted from

the ID upon return. Fig. 2a illustrates this instrumentation

for the function b(). Using this example, the calling context

main→b→c is captured by the pair (c,2). This reflects the

currently executing function, c(), and the numerical ID rep-

resenting the path in the call graph, 2.

Computing these IDs using PCCE requires that a program

be instrumented at compile time, which requires forethought

and time not applicable for all dynamic analyses. For instance,

if a developer wishes to analyze an already compiled program

with a tool that uses PCCE, they have to compile the program

again to have the necessary instrumentation added. In addition,

the efficiency results achieved by PCCE, 1-3.5% runtime

overhead, exploit profile guided instrumentation and additional

optimizations for compressing repetitive and recursive calling

contexts. Both of these requirements can be avoided by using

stack walking to extract the calling context, but, as mentioned

before, they induce a high overhead [20].

B. Software Instruction Counters

Mellor-Crummey and LeBlanc introduced Software Instruc-

tion Counters (SICs) to provide a more precise notion of

execution point for profiling and debugging [24]. SICs have

since been used in a variety of dynamic analyses, especially

in the context of nondeterministic recording and replay [7]–

[10], [25]. SICs provided the first representation of execution

points that was able to uniquely and scalably identify every

instruction within a single execution of a program. They work

by maintaining a monotonic counter that indicates the progress

through an execution. This gives SICs the advantage of only

adding a single counter and sparse increment operations to

an execution, thus yielding low overhead. While the EPIDs

defined by SICs are unambiguous within a single execution,

the SIC for a point may change across different executions, and

the same SIC may even represent different execution points in

two different executions as seen in Fig. 1 and Section I.

Computing SICs involves incrementing a counter at every

function call and back edge in the control flow graph (CFG)

of a program. Fig. 1b-c show the executions of Fig. 1a

with instrumentation for computing SICs (where print, range,

and input are built-in commands). For any point within an

execution of a program, the SIC instrumentation creates a pair,

(counter,current line) such that the pair uniquely identifies that

execution point. The counter maintains a notion of forward

progress within the execution, and it is only incremented

at those features within an execution that may cause an

instruction to execute multiple times (loops and function calls).

Accurately placing instrumentation on back edges requires

static analysis or some additional dynamic analysis to detect

loops within individual functions. This mandates either fore-

thought for the static analysis, just like PCCE, or additional

runtime, space, and complexity overhead for dynamic loop de-

tection. Instead of instrumenting back edges in the CFG, many

analyses alternatively instrument the branch points within

a program [9], [10]. For executions that terminate or have

side effects, these are equivalent and have the advantage that

1 def action(x):
2 print(x)
3
4 def main():
5 for i in range(3):
6 push((5, 14))
7 x = input()
8 if x % 2:
9 push((8, 13))

10 push((11, 12))
11 action(x)
12 pop(12)
13 pop(13)
14 pop(14)

Possible Calls to action():
〈(5, 14)(8, 13)(11, 12), 11〉
〈(5, 14)(5, 14)(8, 13)(11, 12), 11〉
〈(5, 14)(5, 14)(5, 14)(8, 13)(11, 12), 11〉

(a) (b)
Fig. 3. (a) The program from Fig. 1 instrumented for computing SEIs. The
consecutive pushes at 9 and 10 are discussed in the text below. (b) EPIDs for
potential calls to action().

branch instructions can be easily identified and instrumented

by dynamic instrumentation or virtualization tools [4], [26].

C. Structural Execution Indexing

While the EPIDs provided by SIC suffice for intra-execution

analyses, we saw in Section I that an EPID defined by

SIC might correspond to the first iteration of a loop in

one execution and the last iteration of a loop in another

execution. Indeed, the alignment that SICs create between the

instructions of two different executions can match instructions

at the beginning of one execution with instructions at the

end of a second. For dynamic analyses that perform inter-

execution analysis, e.g. execution comparison, this can lead to

meaningless results. Intuitively, when there is no relationship

between instructions with the same EPIDs across the two

executions, comparing them is uninformative.

This provided the motivation for Structural Execution In-

dexing (SEI) from Xin et al [13]. They observed that some

dynamic analyses compare execution points across executions,

but the way that analyses identified execution points led to

meaningless correspondences, like those established by SIC in

Section I [11], [13]. They instead sought to use the semantic

structure of underlying programs to determine which program

points corresponded. They observed that the control structures

of a program along with the dynamic control dependence [27]

at runtime established a semantic identity for execution points

even across different executions, so they used these to uniquely

identify instructions at runtime. The technique maintains a

stack that keeps track of the currently active control structures

while a program executes. This stack then acts as the EPID.

The process of computing an SEI based ID for an execution

point is similar to manually maintaining a call stack at runtime,

except that dynamic control dependence information is also

included in the stack. At every branch (or call) instruction,

the instruction ID is pushed onto an indexing stack along

with the ID of its postdominator (or return instruction). This

(ID, postdominator) pair identifies the region of code that is

control dependent upon the branch (or call) instruction. Upon

encountering a postdominator (or return), all entries in the

stack postdominated by that instruction are popped from stack.

Applying this process to the code from Fig. 1 yields the new



1 if a || b:
2 action()

if a

if b

action()

EXIT

Calls to action():
〈(1a,EXIT)(2,EXIT), 2〉
〈(1a,EXIT)(1b,EXIT)(2,EXIT), 2〉

(a) (b) (c)
Fig. 4. (a) A simple program where structural execution indexing is dependent
upon the execution path. (b) The CFG with two paths to action(). (c) EPIDs
for the call to action().

program in Fig. 3a. Note, for each dynamic iteration of the

loop, an (ID, postdominator) token is pushed on the stack at

line 6. As seen in Fig. 3b, showing the EPIDs for each call

to action(), these tokens track the monotonic progress of an

execution through a loop until the loop finishes and all iteration

tokens are popped at line 14. The pop(x) operation removes all

tokens with the postdominator x. The push and pop on lines 9

and 13 bound a region of code control dependent upon line 8

[27], while those on lines 10 and 12 identify the call on line 11.

Uniquely identifying function calls is crucial because the same

function may be called multiple times, and not differentiating

the call sites would lead to ambiguous EPIDs.

The complete algorithm also contains additional operations

for optimizing simple loops using counters and for eliminating

pushes onto the stack that can be inferred based purely on

where an instruction lies within the CFG. For example, the

push for each loop iteration on line 6 can be replaced by

a counter increment, since the loop has a single conditional

guard. Also, executing the body of the if statement in Fig. 3

automatically implies that the if statement on line 8 was

executed and the True branch taken. Thus, the pushes and pops

on lines 9 and 13 can be safely elided.

The intuition that control dependence creates a semantic

relationship across executions had previously been used for

trace similarity metrics [28] and has proven effective enough

that SEI has gained traction in analyses that examine inter-

execution relationships. It has since been used for tasks rang-

ing from automated debugging [1] to concurrent profiling [29]

to identifying causes of vulnerabilities [12]. In spite of this,

tracking control dependence can require O(N) space where

N is the length of an execution, which does not scale for

some programs. The aforementioned optimization heuristics

can mitigate this problem in practice, but they do not eliminate

it. We explore the space and runtime overheads in Section V.

In addition SEI requires that a program be instrumented at

compile time to accurately identify postdominators.

As previously noted, SEI was designed to guarantee EPIDs

across executions could only be equal for execution points

that correspond across the executions. In some cases it is

too aggressive in achieving this goal and can create different

EPIDs even when execution points meaningfully correspond

across executions. Consider the code in Fig. 4a. A short-

circuiting or operation creates the CFG in Fig. 4b with two

branches and two paths to action() on line 2. Note that the

paths through the program split based on the values of a and b,

but the paths that call action() merge together again before this

call. Intuitively, the calls to action() occur at the same execution

point even in different executions, so their EPIDs should be the

same. In spite of this, because SEI bases EPID construction

on the control dependence of the execution point, different

paths to the same point can have different EPIDs. In this case,

as Fig. 4c shows, one EPID encodes a path where a is True

and the call is control dependent on 1a. The other encodes

the path where just b is True, and the call is depends first

on 1b which transitively depends on 1a [27]. We show later

in Section V-C that this counterintuitive relationship leads to

undesirable results for dynamic analyses.

D. STAT Ordering

The techniques presented thus far all required either static

or dynamic program instrumentation. In some cases, such as

when analyzing a deployed program or a program whose

behavior changes when it is instrumented, it is necessary

to avoid any instrumentation whatsoever. This motivated the

EPID technique presented by Ahn et al. as a part of their

Stack Trace Analysis Tool (STAT) [14]. STAT was designed

for debugging high performance computing applications with

multiple processes. In order to better classify and group

equivalent processes that represented failures, they developed

a technique for analyzing core dumps of programs in order

to extract the execution point where a program failed. These

core dumps are essentially snapshots of program memory

and contain not only the call stack of the execution at the

point of failure but also the values of all variables on the

stack or heap at that point. In addition to producing an EPID

from the core dumps, STAT produced a partial ordering of

execution points across different executions. This partial order

was particularly important in the context of analyzing parallel

code that involved multiprocess communication. STAT was

the first EPID technique we are aware of that observed how a

partial ordering of EPIDs could be useful for analyses.

EPIDs produced by STAT are also stack based, similar to

those produced by SEI. However, STAT does not have the

control dependence or postdominance information used by SEI.

Instead, STAT infers as much as possible about an execution

point from the core dump. In particular, EPIDs from stat inter-

leave (1) the call stack of the execution point and (2) values

of certain local variables that show the monotonic progress

of an execution through loops. The call stack of an execution

point can be extracted from the core dump using stack walking

methods mentioned in Section II-A, but finding variables that

show loop progress is more difficult. Such variables do not

even always exist, so STAT makes no guarantee that EPIDs it

produces are unambiguous. Pragmatically, STAT defines loop

order variables (LOVs) that can easily be recognized and

extracted as indicators of loop progress when present. LOVs

must (1) be defined at least once each iteration, (2) be given

strictly increasing or decreasing values over a loop’s lifetime,

and (3) be given an identical value each particular iteration

across all possible executions. Informally, these variables are

given a strictly ordered and predefined sequence of values.

STAT also defines a static analysis for identifying when these

variables are available.

Consider the simple program in Fig. 5a. This program

contains two loops, one that iterates over a fixed range of



1 for i in range(3):
2 process_int(i)
3 for node in linkedList:
4 process_node(node)

Possible Calls to
process_int() and process_node():
〈(1, i 7→ 0)→ (2, process_int)〉
〈(1, i 7→ 1)→ (2, process_int)〉
〈(1, i 7→ 2)→ (2, process_int)〉
〈(4, process_node)〉
〈(4, process_node)〉

(a) (b)

Fig. 5. Example of using STAT to identify EPIDs at the calls to process_int()
and process_node().

1 while a:
2 . . .
3 if b: break

4 . . .

(d)
Fig. 6. A loop with linear SEI growth.

integers on lines 1 & 2 and another that iterates over a linked

list on lines 3 & 4. Suppose that the linked list contains

two elements. The EPIDs computed by STAT for each call

to process_int() or process_node() are shown in Fig. 5b. For the

first loop, STAT is able to identify that i is a LOV, so its value

inside the loop is extracted and included in the EPID of each

function call. This makes the EPID for each call to process_int()

unique. However, for the second loop, there is no LOV, as the

loop iterates over a linked list. As a result, the EPID contains

only the call to process_node(), and the EPIDs are ambiguous.

In contrast to previous techniques, STAT does not require

program instrumentation and thus does not induce additional

overhead on an analyzed application. However, it can only

extract an EPID at a location where the program produced

a core dump, e.g. a crashing failure. In practice, this meant

that STAT was strictly a post-mortem technique; it could not

produce EPIDs on the fly as a program was executing. While

this limitation can be worked around by explicitly producing

core dumps, both the runtime and space overhead of producing

core dumps can be prohibitive. Also note that STAT makes

use of static analysis for identifying the LOVs whose values

it captures. Performing this analysis precisely requires access

to the CFG and variable information available at compile time,

but it can also be approximated through binary static analysis,

thus avoiding the need for any compile time information.

E. Lightweight Execution Indexing

While SEI offers an approach for computing EPIDs online at

runtime, the potential overhead can cause scalability problems

and interfere with the program being analyzed. This occurs

when loops have multiple guarded exits. Consider the loop

in Fig. 6. SEI pushes a token onto the stack every time

lines 1 or 3 execute because they branch the control flow,

but those tokens will not be popped off the stack until the

loop finishes because the branches are postdominated by a

statement outside the loop. In order to avoid the overhead of

SEI, some analyses instead use information about the number

of times an instruction has been seen within a particular calling

context, a particular function invocation, or invocations at a

certain depth of the call stack [30], [31]. A canonical example

of this is Lightweight Execution Indexing (LEI), which was

used to identify allocated objects in order to help expose

potential deadlocks in concurrent Java programs [30].

The approach of LEI is to maintain a counter for each depth

of the call stack. This counter keeps track of how many times

a particular method has been called at that depth. For instance,

the first time that the method foo() is called at a depth of 3 on

the stack, its hit counter for the depth 3 is 0. The next time

it is called at the depth of 3 on the stack, its hit counter for

that depth is 1. The counter for each method at each depth is

maintained independently. The LEI for a given execution point

then comprises the current calling context along with the hit

counts of every call site within the context as well as the hit

count and identity of the currently executing statement.

This approach bounds the size of the an EPID to twice the

size of the calling context. In addition, it maintains a notion

of forward progress through depth counters, and this notion of

progress is structured by the call stack. As a result, each EPID

is unique and unambiguous within one particular execution.

Unfortunately, exactly as with SIC, the values of counters

seen in one execution have no guaranteed relationship with

the counters seen in other executions. As a result, Lightweight

execution indexing can provide EPIDs within one execution,

but it cannot provide meaningful EPIDs across executions.

Also similar to SIC, LEI does not inherently require that a

program be analyzed or rewritten at compile time. The coun-

ters associated with each function and statement of interest at

every depth of the call stack can be entirely constructed using

dynamic instrumentation without a need for prior planning.

III. Precise Execution Point IDs

Dynamic analyses comparing multiple executions are in-

creasingly common [1], [6], [12], so having a robust, efficient

EPID technique that works across executions is important.

Such inter-execution techniques create EPIDs that are only

equal when their corresponding execution points are equiva-

lent. Prior work has called this the execution correspondence

criterion [13]. In spite of this problem’s importance, we see

that there are only two existing techniques that can provide

EPIDs across executions: SEI and STAT. Both techniques have

limitations that can prevent them from being practical or useful

for particular dynamic analyses. In particular, we desire an

inter-execution EPID technique that is:

• Online - An analysis should be able to construct the EPID

for the current point in the execution and as often over

the lifetime of an execution as necessary.

• Low Overhead - An execution running with an EPID

technique should require as little additional runtime and

memory as possible.

• Scalable - Neither the duration of an execution nor the

size of its workload should significantly affect the runtime

or space requirements of the EPID technique.

• Unambiguous - Every instruction or statement within an

execution should have a unique EPID.

• Comprehensive - As a dual to satisfying the execu-

tion correspondence criterion, equivalent execution points

should also yield equal EPIDs.

Neither SEI nor STAT is able to satisfy all of these require-

ments. SEI is not low overhead, scalable, or comprehensive,



1 def action(x):
2 print(x)
3
4 def main():
5 while notDone:
6 . . .

7 action(x)
8 action(x)

def main():
while notDone:
. . .

action(x)

action(x)

print(x)

print(x)

if notDone:
. . .

action(x)

if notDone:
. . .

action(x)

if notDone:
. . .

print(x)

if notDone:
. . .

action(x)

if notDone:
. . .

print(x)

if notDone:
. . .

def main():

action(x)

print(x)

(a) (b) (c)
Fig. 7. (a) A small program. (b) The program with calls logically inlined.
(c) The program with calls inlined and loops unrolled.

and STAT is not online, unambiguous, or comprehensive. In

this section, we introduce a new EPID technique, Precise

Execution Point IDs (PEPID), that targets all of these criteria.

We start by building an intuition about which points should cor-

respond across executions in order to provide unambiguity and

comprehensiveness. We then devise a technique for computing

EPIDs that produces this correspondence efficiently online.

A. Which Points Correspond?

Because we desire an inter-execution EPID technique, we

must first decide which execution points should correspond

or align across executions. The intuition used by SEI was

that the path taken by an execution helped to determine

which execution points were equivalent, and SEI used control

dependence to codify this relationship. STAT, in contrast, used

the intuition that loop control variables captured a notion of

forward progress through the loop iterations of an execution.

But, as we saw before, control dependence prevents com-

prehensiveness, and focusing on loop control variables leads

to ambiguity. In contrast, we base PEPID on the idea that

execution points at the same position in a sufficiently inlined

and unrolled CFG are equivalent.

Consider a simple program with an acyclic CFG and no

function calls. Each instruction inside the program can be

executed at most once, so an instruction’s position within

the CFG can unambiguously identify the instruction within

an execution. In addition, the same instruction will trivially

have the same EPID across all possible executions, thus

guaranteeing comprehensiveness. Unfortunately, this model is

unrealistic in general; real programs have both function calls

and back edges in their CFGs, both of which can cause

instructions to execute more than once and thus introduce

ambiguity. However, we can extend the intuition of equivalent

points in the CFG to handle those cases as well.

First, consider programs that also include function calls. A

function may be called from multiple locations, thus executing

its body multiple times and making the CFG location an

ambiguous EPID. A simple solution to this in most cases

would be to inline every function call. If every call were

inlined, then function bodies would be duplicated at every

call site, once again ensuring uniqueness. Thus, the position

of an instruction within this fully inlined CFG serves as an

unambiguous EPID (ignoring loops). This can be seen in

Fig. 7a-b. This simple program makes calls to action() both

inside and outside of the loop. Using the position in the CFG

alone would make these calls to print() on line 2 ambiguous,

however, once action() is inlined, the calls from inside the loop

are clearly distinguished from those outside of the loop. Of

course, this cannot be done in practice because (1) recursive

calls would require an undecidable degree of inlining and (2)

inlining every function call would simply increase a program’s

size too much to be pragmatic. However, we only need

to perform this operation logically for now. We shall later

show that the same correspondence can be computed without

actually inlining any functions at all.

Next, we must handle back edges in the CFGs of a pro-

gram’s functions. Back edges create loops or general cycles

in a CFG and can thus cause instructions to execute multiple

times, again making an instruction’s position in the CFG

ambiguous as an EPID. One approach used by bounded model

checkers is to unroll the loops of a program [32], [33]. Each

iteration of a loop is peeled of into the guarded body of an

if statement, and each successive iteration is nested within

the body of the preceding iteration. Fig. 7c illustrates this

unrolling in combination with the inlining of function calls.

Again, unrolling a loop sufficiently for all executions is not

possible in practice, but we shall show that this limitation is

irrelevant in the next section.

Using this combination of unrolling and inlining, we are

able to define how execution points relate across executions:

Definition 1 (Alignment): Given two execution points, p1

and p2 from executions e1 and e2 of program p respectively,

let G be CFG of p sufficiently unrolled and inlined to contain

both execution points. Points e1 and e2 align iff they occur at

the same instruction in G.

This alignment of execution points determines exactly

which points are equivalent and must have equal EPIDs

even across different executions. Observe, in this transformed

program G, execution points p1 and p2 can each be per-

formed at most once in any execution, as guaranteed by

the acyclic structure of the unrolled and inlined CFG. Thus,

the transformed program guarantees that the position in the

control flow graph of the program provides an unambiguous

EPID, and the control flow graph correspondence maintains

comprehensiveness as before. This means that PEPID avoids

the problems with SEI presented in Fig. 4 and Fig. 6.

B. Efficiently Computing PEPIDs

As discussed in the last section, inlining all function calls

and unrolling all loops is impractical and even undecidable

in general, so we must compute this equivalence another way.

Instead of actually performing these program transformations,

PEPID executes the original program without any extra inlin-

ing or unrolling but at the same time keeps track of the inlining

and unrolling operations that would have occurred in order to

identify the current execution point. We keep track of these



Instrument(P)
Input: A program P

for each loop l in P do

insert pushLoopCounter before the loop header of l

insert incrementLoopCounter before loop latches of l

insert popLoopCounter on loop exits of l.
for each call c in P do

insert pushCallSiteID before c

insert popCallSiteID after c

Fig. 8. Instrument takes in a program P and modifies it to maintain a PEPID
online. This is the unoptimized instrumentation.

operations on an ID stack, similar to those used in SEI and

STAT. This stack is then what PEPID uses to produce EPIDs.

In particular, we push an entry onto the stack to identify the

call site of every function invocation, popping it as the function

returns (or unwinds for exceptional control flow). This tracks

the inlining operations for all function invocations. We also

need to track all unrolling operations for backedges. We first

consider only natural loops, loops with a single entry node or

loop header, but we extend this to irreducible loops in the next

section. We compactly record the unrolling of natural loops by

pushing a counter for the loop upon loop entry and popping

the counter upon loop exit. We increment the counter upon

every iteration of the loop by instrumenting the loop latches,

or the edges in the CFG that lead back to the loop header. The

stack also naturally handles nested loops.

Fig. 8 shows a naïve instrumentation algorithm for PEPID.

It does not cover exceptional control flow, but we handle

exceptions by saving the ID stack height before a call that

might throw an exception and pruning the stack to that height

if an exception was thrown. Note that the entries in the stack

related to inlining and the entries related to unrolling may be

maintained independently because they can be unambiguously

recombined. This stems from the fact that, given an instruction

i, the number of static loops containing i may be readily

identified. As a result, a PEPID can be broken down into (1)

the inlining ID stack, (2) the unrolling ID stack, and (3) the

current instruction ID. Observe, though, the inlining ID stack is

precisely equal to the calling context! PCCE already provides

a means of encoding the calling context that is more efficient

than explicitly pushing and popping at each call site, so we

can exploit this to make PEPID computation more efficient.

At any point during the execution, a dynamic analysis can

call getCurrentPEPID() to yield an EPID of the form:

〈PCCE context, unrolling ID stack, current instruction〉

This tuple comprises an EPID that provides comprehensive-

ness and uniqueness based on the prior construction.

Like SEI and STAT, PEPID requires compile-time knowl-

edge about a program. Efficiently computing PCCE calling

contexts requires the call graph, and the unrolling stack

requires loops to be identified. For programs with only natural

loops, PEPIDs are compact. The PCCE context is bounded in

size by the calling context depth, and the loop unrolling stack

is bounded by the number of nested loops that may be active

at one time. We show in Section V that this instrumentation

scheme allows PEPID to scale with low overhead.
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Fig. 9. (a) A natural loop. (b-c) Irreducible loops.

C. Handling Irreducible Loops

Counting iterations is effective for natural loops, which have

a unique headers or entry nodes. In that context, unrolling

loops is well defined and corresponds to actions upon the

unrolling ID stack. Programs can also have unnatural or

irreducible loops, which have multiple entry points. Indeed,

half the SPEC CINT2006 benchmarks have such loops. Fig. 9

shows some natural and unnatural loops. With multiple head-

ers, distinguishing a loop body from a nested loop is difficult.

We use Steensgaard’s generalized loop forest recognition to

identify irreducible loops and their bodies [34]1. Both (b) and

(c) are individual (irreducible) loops under this approach with

headers B and D for (b) and B, C, and D for (c).

Sometimes, using an iteration counter can still work for

irreducible loops. Given a loop, if there exists a header h of

the loop such that every path from each header h′ through the

loop body back to h′ must pass through h, then we say that

the header h naturalizes the loop. This is because there exists

a traversal of the CFG such that every backedge in the loop

has h as its destination. Thus, we can use a counter as before

and simply increment it on every loop edge that targets h. An

alternative intuition is that breaking only edges to h would

destroy all cycles in the loop, so a counter incremented on

h will uniquely identify instances of this acyclic subregion.

Node B in loop (b) is one such naturalizing header. Note

that this is just a generalization of natural loops, where the

unique header always naturalizes the loop body. We identify

naturalizing headers using simple static analysis.

Without a naturalizing header, edges to multiple headers

must increment the counter to avoid ambiguity. Conservatively,

all headers may need to increment. This can yield unintuitive

results. For example, the path ABDCDCDC in loop (c) would

have the EPID 〈Entry, {6},C〉 if edges to header nodes incre-

ment the loop counter, but so would the path ABCBCBDC.

Here, Entry is the calling context, and {6} is the unrolling ID

stack. Technically, there exists an unrolling of (c) that produces

these IDs, but it is unclear how meaningful this is in practice.

Alternatively, we can use the same approach as SEI for only

this small portion of the program. We push the IDs of predi-

cates in the loop that the headers are control dependent upon

and pop them upon their postdominators. This produces the

EPIDs 〈Entry, {(B, E)(D, E)(C, E)(D, E)(C, E)(D, E)},C〉 and

〈Entry, {(B, E)(C, E)(C, E)(C, E)(B, E)(D, E)},C〉, which show

the different paths. Both approaches produce unambiguous

inter-execution EPIDs. They merely use different approaches

for unrolling degenerate irreducible loops. In fact, an analysis

can correctly select either. If overhead is more important,

1Steensgaard’s approach is preferable to other loop extraction techniques in
that it produces consistent results regardless of how a CFG is traversed [35].



incrementing on edges to all headers is preferable. If disam-

biguating paths through these loops is important, then using

the localized pushing and popping from SEI is preferable.

IV. Analytical Comparison

In this section, we examine some of the analytical properties

of the different techniques surveyed and how they impact

which techniques are preferable in different situations. Fig. I

summarizes the results, and we discuss them in detail below.

Availability- Many dynamic analyses require that EPIDs be

available online, e.g. for identifying events like allocation or

synchronization during an execution. Most of the techniques

provide EPIDs online, although STAT does not. However, for

analyses that are interested in execution points at the point a

program crashes, STAT can still be a useful choice because it

alone avoids the need for any program instrumentation.

Requirements & Instrumentation- The requirements and

time of instrumentation for the techniques can sometimes

create more work for analyses or developers that depend on

EPIDs. For example, STAT places the lowest instrumentation

burden on users and client analyses because it does not modify

the underlying program. As a result, it is easy for STAT to be

used with an already compiled program. Because it imposes

no overhead, it could even be used on deployed software.

Techniques like SIC and LEI that use local counters can be

implemented using runtime instrumentation alone, so they also

impose little burden on users, but they may not be appropriate

for deployed software. Finally, the remaining techniques all

require that programs are recompiled with additional static

instrumentation. This requires the most work and planning on

the part of the developer or client analysis.

Independent of instrumentation, the techniques can also re-

quire additional source level information to be precise. PCCE,

SEI, and PEPID all require additional compilation information,

which is expected since they also require static instrumentation.

However, STAT also requires some compile time information

in order to identify LOVs. This requirement holds in spite of

the fact that STAT performs no instrumentation.

Ambiguousness& inter-execution IDs- Ambiguous EPIDs

do not necessarily confer much information about where an

execution point occurs temporally. Thus, ambiguous tech-

niques may be useful for attaching a lightweight notion of

local execution context to an execution point, but they cannot

be used for more fine grained execution comparison based

techniques [6]. Note, though, that while both PCCE and STAT

are listed as ambiguous, STAT is unambiguous for programs

in which all loops have identifiable LOVs (hence the ‘*’ in

the table).

The major differentiating feature of inter-execution tech-

niques is that they are able to align loop iterations across

different executions. As a result, techniques that do not track

the progress through each loop independently are unable to

provide inter-execution IDs. This effectively leaves only SEI

and PEPID as viable techniques for analyses requiring such

EPIDs. Note, however, that STAT can also provide this under

the same assumptions of LOVs as before (*).

Comprehensiveness- One of the large limitations of SEI

was that it was not comprehensive. While its EPIDs always

established a correspondence across executions, it also created

different EPIDs for execution points that did correspond (see

Fig. 4). Note, for programs with LOVs (*), STAT actually is

comprehensive. However, in contrast to both, PEPID provides

comprehensive inter-execution EPIDs in general, making it a

preferable choice when instrumentation is possible.

Ordering- Some analyses require that EPIDs be ordered.

For example, record and replay techniques require that EPIDs

be ordered within one execution (intra) [8]. Some analyses

require stricter orders, where EPIDs are partially ordered

even across executions (inter) [1], [6], [14]. Most of the

techniques are able to provide intra-execution ordering among

EPIDs, except for calling contexts with PCCE. SEI, STAT,

and PEPID provide stronger inter-execution ordering as well

through happens-before relationships among their EPIDs [36].

Space overhead- The size of EPIDs is also an important

concern. The required space ranges from none or a constant

word, STAT and SIC respectively, to proportional to the length

of an execution in the worst case for SEI. All other techniques,

however, have EPIDs that grow roughly proportional to the

size of the call stack. We examine later how the sizes of the

EPIDs produced by these techniques compare in practice.

V. Empirical Evaluation

In order to compare these different EPID techniques in

practice, we implemented all of them using LLVM 3.2 as

a program instrumentation platform and compared them on

the SPEC CINT2006 benchmarks. The implementations cover

all basic program behavior covered by these benchmarks,

including exceptional control flow. In this section, we look

closely at the compile time properties as well as the runtime

and space overheads induced by these techniques. We conclude

by looking at a particular case study that illustrates why

comprehensiveness is important in practice.

Note that neither the runtime nor space overhead com-

parisons include STAT. This is because STAT performs no

instrumentation and thus has no overhead. However, the ef-

fectiveness of STAT depends heavily on the ability to produce

core dumps and identify LOVs. To gauge whether or not these

variables can be found in practice, we compiled the SPEC

benchmarks and counted the total number of static loops as

well as the number of static loops for which a LOV could be

identified. Fig. II contains the results.

Overall, a median of 34% of loops had identifiable LOVs

across the different benchmarks, and 31% of all loops had

such variables. This indicates that relying on LOVs may

not be practical in general. However, STAT was originally

designed for analyzing high performance computing programs.

For programs in that domain, the structure of the programs

may make relying on LOVs practical [14].

A. Runtime Efficiency

For each of the techniques except STAT, we ran the SPEC

CINT2006 benchmarks using ‘reference’ workloads 5 times



TABLE I
Analytical properties of the different EPID techniques.

Properties PCCE SIC SEI STAT LEI PEPID

Availability online online online offline online online

Requirements Call Graph None
Control Dependence

Loops
Loop Order

Variables
None

Call Graph
Loops

Instrumentation static dynamic static none dynamic static

Ambiguous yes no no yes* no no

Inter-execution no no yes no* no yes

Comprehensive no no no no* no yes

Ordering none intra inter inter intra inter

Space Overhead O(call stack) O(1) O(path length) none O(call stack) O(call stack + unrolling stack)

TABLE II
LOV identification for SPEC CINT2006.

Program # Loops # LOVs % with LOVs

400.perlbench 2151 251 12%

401.bzip2 324 80 25%

403.gcc 7344 1816 25%

429.mcf 57 8 14%

445.gobmk 1444 1090 75%

456.hmmer 425 218 51%

458.sjeng 364 140 38%

462.libquantum 78 60 77%

464.h264ref 1526 1192 78%

471.omnetpp 913 280 31%

473.astar 101 65 64%

483.xalancbmk 8637 1938 22%

total 23364 7138 31%

and computed the median and 95% confidence interval for the

mean. We ran all experiments on a 64-bit Intel i5 machine with

8GB RAM running Ubuntu 13.04. Fig. 10 presents the normal-

ized median of each technique compared to uninstrumented

trials of the benchmark suite. We also present the geometric

means of the normalized results for each technique. Error bars

indicate the 95% confidence intervals of the means.

PCCE and SIC usually have the lowest overhead on average,

8% and 9% respectively. The next closest is PEPID with 25%,

then LEI with 70% and SEI with 314%. We immediately see

that in comparison to the other inter-execution technique, SEI,

PEPID consistently produces lower overhead. The original

SEI paper produced overhead near 42% on average, which

differs the results we find. While we used clang, SEI used

Diablo/FIT with link time optimization [37], yielding op-

timization differences. The original evaluation of SEI also

used SPEC CPU95 and CPU2000 benchmarks with smaller

workloads than those present in the 2006 benchmarks. When

we used the ‘test’ workload, the smallest that SPEC provides,

SEI improved to 90% overhead. This illustrates that scalability

was indeed a problem for SEI. One of the benchmarks, 471.om-

netpp, would not even run using SEI on the reference workload

because the stack used for EPIDs consumed all memory and

crashed the program before completion. In contrast, PEPID’s

overhead was always closer to SIC and PCCE, in spite of the

fact that it provides a more informative form of EPID.

We also note that the original PCCE paper reports overhead

closer to 3%. The work used profile guided instrumentation

to achieve low runtime overhead, but we did not use profile

guided instrumentation in our LLVM based implementation.

Also, while we used clang to compile programs, PCCE used

gcc, which optimizes programs differently. This does not

TABLE III
Worst case memory overhead of EPID techniques.

Program PCCE SIC SEI STAT LEI PEPID

400.perlbench 197KiB 8B 59.8MiB 0 110KiB 262KiB

401.bzip2 8B 8B 238MiB 0 5KiB 112B

403.gcc 165KiB 8B 885MiB 0 1.1MiB 496KiB

429.mcf 232B 8B 626MiB 0 5.3KiB 488B

445.gobmk 2.7KiB 8B 16.3MiB 0 126KiB 5.4KiB

456.hmmer 32B 8B 255KiB 0 6.1KiB 96B

458.sjeng 368B 8B 21.3KiB 0 20.4KiB 856B

462.libquantum 8B 8B 40MiB 0 5.2KiB 48B

464.h264ref 24B 8B 121KiB 0 9.7KiB 168B

471.omnetpp 1.9KiB 8B >7GiB 0 22.4KiB 1.9KiB

473.astar 8B 8B 1.3MiB 0 5.6KiB 64B

483.xalancbmk 246KiB 8B 2.86GiB 0 12.6MiB 431KiB

mean 51.1KiB 8B 436MiB 0 1.2MiB 99.9KiB

affect our comparison because all techniques in this paper

were compiled using clang. In addition, using profile guided

optimizations for PCCE would just strengthen the results of

PEPID, since PEPID relies on PCCE as a subtask.

B. Space Overhead

Maintaining the current EPID consumes memory for each

technique except STAT. Table III lists the maximum memory

overhead for each benchmark and technique as well as the

mean across all benchmarks. SIC and STAT require a single

word or no overhead, respectively, which may be preferable

if memory must be conserved. Even though PCCE compactly

encodes the calling context, it still takes 51.1KiB on average

because some benchmarks have deeply nested calls. For in-

stance, 403.gcc has a maximum depth of 21100 calls. Profile

guided instrumentation can help reduce this. However, even the

worst case overhead of PEPID, which uses PCCE, is relatively

low, around 100 KiB on average. It is almost always smaller

than LEI and is orders of magnitude smaller than SEI in spite

of its precision. This makes PEPID a preferable technique for

analyses needing inter-execution EPIDs.

C. Client Impact

We now show how a comprehensive technique like PEPID

is preferred over a non-comprehensive technique like SEI for

a particular dynamic analysis. We consider an analysis known

as dual slicing. Dual slicing is a backward slicing technique

that contrasts two executions [6]. Instead of including all

backward dependences for a slice criterion, it includes only

those dependences that either (1) exist in only one of the

executions or (2) exist in both executions but define different

values. In this way, dual slicing produces explanations for

why two executions differ, which can be useful for debugging
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1 x = input()
2 . . .
3 if a || b:
4 print(x)

x = 5
. . .

if True || . . .:
print(5)

x = 3
. . .

if False || True:
print(3)

(a) (b) (c)

1

3a

3b

4

. . . . . . . . . 1

3a

3b

4
(d) (e)

Fig. 11. (a) A program that can lead to bad dual slices using SEI. (b) A trace
where a is True. (c) A trace where b is True. (d) A dual slice using SEI. (e)
A dual slice using PEPID.

[6] or for security analysis [12]. Backward slicing techniques

traditionally include too many dependences to be practical

[38], so dual slicing is particularly useful because it prunes

away irrelevant dependences as it contrasts two executions.

EPID techniques like SEI form the foundation of dual

slicing. EPIDs determine whether a dependence in one execu-

tion exists in another. Unfortunately, when noncomprehensive

EPIDs are used, they can include unnecessary dependences in

the slice, defeating one of the main goals of the technique.

Consider the program in Fig. 11a. This program reads an

integer x from the user and prints it if either a or b is True.

Suppose there are two different executions of the program, one

where the program prints 5, and the other prints 3 as shown in

Fig. 11b-c. Note that a is True in one execution, but only b is

True in the other. This matches the case we considered earlier

in Section II-C, meaning that the print statements in the two

executions have different EPIDs under SEI. Because the EPIDs

differ, dual slicing considers them different statements and also

includes their control dependences. The dual slice includes the

different values of a and b via control dependence, even though

they do not actually affect the output differences. These irrele-

vant dependences get in the way and impede the user’s ability

to understand why the executions printed different numbers

as shown in Fig. 11d. Here, the arrows denote dependences

in the dual slice. In contrast, a comprehensive technique like

PEPID is able to identify that the print statements occur at

the same execution point and identify that the differing user

input for x caused the different output. Fig. 11e shows the dual

slice when using PEPID and clearly identifies how the input

difference directly caused the output difference.

VI. RelatedWork

We examined several approaches from literature that com-

pute EPIDs for dynamic analyses [13]–[15], [24], [30]. Each

of these techniques has been used to solve real problems in

dynamic analysis ranging from informing replay techniques

[8] to fine-grained execution comparison [6]. The comparison

of these techniques along with our new EPID computation

technique, PEPID, is one of the core contributions of this work.

In developing PEPID, we based our system around the

notion that the position within an unwound and unrolled CFG

provides a notion of identity for execution points. This was

inspired in part by bounded model checking [33], but model

checkers do not need to consider the alternative high-level

semantics for unrolling degenerate irreducible loops. Similar

notions of identifying execution points also exist within static

analysis, where k-CFA provides a statically bounded approxi-

mation of execution points using a similar intuition [39].

VII. Conclusion

In this paper, we examined several techniques for computing

execution point IDs (EPIDs) and considered their strengths,

weaknesses, and limitations. To address limitations of inter-

execution EPIDs, we introduced a new technique, PEPID, that

is able to comprehensively compute inter-execution EPIDs

with significantly less space and runtime overhead than ex-

isting techniques. PEPID also produces more meaningful

relationships between EPIDs in different executions. Finally,

we show that establishing these meaningful relationships is

useful in the context of real world dynamic analyses.
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