Divide-and-Approximate: A Novel Constraint

Push Strategy for Iceberg Cube Mining

Ke Wang, Yuelong Jiang, Jeffrey Xu Yu, Guozhu Dong, Jiawei Han

The work was supported in part by the Natural Sciences and Engineering Research Council of Canada, Networks of Centres
of Excellence/Institute for Robotic and Intelligent Systems, and the Research Grants Council of the Hong Kong Special
Administrative Region, China (CUHK4229/01E)

Ke Wang (wangk@cs.sfu.ca) and Yuelong Jiang (yjiang@cs.sfu.ca) are associated with Simon Fraser University. Jeffrey Xu
Yu (yu@se.cuhk.edu.hk) is associated with the Chinese University of Hong Kong. Guozhu Dong (gdong@cs.wright.edu) is
associated with Wright State University. Jiawei Han (hanj@cs.uiuc.edu) is associated with University of lllinois at Urbana-

Champaign.

DRAFT

Abstract

Theiceberg cube miningomputes all cells, corresponding to GROUP BY partitions, that satisfy
a given constraint on aggregated behaviors of the tuples in a GROUP BY partition. The number of
cells often is so large that the result cannot be realistically searched without pushing the constraint
into the search. Previous works have pushat-monotoneand monotoneconstraints. However, many
useful constraints are neither anti-monotone nor monotone. We consider a general cggseghte
constraintsof the form f(v)fo, where f is an arithmetic function of SQL-like aggregates &hi$ one
of <, <,>,>. We propose a novel pushing technique, calidide-and-Approximateto push such
constraints. The idea is to recursivalijvide the search space arapproximatethe given constraint
using anti-monotone or monotone constraints in subspaces. This technique applies to a class called
separable constraints, which properly contains all constraints built by an arithmetic furictbmll

SQL aggregates.

Index Terms

Aggregate constraint, constrained data mining, data cube, iceberg cube mining, iceberg query.

. INTRODUCTION

Decision support systems, which rapidly gain competitive advantage for businesses, make
heavy use of aggregations for identifying trends. Tibeberg query introduced in [8], per-
forms an aggregate function over a specified dimension list and then eliminates aggregate
values below some specified threshold. The prototypical iceberg query based on a relation
R(targetl,- - targetk,rest) and a threshold” is as follows:

SELECT targetl, ..., targetk, count(rest)
FROM R

WHERE ...

GROUP BY targetl, ..., targetk

HAVING count(restpT

This query partitions the tuples according to the GROUP BY list and produces one row for each
partition with count(rest) above the threshold'. In iceberg cube miningthe user specifies a
constraint in the HAVING clause, but not the GROUP BY list, and wants to find the result for
all GROUP BY lists. Acell specifies one GROUP BY partition. On a relation R(Product, Store,
Year, rest), for example, the cdllCoyota, Vancouver} specifies a partition for the GROUP BY

list “Product, Store”.{Toyota,Vancouver,2000} and {Toyota} are a siper-cell and sub-cell

of {Toyota, Vancouver}, respectively. lceberg cube mining aims to compute all the cells for
the eight GROUP BY lists over Product, Store, Year, returning those satisfying the constraint in
the HAVING clause.

Performing one iceberg query per GROUP BY list does not share the work in different queries.
Computing the full cube then discarding unsatisfying cells suffers from the fact that the full cube
is too large to be realistically computed. Materializing “views” for efficient computation is useful
only if all the constraints are known in advance. A promising approach is “pushing” a given
constraint so that only likely satisfying cells are computed. Previous works have pashed
monotoneconstraints [5], [2] andnonotoneconstraints [13]. In an anti-monotone constraint, if
a cell fails the constraint, so does every super-cell; in a monotone constraint, if a cell satisfies
the constraint, so does every super-cell. These properties provide a natural pruning opportunity.

However, anti-monotonicity or monotonicity like these are undesirable for two reasons. On one
hand, anti-monotonicity and monotonicity are too loose as a pruning strategy. Both properties
impose an exponential lower bound on the result size because all super-cells of a failed or
satisfying cell also fail or satisfy. A result of such size is neither efficient to compute nor easy

to be comprehended by for a human user. On the other hand, both properties are too restricted

3

as an interestingness criterion. For exampleyn(v) > o, avg(v) > o andvar(v) < o are
neither anti-monotone nor monotone, but are useful for extracting patterns capturing minimum
(average) profit with a small variance.

We consider the problem of pushiraggregate constraint®f the form f(v)fo in iceberg
cube mining.f is an arithmetic function of SQL-like aggregatésjs a comparison operator,
o is a threshold, ana is a cell-valued variable. As we will showgar(v) < ¢ is in this form,
wherevar(v) computes the variance of the measure for the tuples that match the Peishing
an aggregate constraint presents a significant challenge because even if a cell fails or satisfies
the constraint, its super-cells still need to be examined. We like to answer two questions. First,
if a constraintf(v)fc is not anti-monotone or monotone, can it be pushed into iceberg cube
mining? Second, is there a principled method that is independent of the specific fgfmldiis
independence is essential because the user-spe¢ifisdunknown in advance. Two thoughts
underpin our study.

Divide-and-Approximate. If the given constrainf is neither anti-monotone nor monotone, we
can “approximate” it by some weaker or stronger constr@irthat has such monotonicities. For
example, we can approximafeby a weaker anti-monotone constraiiit if a cell fails C’, all its
super-cells fail’’, therefore, fail the stronget. Note that cells satisfying’ may still fail C. The
effectiveness thus depends on finding strongésb minimize such false positives. To address
this issue, we divide the search space into subspaces and seek for individual approximation
in each subspace. By recursively applying this strategy to subspaces, the approximation in a
subspace approaches the given constraint. This strategy is Ealletk-and-Approximate

Separable monotonicities The above strategy applies to a class cafleparable constraints

In a separable constrainf(v)fc, the occurrences of aggregatesfirtan be separated into two

groups, AT andA~, that affectf in the opposite way: as a cellgrows, f monotonically increases

via those inA* and monotonically decreases via thosedin. For example, lepsum andnsum

be the sum of positive and negative measut#s,= {psum(v)} and A* = {nsum(v)} for
psum(v)—nsum(v) > o. Therefore, by holding variablesat the maximum cell or the minimum

cell for either A" or A~, we are able to construct four types of approximation: weaker anti-
monotone, weaker monotone, stronger anti-monotone, and stronger monotone, to prune the search
of failed cells, the search of satisfying cells, or both. The details will be presented shortly. In
the case that only the minimum support is given, pruning satisfying sub-cells amounts to mining
maximal frequent cells in the literature [3], [6].

We review related work in Section Il and define the problem in Section Ill. In Section IV, we
present the Divide-and-Approximate strategy and show that it applies to separable constraints.
In Section V and Section VI, we present an efficient implementation for the four types of
approximations. We evaluate the proposed approach in Section VII. Section VIII extends this

approach to Boolean combinations of aggregate constraints. We then conclude the paper.

II. RELATED WORK

Most works on data cubes focus on efficient computation of full cube [18], [1], view materi-
alization [10], range queries where a constraint occurs in the WHERE clause [11]. These results
cannot be applied because an aggregate constraint is specified for a cell through the HAVING
clause and is unknown at the time of view materialization. The full cube is often too large
compared to the result satisfying the aggregate constraint.

This study is related to the works on constrained data mining [5], [13], [9], [14], [4], [16], [15],
[17]. Those techniques are specific to pre-determined constraints, namely, item constraints [15],
minimum confidence/improvement [4], succinct constraints [13], convertible constraints [14],

5

minimum average [9], and support constraints [17]. We consider all constraints specified by the
whole language of SQL-like aggregates and arithmetic operators (extended to Boolean operators),
and seek for a specification-independent push strategy. Further, aggregates in traditional rule
mining are “extensional” where the values being aggregated are associated with the items in
We consider “intensional” aggregates where the values being aggregated are associated with the
tuples that match the items in Techniques for the former, such as for the extensiana(v)

in [14], are not always applicable to the latter.

[1l. | CEBERGCUBE MINING

A database is a relational tablewith some columns calledimensionsD; and some columns

calledmeasuresV/;. A cell is a set of valuesy;, - - - d;,, over some GROUP BY lisD;, --- D, ,

T
and defines the GROUP BY partition consisting of the tuples matcliing - d;,. SAT(c) de-
notes the GROUP BY partition defined by a eelFor exampleg = {Toyota, V ancouver, 2003}
is a cell on the GROUP BY list “Product, Store, Year”, ahdT'(c) is the set of tuples containing
all the values ine. ¢ = {Toyota, Vancouver, 2003} is a super-cell of’ = {Toyota, Vancouver},
in which caseSAT'(c) must be a subset FAT (). avg(c), min(c), maz(c), sum(c) compute
the average, minimum, maximum, sum of some measure of the tupfediiic), andcount(c)
computes the number of tuples BAT(c). ssum(c), psum(c),nsum(c) compute the sum of
square, positive sum and (unsigned) negative sum, respectiyelyneans holding the variable
v at the celle.

Definition 3.1 (Constraints)A (aggregate) constrainf has the formf(v)fo. f(v) is a func-
tion of cell-valued variable), defined by aggregates, arithmetic operaters-, x, /, and con-
stants.f is one of<, <, > >. o is a real. A cellc satisfiesa constraintC if applying v/c to

C evaluates to true; otherwisefails C. CUBE(C) denotes the set of cells that satigfyC is

6

weaker tharC’ if CUBE(C') C CUBE(C).]
Example 3.1:Let d;, d; be values on dimensioR; and letv be a cell-valued variable.U{d,}

(resp.vU{d}}) denotes the variable for the cells obtained by unioning the dimension valwes in

andd;. count(v U {d;})/count(v) > o specifiesassociation rulesv — d;, above the minimum

confidencer [2]. count(vU{d;})/count(vU{d;}) > o specifieeemerging patterns with respect

to the two partitions specified by two cells and d; [7]. var(v) < o specifies the maximum

variance constraint, where

Sies AT (v) (Mt —avg(v))?
count(v) '

var(v) =

M]t] denotes the measure of tupleBy rewriting and substituting, we have

ssum(v)—2sum(v)avg(v)+avg(v)2count(v)
count(v))

var(v) =

In all examples, an optional minimum support can be specified separately. |

Definition 3.2 (Iceberg cube mining)Given a databasé, a constraintC, and a minimum
supportminsup theiceberg cube miningroblem is to findCU BE(C)ANCU BE(count(v)/|R| >
minsup), i.e., all frequent cells that satisty (| R| denotes the number of tuples).]

We treat the minimum support differently because it is optional and is anti-monotone.

Below, the terms ¢-monotone”/m-monotone” refer to “anti-monotone”/“monotone”, respec-
tively, and “3-monotone” refers to eithed denotes the “complement” of, i.e.,a = m and
m=a.

Definition 3.3 (Monotonicity of constraints® is a-monotoneif whenever a cell is not in
CUBE(C), neither is any super-cel’ is m-monotonef whenever a cell is iICUBE(C), so
is every super-cell. |

Definition 3.4 (Monotonicity of functions)A function z(y) is a-monotonewrt y if = de-

creases whenever grows (for cell-valuedy) or increases (for real-valueg). A function x(y)

is m-monotonewrt y if x increases whenevey grows (for cell-valuedy) or increases (for
real-valuedy).]
psum(v) — nsum(v) is m-monotone wrtpsum(v), a-monotone wrtnsum(v), and is neither
wrt v. The terms &-monotone” and fh-monotone” are overloaded for both constraints and
functions, and are differentiated from the subjects involved.
Observation 3.1:(i) f(v) > o is g-monotone if and only iff (v) is S-monotone wrtv. (ii)
f(v) < o is B-monotone if and only iff (v) is 3-monotone wrtv. n

A similar observation holds fof (v) > o and f(v) < o.

IV. THE PROPOSEDAPPROACH
A. Divide-and-Approximate

If the given constraint is neither-monotone norr-monotone, we can push somenonotone
or m-monotone approximation, called approximator There are four types of approximators:
weakera-monotone approximators, strongemonotone approximators, weakermonotone ap-
proximators, and stronget-monotone approximators, called:-approximatorssa-approximators
wm-~approximatorsand sm-approximators respectively. We use for these approximatorsg
for stronger approximatorsys for weaker approximatorsya for a-monotone approximators,
and am for m-monotone approximators.

If a cell ¢ fails awa-approximator, we can prune the search of super-celldoecause they fail
the given constraint. If a cefl fails awm-approximator we can prune the search of (failed) sub-
cells of c. If a cell ¢ satisfiessa-approximator, we can prune the search of sub-cellslz#cause
they satisfy the given constraint and can be generated directly drdfra cell ¢ satisfies asm-

approximator, we can prune the search of (satisfying) super-cetlsidwever, a satisfying cell

of a wB-approximator may still fail the given constraint, and a failed cell afjaapproximator
may still satisfy the given constraint. Minimizing such “false positives” and “false negatives”
depends on finding strongest3-approximators or weakesti-approximators. To address this
requirement, we seek for local approximators in subspaces. Below, we explain this strategy
using wa-approximators forsum(v) > o in the spaceS = {c | cis a sub-cell ofd; ---d,},
whered, - - - d, is a fixed cell.

First, we rewritesum(v) > o into psum(v) — nsum(v) > o and regarthsum as the “profit”
andnsum as the “cost”Ignoring the “cost” entirely gives the firaba-approximatorpsum(v) >
o. Under-estimatinghe “cost” by the minimum for any cell gives a stronged-approximator,
i.e., psum(v) —nsum(d, - - - d,) > o. That is, if it is so hopeless to pass the threshold even with
the minimum cost, there is no need to consider any super-celliofS. A still better attempt
is to divide S into subspaces; = {dic} and Sy = {c}, wherec is a sub-cell ofd, - - d,,
and usepsum(v) — nsum(dids - - - d,) > o in Sy and psum(v) — nsum(ds - --d,) > o in S.
The latter is stronger than the former. We can apply this strategy recursively amd S; to
obtain increasingly strongepa-approximators in subspaces. We call this stratBgyide-and-

Approximate

B. Separable constraints

To obtain an approximator fof (v)0o, the key is to separate the aggregateg (in) into two
groups,A™ and A~, such that as a cell grows, A* increases the value ¢f, and A~ decreases
the value off. We then can obtain an approximator by holding the variabla one of A"
and A~ at the maximum cell or the minimum cell. Below,™ /c and A~ /¢ mean holding the
variablev in AT and A~ at the cellc.

Example 4.1:Consideravg(v) > o, or written psum/(v) /count1(v) — nsum(v)/count2(v) >

9

o. The two occurrences ebunt are renamed because they have different memberships and
A~. Note that all aggregates now aremonotone wrtv. Let A* = {nsum(v), count1(v)} and
A~ = {psum(v), count2(v)}. avg is a-monotone wrt each aggregate At and ism-monotone
wrt each aggregate id~. Therefore, as grows, avg increases viad*™ by composing twau-
monotone functions, i.equg wrt AT and A™ wrt v, andavg decreases vial~ by composing
onem-monotone function with one-monotone function, i.equg wrt A~ and A~ wrt v. Let¢
and¢ be the minimum and maximum cells. Applying* /¢ gives thewa-approximator:
psum(v)/count1(¢) — nsum(c)/count2(v) > o,
and applyingA~—/c gives thesm-approximator:
psum(c)/countl(v) — nsum(v)/count2(c) > o.
u

To separate the aggregates itdl0 and A~, a requirement is that every aggregate (be
monotone andign-preservedi.e., never change the sign. Imagine whatdfint1 could have
changed the sign: its membership i or A~ would depend on the sign. Below, we rewrite
an aggregate constraint and partition the space to meet these requirements. Firstsaiall,
nsum, count are 3-monotone and sign-preserved, andn andavg can be rewritten into such
aggregates, i.esum = psum—nsume andavg = (psum—nsume)/count. maz andmin can be
rewritten intog-monotone and sign-preserved aggregates: = pos X pmax — (1—pos) x nmin
andmin = neg x nmax + (1 — neg) x pmin, where

« pos(v): return 1 if some tuple il6 AT'(v) has a non-negative measure (including 0), return

0 otherwise.
« neg(v): return 1 if some tuple il AT(v) has a non-positive measure (including 0), return

0 otherwise.

10

« pmazx(v): return the maximum non-negative measureSiaT (v), return O if all measures
in SAT (v) are negative.

« pmin(v): return the minimum non-negative measureSIAT (v), return O if all measures
in SAT (v) are negative.

« nmax(v): return the maximuml/| where M is a non-positive measure AT (v), return
0 if all measures inNSAT(v) are positive.

« nmin(v): return the minimum)| where M is a non-positive measure ifiA7'(v), return

0 if all measures inNSAT(v) are positive.

Note that these new aggregates grmonotone and sign-preserved.

Consider an arithmetic functiofi of sign-preservegi-monotone aggregates. Suppose that
containsk denominators7y, - - -, Z,, that are not sign-preserved.sign-spaceonsists of all cells
c that agree on the sign df;, 1 < i < k. We denote a sign-space by a bitmap - - b, where
b; represents the sign df;, i.e., 1 for “-” and O for “+”. Conceptually, the whole space can be
partitioned into2* sign-spaces, corresponding to thfe bitmaps, such that in each sign-space
no denominator changes the sign. Below is the main result we like to establish.

Theorem 4.1:Consider an arithmetic functiofi of sign-preserveds;-monotone aggregates.
There is a rewritingf’ of f such that in each sign-space, every operanckand / in f’ is
sign-preserved.

Proof: In a sign-space, no denominator pthanges the sign. If an operandofchanges
the sign, it must be an expression -6fand — because each aggregate is sign-preserved. We
can then distribute< over + and — in the expression. This distribution is repeated as long as

an operand ofx changes the sign. [|

11

We say thatf’ in Theorem 4.1 is X, /)-sign-preservedwrt sign-spaces). In a sign-space,
since no operand ok and/ in f’ changes the sign, each aggregate either increases or decreases
f', but not both, as grows. In other wordsf’ is eitherm-monotone or-monotone wrt each
aggregate inf’, while fixing the other aggregates. Therefore, in each sign-spacel thie -
membership of an aggregate jthis well defined.

Definition 4.1 (Separable constraintsffdo is a separable constraintf f is an arithmetic
function of sign-preserved-monotone aggregates. |

In light of Theorem 4.1, we assume that a separable constféinis (x, /)-sign-preserved.

Definition 4.2 A" and A~): Consider a separable constrajfttc and some sign-space. Let
A" and A~ be the partition of aggregates (occurrencesyjmlenoted byf(A*; A~), such that
i) agg(v) is in AT if agg(v) is f-monotone wrtv and if f is S-monotone wrtagg(v) in the
sign-space by fixing other aggregates,digyy(v) is in A~ if agg(v) is f-monotone wrtv and if
f is B-monotone wrtagg(v) in the sign-space by fixing other aggregates. n

In other words,A* contains the aggregategg(v) whose monotonicity wrb is the same as
f wrt agg(v). If we hold A~ at constant,f(v) becomes composing two functions of the same
monotonicity, thusm-monotone wrtv. A~ contains the aggregategg(v) whose monotonicity
wrt v is the complement of wrt agg(v). If we hold A* at constant,f(v) becomes composing
two functions of the complement monotonicity, thusmonotone wrtv.

Corollary 4.1: The following classes are separable constraints, with each (except the first)
generalizing the previous one. (i) All constraints built by arithmetic functions of SQL aggregates
count, sum, avg, max andmsain. (ii) All constraints built by arithmetic functions ebunt, psum,
nsum, pos, neg, pmazx, pmin, nmaz, nmain. (iii) All constraints built by arithmetic functions

of sign-preservedi-monotone aggregates. |

12

1. sum(v)fo 8. sum(v U {d;})/sum(v U {d;})0c

2. avg(v)fo 9. avg(v)/max(v)fo

3. var(v)fo 10. avg(v)/min(v)fo

4. count(vU{d;}) — count(v U {d;})0c | 11.avg(v U {d;})/avg(v)fo

5. count(v U {d;})/count(v)fo 12. avg(v U {d;})/avg(v U {d;})0c

6. count(v U {d;})/count(v U {d;})0c 13. max(v) — avg(v)fo

7. sum(vU {d;}) — sum(v U {d;})0c 14. min(v) — avg(v)fo

TABLE |

SOME SEPARABLE CONSTRAINTS(d;, d; ARE CONSTANTS

The above corollary conveys three points. First, separable constraints include most constraints
arising from real life. Second, the single strategy of Divide-and-Approximate provides a uniform
way to deal with all separable constraints. Third, the notion of separable constraints is open to
the arithmetic functionf and sign-preserved-monotone aggregates if. This flexibility is
essential in real life where constraints are specified by the user and are not known in advance.

The following theorem tells how to computé™ and A~ for ffo, denotedf(A*; A~)fo, in
a given sign-space.

Theorem 4.2:Considerf;(A; A7) and fo(A5 ; Ay). (AT; A7) for a function built by f; and
f2 i1s computed as follows.

1) —fi: AT = A7 andA~ = A7].

2) fi+for AT =A7UAS andA™ = AT U 4;.

3) fi—far AT =AT UA, andA~ = A] U A7.

4) f1 x for If the sign of (f1, fo) is (+,+), AT = A] UAJ and A~ = A7 U A;. If the sign

is (—,—), consider(—f;) x (—f2), thus, reduced to (1) an@+,+) sign. If the sign is

13

(m) m-monotone (a) a-monotone (m) m-monotone (a) a-monotone

(w) weaker | wm-approximator wa-approximator (w) weaker | wm-approximator wa-approximator
obtained byA~ /¢ obtained byA™ /c obtained byA~ /c obtained byA™ /¢
prune failed(c, ¢) prune failed{c, ¢) prune failed(c, ¢) prune failed{c, ¢)

(s) stronger| sm-approximator sa-approximator (s) stronger| sm-approximator sa-approximator
obtained byA~ /c obtained byA™ /¢ obtained byA~ /¢ obtained byA™/c
prune satisfying(c,¢) | prune satisfying(c, ¢) prune satisfying(c,¢) | prune satisfying(c, ¢)

TABLE 1l TABLE 11l
APPROXIMATORS FORf(v) < o APPROXIMATORS FORf(v) > o

(4, —), considerf; x (—f2), and if the sign ig—, +), consider(—f;) X fs.
5) fi/f2: If the sign of (fi, f2) is (+,+), AT = AT UA; and A~ = A; U AF. Similar to

4), other signs of f1, f2) can be reduced to 1) ard-, +) sign. m

C. Approximators

Consider a sign-space. Lét, ¢) denote the set of cells with as the minimum cell and as
the maximum cell. Following Observation 3.1 and Definition 4.2, Tables Il and Ill summarize
the construction ohvg-approximators. These constructions remain unchanged by replacing
with > and replacing< with <. “Pruning satisfying(c,¢)” means outputting the minimum
and maximumec without testing the constraint for every cell bounded by them. To use these
approximators for pruning, we need to identify a sign-space and minimum/maximumccells
and¢ in the sign-space, and the spagec) without enumerating its cells. We consider these

implementation issues in Section V.

14

V. THE IMPLEMENTATION
A. Strongly separable constraints

The effectiveness ofi3-approximators depends on having a lafger) within a sign-space,
i.e., a “connected” sign-space.

Definition 5.1: A constraint issign-space connectel every denominator is either sign-
preserved or3-monotone wrtv. A constraint isstrongly separablef it is both separable and
sign-space connected. u

In a strongly separable constraint, every denominator changes thatsigrst onceas the cell
v grows. In Table |, except for 8, 11, 12, all constraints are strongly separableg lis non-
negative, 8, 11 and 12 are strongly separable.sigt(c) denote the the bitmap that identifies
the sign-space of a cedl

Theorem 5.1 (Inward monotonicity)Consider a strongly separable constraint. (i) For every
cell ¢ in (¢, @), sign(c) = sign(c). (ii) If ¢ ande fail an as-approximator, so do all cells in
(c,€). (iii) If ¢ ande satisfy anag-approximator, so do all cells ifr, ¢).

Proof: (i) follows because the sign changes at most once as a agibws. (ii) and (iii)
follow because: andc agree on whether to satisfycgs-approximator that is either-monotone
or m-monotone in{c,¢). [

In other words, knowing that a minimumand a maximunt fail (or satisfy) the constraint
is sufficient to know that all cells between them fail (or satisfy) the constraint. By identifying

suchc and¢, we can prune the work of generating the partitions for all cells between them.

15

B. Approximators originating at leaf nodes

In this section, we construaba-approximators for a strongly separable constrgint o,
f(AT/¢; A7)0o, wherec is the maximum cell that faily > 0. See the upper-right corner in
Table Ill. First, we describe the search space.

The lexicographic tree A node in thelexicographic treecorresponds to a GROUP BY list
Dy--- Dy, k > 0, in the lexicographic order. The root corresponds to the null GROUP BY
list and has one child for each dimensién, in the lexicographic order. For a non-root node
u = Dy -+ Dy_1 Dy with ¢ siblings on its right,D, --- Dy,_1Dy;, 1 < i < ¢, theith child of «,

1 <i < gq, is generated by the extra dimension at ttiesibling of u, i.e., D;--- D, D;y; (ith
child). tree(u) denotes the subtree rooted at nadandtail(u) denotes the set of dimensions
in tree(u). Note thattail(u) is represented by the leaf node on the left-most pathréa(u).

The depth-first searchs illustrated by the sequence number next to each node in Figure 1.
First, we examine the empty cell at the root. Next, we produce partiign® a;. Next, we
produce partitions; by, - - - at nodeAB, a,b,cq, - - - at nodeABC, a,b;c1dy, - - - at nodeABCD,
anda,bycidyeq, - -- at nodeABCDE, in that order. After completing,b,c1d;, we “backtrack”
to node ABCD to process other partitions at the node in a similar manner, “backtrack” to
node ABC' to partition on dimensiorE. After completing thea,b,c¢; partition, we proceed to
a1bico, a1bics, - - -. We then “backtrack” to nodel B to processiibs, aqbs, - - -, and “backtrack”
to A to processu,,as, - - -, and finally “backtrack” to the root to process other child nodes of
the root. This search was used in tBettom-Up Computation (BU{}p] to find frequent cells,
where patrtitioning is stopped if a cell becomes infrequent.

Constructing wa-approximators. Consider a strongly separalffe f(v) > 0. Suppose that

we reach a leaf node, and find a cellp at u, fails C. Following Table IIl, we construct

16

\ ﬂ\\ 29 D\ 3 E // \\ \\\\
/ N \14 \16 \D\M ZG\CZE ABC A\;BD\A}:D\ADC\E\C>EDL\DB
RETEIRTE T NN N

) ABCE ABDE ACDE BCDE ABCD ABCE ABED AECD EBCD
6 8 12 20
ABCDE
Fig. 1. The lexicographic tree fad, B,C, D, E Fig. 2. The rollback tree fo!A, B,C, D, E

the wa-approximator in the sign-spacggn(p): C, : f(A*/p; A=) > 0. Consider an ancestor
uy Of uy such thatug is on the left-most path inree(uy) and sign(plux]) = sign(p). Define
tree(uy,p) = {p[u] | v is a node intree(uy)}, whereplu] is the projection of celp onto the
dimensions at the node. Note thatp and p[u,| are the maximum cell and the minimum cell
in tree(ux, p), respectively. From Theorem 5.1, jifuy] fails C,, all cells intree(uy, p) fail C,
(thusC).

To leverage the above pruning, we pysho «; to mark that all cells intree(u, p) fail C,.
Particularly, on backtracking from therst child «;_, to the parent.,, for eachp pushed to
uk—1, We check ifsign(p[ux]) = sign(p) and if p[uy] fails C,. If both conditions hold, we push
p 1o u;. To exploit eactp pushed tou, for each remaining child; of w;, we prune all tuples
that matchp over tail(w;), because such tuples generatdy cells in tree(uy, p), all of which
fail C,. This new form of partitioning is formalized below.

The filtered-partitioning . A filter at u, refers to a cell pushed t@,. Thefiltered-partitioning

for a child w; of v, refers to partitioning all the tuples af, except those that match any filter

17

atuy, overtail(w;). By not partitioning such tuples, affected are only those cells-éa(uy, p),
which are known to fail’,. Note that it does not work to prune “all” partitioning belgvi]
because there may exist some partitignat some node: in tree(uy) such thatp’ is not in
tree(uy, p), i.e.,p'[ug] = plug] but p'[u] # plu]. To tell if a cell intree(uy) is in tree(uy, p), we
also partition the filters pushed tg., just like partitioning regular tuples. Such partitions are
called auxiliary partitions

Theorem 5.2:A cell in tree(uy) is in tree(ux, p) for some filterp if and only if the corre-
sponding auxiliary partition is non-empty.

Proof: For a cellc in tree(uy), if its auxiliary partition is non-empty, for every filtgr in
the auxiliary partitionc is a sub-cell ofp, so intree(ux, p). On the other hand, if a ceflis in
tree(ug, p), for some filterp at u;, p is a super-cell of;, so belongs to the auxiliary partition
of c. [|

Example 5.1:Consider the constraiitt sum(v) > o, or written aspsum(v) —nsum(v) > o.
AT = {nsum(v)} and A~ = {psum(v)} because as grows, sum increases viasum(v) and
decreases vipsum(v). In Figure 1, suppose that we reach a pedt the leaf node, = ABCDFE
and p fails C. The wa-approximatorC, is psum(v) — nsum(p) > o. Note thatnsum(p) is an
under-estimate ofisum(v) for any cellv at a node inree(uy) such thatu, is on the left-most
leaf in tree(uy).

On backtracking to the nodéBC, suppose thai|ABC] is in sign(p) and failsC,. At the child
ABCE, the filtered-partitioning will not partition any tuplesuch thatt{ ABCE] = p[ABCE]
because they generate only cellstime(ABC, p). Subsequently, these tuples are not examined
in any lower partitioning. On backtracking to the nodé, if p[AB] is in sign(p) and failsC,,

at the child ABD the filtered-partitioning will not partition any tuplesuch thatt{ABDE] =

18

pl[ABDE], where ABDE = tree(ABD), and at the childABE, the filtered-partitioning will

not partition any tuple such thatt{ABE] = p[ABE]. Note that, ifp|AB] satisfiesC(p), all

higher level sub-cells, i.ep[A] and the empty cell, must satisg(p).]
Remarks The effectiveness of filtered-partitioning depends on a filtdreing pushed up a

left-most path to a high ancestay, so that filtered-partitioning can be performed in a large

subtree below. This occurs under the following conditions: the threshelds so large that

the under-estimatesum(p) does not help to pass it, there are many negative measure values,

nsum(p) is a good approximation ofsum(p[ux]). The last condition occurs when the values

in plug| are correlated to those im— pluy|, or when the tuples matchingu,] but notp have

close-to-zero negative values.

C. Approximators originating at any nodes

So far, a filter is generated by partitioning all the way to a leaf node. If a minimum support is
specified, it makes sense to restrict filters to frequent cells. Consider Figure 1. Suppose that the
cell p = abed at ABCD is frequent, but the cellbecde at nodeABC'DE is not. Now, even if
we can puslp to v, = A, we cannot prune the cells tmee(uy, p), i.€., ac, ad, acd, abd, because
cells not intree(ug, p), i.e., ace, ade, acde, abde, “depend on” the cells idree(uy, p). The fact
that the dimensiorkl occurs in every leaf node presents the worst scenario for pruning cells not
involving E. This difficulty stems from the “sequential growth” of the lexicographic tree where
the ith child of a node is grown by thé&h sibling. We propose a novel “rollback growth” to
address this problem.

The rollback tree. Suppose that: hasq siblings on its right,D; - - Dy_1 Dy, 1 < i < q.

For 1 <i < ¢, theith child of v is generated using theg — 1)th sibling (with 0 treated as;):
Dy ---DyDyy; 1. RBtree(u) denotes the subtree at a nodeR Btree(u, p) denotes the set of

19

projected cells op onto the nodes iR Btree(u). As before,tail(u) denotes the dimensions in
RBtreee(u). Note that the rollback tree assumes no fixed order of dimensions.

Consider Figure 2. The first child B of u = A is generated using the last sibliigjof u; the
second childAE of u is generated using the first sibling of «; and so on. The last dimension
E on the left-most patil BC'DE now occurs in the second child of the nodes on this path (i.e.,
ABCE,ABE, AE, F), the second last dimensiad on the left-most pattABC' DFE occurs in
the third child of the nodes on this path (i.elBD, AD, D), and so on. As a resulty does
not occur in the following subtreef Btree(AC'), RBtree(AD), RBtree(ABD), RBtree(B),
RBtree(C), and RBtree(D). Therefore, we can use a cell= abcd at the nodeABCD to
prune the sub-cells gf in these subtrees. These subtrees are defined by the notion of filtering
scope.

Definition 5.2 (The filtering scope)Consider a (possibly non-leaf) nodg, a cell p at uy,
and the left-most pathy, - - -, uo in RBtree(uy), k > 0. p is afilter generated at, andanchored
at ug if (i) p is frequent and fail€, (i) no partition of p at the first child ofu, satisfies (i),
(iii) uy is the highest possible node such th&jn(p[ux]) = sign(p) and failsC,. The filtering
scopeof p consists of RBtree(w', p), for k > i > 1, wherew’ are the last — 1 child nodes of
u;. The tuples in the partition fop are generating tuple®f p. n

Intuitively, w' are such child nodes af; that tail(w’) contains only the dimensions at the
nodewu,. This ensures that all cells iRBtree(w’, p) are sub-cells op and pruning them has
no effect on any cell that is not a sub-cell of (i) ensures the maximality of. (iii) ensures
the maximality of the filtering scope of.

Example 5.2:Consider the rollback tree in Figure 2. Suppose thatabcd is a filter generated

at nodeABCD and anchored at nodé. We haveuz = A,uy = AB,u; = ABC,uy = ABCD.

20

The filtering scope ofy consists of RBtree(AD, p) and RBtree(AC, p), where AD and AC
are the last 2 child nodes af;, and RBtree(ABD, p), whereABD is the last child node of,.
If p = ebc is a filter generated at nodé BC' and anchored at nod€, u, = E,u; = EB,ug =
EBC, and the filtering scope qf is RBtree(EC,p), where EC is the last child node of,.
p = ebc is not a filter generated @& BC' and anchored at the root becaus&C' is not on the
left-most path inRBtree(root).]

Theorem 5.3:Let p be a filter generated at, and anchored at,. (i) The filtering scope of
p is a subspace ofp[u], p). (ii) All cells in the filtering scope obp fail C,.

Proof: (i) follows from the above discussion. (ii) follows from Theorem 5.1 and (i)m

D. The algorithm

Following the above discussions, we modify BUC for our purpose as follows. (i) We use
the rollback tree instead of the lexicographic tree. (i) On backtracking from the first child
u; to the parentu;,,, we push a filterp at the child to the parent ip[u;.,] fails C, and if
sign(plui+1]) = sign(p). Afilter p atw,, is stored agp,i+1). (iii) For the jth child w; of w4,
where; > 1, we apply Definition 5.2 to determine the filters for the filtered-partitioning at
The jth child w; from the left is therth child from the right, where = Num_child(u;+1)—j+1.

So the filters for filtered-partitioning at; have the form(p,r + 1), wherep is a filter pushed

to u;41. (iv) After processing all child nodes af; 4, if no filter is pushed tou;,, (to ensure
the maximality in Definition 5.2(ii)) and if the current partitignat u;,, fails C, we generate a
new filter p at u;,,. (v) At each node, we partition filters to produce auxiliary partitions, which
are used to test if a cell is in any pruning scope.

For any two filters at the same node, their generating tuples are disjoint because neither filter is
a super-cell of another (Definition 5.2(ii)). Since each (frequent) filter has atrieastup x | R|

21

generating tuples, at mostminsup filters are pushed to a node in the rollback tree. Therefore,
there are at mostx 1 /minsup filters on a partitioning path of length This bound is independent

of the database siz?|, which is highly desirable for the scalability on very large databases. If
partitioning is implemented as “moving” instead of “copying”, this bound remains unchanged
after partitioning filters. For example, withinsup = 0.1%, we have at most, 000 x [filters

on a path of length.

VI. EXTENSION TOOTHER APPROXIMATORS

A w(-approximator is effective when many cells fail the given constraint, i.e., the constraint
is tight. A sg-approximator is effective when many cells satisfy the given constraint, i.e., the
constraint is loose. Below, we consider implementation for other approximatofs>ofoc. A
similar consideration applies to the comparatgrs>, <.

wm-approximators. A wm-approximator is obtained byl~ /c and is used to prune failed
(c,¢) (Table Ill). c is the highest frequent celf that failsC at some nodey,. We construct the
wm-approximatorC, following Table Ill, and go down fronmp’ following the left-most path,
identify ¢ as the lowest frequent cell that failsC,, but satisfiessign(p’) = sign(p). Note that
p" = plu]. From Theorem 5.1, all the cells itp[uy], p) fail C,,. Upon backtracking, like for
wa-approximators, we push the filter up to the nodeuy, for the filtered-partitioning in the
filtering scope ofp. The filtering scope op is defined as in Definition 5.2, withC,” replaced
with “Cppy,, "

sm-approximators. A sm-approximator is obtained byl~ /¢ and is used to prune satisfying
(c,c) (Table Ill). We construct them-approximatorC, as in Table Ill. In Definition 5.2, replace
“fails” with “satisfies”. Theorem 5.1 implies that all the cells in the filtering scope shatisfy
Cp.

22

sa-approximators. A sa-approximator is obtained byi™ /¢ and is used to prune satisfying
(c,c) (Table IlI). We look for the highest frequent cell, at someu,; on the left-most path that
satisfiesC, constructing thesa-approximatorC,,, and look for the lowest frequent cellon the
left-most path that satisfig$, and sign(p) = sign(p’). In Definition 5.2, we replace “failg”
with “satisfiesC” and replace “failsC,” with “satisfiesC,,,)". Theorem 5.1 implies that all the
cells in (p[u], p), thus, in the filtering scope af, satisfyC,,,). The rest is similar to the case
of sm-approximators.

Combinations of approximators. Pushing both a -approximators and as3-approximators
prunes both failed and satisfying cells, whereas pushing bathnaapproximator and ava-
approximator prunes failed cells by either approximator. This can be done by maintaining a
separate set of filters for each approximator. The bound on filters &mproximators ig: times
the bound in Subsection V-D. Such combinations are beneficial if the subspaces pruned by
different approximators are largely non-overlapping. The perfect non-overlapping is guaranteed
by the combination ofv3-approximators ands-approximators because the former prunes failed

cells and the latter prunes satisfying cells.

VIlI. EXPERIMENTS

We empirically evaluated the Divide-and-Approximate approacbA in short. TheDnA
family refers to the algorithms by pushing:-approximatorssm-approximatorsywm-approximators
and sa-approximators, denoted byWA, SM, WM and SA, and combinations of two approxi-
mators, denoted bWA/SM, WA/SA, WM/SM and WM/SA. We will explain why we do not
consider combinations of more than two approximators. We considered two constraints, o
andavg > o, wheresum is rewritten intopsum(z) — nsum(x), with or without the minimum
support. These constraints capture a minimum requirement on two types of growth, i.e., difference

23

Parameter Meaning Default setting

n number of tuples 100,000
m number of dimensions 15
card|i] cardinality of theith dimension 10

[0, Mmax] normally distributed positive measure [0, 10]

[-Mmin, 0] | normally distributed negative measufe[—10, 0]

a split factor of measure 0.5

I3 repeat factor of groups 1,000

~ Poisson mean of repeat dimension # 10

o minimum sum 300

minsup minimum support 0.5%
TABLE IV

THE PARAMETERS OF THE DATA GENERATOR

and ratio.
We comparednA with BUC and BUC+. BUC pushes only the minimum support (when it
is specified).BUC+ pushes the minimum support and the weakanonotonepsum > o. All
these algorithms are based on the depth-first search, which minimizes the difference contributed
by factors other than the proposed pruning. We considered two performance cexeation
time andtuple examinationThe tuple examination refers to the number of times a tuple or filter
is examined during partitioning. The partitioning operation was implemented by a linear sorting
algorithm called CountingSort in [5]. All algorithms were implemented in C and tested on a PC

with Windows 2000, CPU clock of 1G and memory of 512M.

A. Experiments on synthetic data sets

As pointed out in Section V-B, the effectivenesscgf-approximators depends on the distri-

bution of positive and negative measure values, the threghalad the correlation of dimension

24

values. Synthetic data sets were generated to simulate a wide range of such characteristics. We
iteratively added groups of new tuples using the parameters in Table IV. In each iteration, we
add a group ofr = rand() x 5 new tuplesty,---,t, that repeat the values ah randomly
determined dimensionsand() generates a number uniformly distributed in the rafigé]. d

follows the Poisson distribution of the mean~ and § dictate the count of frequent cells. To
simulate the sharing of values between groups, a fraction, 0.5 in our experiments dokiheat
dimensions takes values from those of the previous group. For each tuple in atgroupt,,

we toss av/(1 — «)-weighted coin to choose the normal distribution for the negative measure

or the normal distribution for the positive measute.

The search of the full cube requiré$’ x 100,000 = 3,276, 800,000 tuple examinations, at
0% minimum support, anBUC took about 9,000 seconds. For the trivial “tru@’ every cell
satisfiesC, and soWM and WA are inapplicableSM and SA pruned the search of the cells in
(c,c) (see Table IIl), where is the empty cell and is a maximal frequent cell. In this caS
and SA degenerated into mining maximal frequent cells. Figure 3 comp&@hMdand SA with
BUC for different minimum supports while fixing other parameters at the default setting. Hence,
our strategies provided additional pruning beyond the classionotonicity based pruning.

1) sum > o: Figure 4 and 5 show the results fetm > o.

The effect of minimum support. Figure 4(a,a’) plots the execution time on the left and tuple
examination on the right. Refer to Table IV for default settings. The first observation is that, as
the minimum support was reduceBUUC slowed down quickly, whereaBUC+ and theDnA
family picked up the pruning via the constraiptum > o and the approximator. Particularly,

as the minimum support was reduced, eventually to 0% (not shown here), the tiBld®f

1The range [a,b] for the normal distribution has 95% confidence interval.

25

—+——BUC
1400 .- A- -

450
400
350
300
250
200
150
100
50
0 0
0.02 0.05 0.1 0.2 0.5 1 0.02 0.05 0.1 0.2 0.5 1

1200 *-
1000 f
800 |
600

Time (second)
Number (million)

400

200

Minimum Support (%) Minimum Support (%)

Fig. 3. Minimum support only

quickly increased, eventually to 9,000 seconds, whereas the time of other algorithms remained
similar to that at the minimum support of 0.02%. This showed that the constraint pushing beyond
minimum support is important in dealing with explosion of computation.

In this experimenty G-approximators, i.eMWVA andWM, performed better thasi3-approximators,
i.e., SA and SM. Recall thatwg-approximators prune failed cells, whereas-approximators
prune (the search of) satisfying cells (Table Ill). For the default threshetd300 and default
ranges|0, 10] and [—10,0] of the positive and negative measures, it is easier to failfa
approximator than to satisfy g3-approximator. As a result, pruning failed cells is more effective
than pruning satisfying cells.

The effect of minimum sum Figure 4(b,b’) plots the performance over a range of minimum
sumo. WM and WA benefited from a large#, whereasSM and SA benefited from a smaller
o, because a larger helps generate failed filters and a smalieihelps generate satisfying
filters. With the default minimum support of 0.58BUC+ is not better tharBUC because the
minimum support constraint is stronger thasum > o. However, as in Figure 6(a,a’), for a

smaller minimum supporBUC+ benefited from the positive term constraint.

26

The effect of correlation. Figure 4(c,c’) and (d,d’) show the performance for a range of
repeat factor and Poisson meaf, respectively. For a “dense” data set with a largeor a
larger v, all algorithms took a longer timelVM and WA performed better tha®M and SA
for the default setting o = 300. The converse was observed for a smattan Figure 4(b,b’)
where the existence of many satisfying cells made pruning such cells more effective.

The scalability. In Figure 5(e), we varied the number of dimensionsdrom 15 to 21 and
kept the Poison meamn at 2/3 of m and other parameters at the default setting. In Figure 5(f),
we varied the database sizefrom 200K to 1,000K and kept the repeat factorat 1% of n
and other parameters at the default settMtM and WA showed a better scalability than other
algorithms. But for a smalles, SM and SA were more scalable (not shown here).

The effect of split factor. Figure 5(g) shows the performance over a range of split fagtor
with other parameters at their default settings. A larger split factor generated more tuples with
a negative measure. This makes it easier to generate more filters requi¥¥ @nd WA. In
this aspect, a large split factor is similar to a large minimum sum.

The effect of combining approximators Figure 5(h) shows that combining “heterogeneous”
approximators, i.e., oneS-approximator and onej-approximator, inherited the benefit of
both. As the split factor varied, one approximator became more effective, whereas the other
became less effective (see Figure 5(g)). Therefore, the pruning is effective in the whole range
of split factor. To the contrary, in a “homogeneous” combination of tw@-approximators
or two s(-approximators, each approximator made the other approximator redundant because
they reached the peak performance under a similar condition, i.e., either both prune failed cells
or both prune satisfying cells. We will not further consider combinations of three or more

types of approximators (such a¥A/SA/SM) because such combinations always contained

27

Time (second)

Time (second)

Time (second)

Time (second)

0.02

0.05

0.1 0.2

Minimum Support (%)

1

1 1 1 1 Il

-300

250

200

150

-200

-100 0 100 200

Minimum Sum

300

(@)

250 r

200

150

100

50

Repeat Factor (thousand)

sum > o

14

Poisson Mean

28

Number (million)

Number (million) Number (million)

Number (million)

1200

.{
1000

800
600 F
400

200

0.02 0.1 0.2

Minimum Support (%)

450

0 L L L L L n
-300 -200 -100 0 100 200 300

Minimum Sum

700

600 F

w B a1
o o o
o o o

T

N
o
o

=

o

o
T

1 1 1 Il

o

1 2 3 4 5

Repeat Factor (thousand)

1600
1400
1200
1000
800
600
400
200
0 L
10

12

Poisson Mean

3000

2500

2000

1500

Time (second)

1000

500

100
90 ¥
80

70
60 Y=
50
40
30
20
10

Time (Second)

0 01 02 03 04 05 06 0.7 0.8 0.9
Split Factor

Fig. 5. sum > o continued

“homogeneous” approximators.

1

Time (second)

Time (Second)

2500

2000 f

1500 f

1000 f

500 f

200 400 600 800 1000

Number of Data (thousand)

— -A— -WA/SM
— B8 — WA/SA

20 - ©- - WM/SM

80
70
60
50
40
30
20
10
0

———WM/SA
—+—WA/WM
SM/SA

0 01 02 03 04 05 06 07 08 09 1
Split Factor

2) avg > 0. The data set in this experiment is exactly same asdon > o, except that all

measure values are positive. The default minimum avesaiges, which is 20% higher than the

mean 5. The performance was shown in Figure 6, which was quite similar to that/for o.

This shows that the pruning is effective for minimum requirements on both types of growth.

B. Experiments on real life data sets

We also experimented on the learning set of the KDD-CUP-98 data set [12]. We chose two

measures, 97NK, which represents the donation amount in 1997, and 95NK, which represents

the donation amount in 1995. 4,843 tuples have a nonzero value on 97NK, with the range

1200

1000
=
=) 2 800
: E
Q ~
La’i 5 600
[} ' g
a E a £ 400
z
200
0 ' ' ' ' 0
0.02 0.05 0.1 0.2 0.5 1 0.02 0.05 0.1 0.2 0.5 1
Minimum Support (%) Minimum Support (%)
140 450
400 &
120 X
= 350
§ 100 2 300
g 80 E 250
2 —
% 60 3 200
b =& b" £ 150#
= 40 >
100 f
20 50
0 1 1 1 J O 1 1 1 J
3 4 5 6 7 3 4 5 6 7
Minimum Average Minimum Average
250 800
700
200
~ = 600
e K=l
S 150 = 500
] E
2 =~ 400
© 100 8
c E c' £ 300
i: >
Z 200
50 f
100
O 1 1 1 J O
1 2 3 4 5 1 2 3 4 5
Repeat Factor (thousand) Repeat Factor (thousand)
400 - 1400
350 1200
= 300 5 1000
§ 250 Z 800
& 200 g
o L 600
d E 150 d' c
= 3 400
100 z
50 200
6 8 10 12 14 6 8 10 12 14
Poisson Mean Poisson Mean

Fig. 6. avg > o

30

1800
1600
1400
1200
1000

800

550

500

450

400

350

Time (second)
Number (million)

a a 600
300
400
250 200
200 0
0.02 0.05 0.1 0.2 0.5 0.02 0.05 0.1 0.2 0.5
Minimum Support (%) Minimum Support (%)
400 1400 N N N }
380 + + + 4 1200 ¥ - N N K
360 =
1000
g 340 t 2
S 3204 EBOOE —— - —g__ _ o _
g 300 & 600 =
[} o -
b 2 280 b :
= 260 2 400 |
240 200 k
220
200 1 1 1 J 0 1 1 1 J
50 100 150 200 250 50 100 150 200 250
Minimum Sum Minimum Sum

Fig. 7. Experiments on the KDD-CUP-98 data set

[1,200] and the mean 15.62. 23,317 tuples have a nonzero value on 95NK, with the range of
[1,200] and the mean 13.25. We chose the constraint, () — sums(z) > o, where sum,
computes the sum of 97NK andim, computes the sum of 95NK. This constraint specifies
donor’s characteristics that improve the donation amount by at tea$the original data set

has 95,412 tuples. After removing all tuples having zero value on both 97NK and 95NK, we
have 26,600 remaining tuples. The original data set has 481 dimensions, most of which are not
related to the donation amount. We selected the following likely relevant 16 dimensions:

RECINHSE(2): In house file flag
RECP3(2): P3 file flag

RECPGVG(2): Planned giving file flag
RECSWEEP(2): Sweepstakes file flag

31

MDMAUD(5,4,5,2): The major donor matrix code

DOMAIN(6,5): Domain/Cluster code

CLUSTER(54): Code indicating which cluster group the donor falls into
HOMEOWNR(3): Home owner flag

NUMCHLD(8): Number oF children

INCOME(8): Household income

GENDER(7): Gender

WEALTH1(11): Wealth rating

The cardinality of each dimension is given in (). MDMAUD and DOMAIN have two or more
sub-dimensions, each of which is treated as a dimension.

The full search space at 0% minimum support2i§ x 26,600 = 1,743,257,600 tuple
examinations. Figure 7(a,a’) showed the performance of all algorithms for a range of minimum
support, with the minimum sum fixed at 100. Figure 7(b,b’) showed the performance for a range
of minimum sum, with the minimum support fixed at 0.1%. Compared to the synthetic data set,
the improvement ofVA and WM over BUC+ was less on this data set. With only 4,843 out
of 26,600 tuples having nonzero 97NK donatismyn, tends to be small andum,(z) > o
used byBUC+ is somehow sufficient for pruningM and SA have a similar performance to
BUC+ because this data set did not produce so many satisfying cells to make pruning such cells
a big benefit. In fact, most of the 23,317 tuples with nonzero 95NK donation have zero 97NK
donation because only 4,843 tuples have nonzero 97NK donation. This situation is similar to

a large split factor in Figure 5(g) where more negative measures were generated than positive

measures.

C. Summary
The DnA family outperformedBUC+, which outperformedBUC, especially for a small
minimum support. Within theDnA family, WM and WA are effective when there are many

32

failing cells because of a tight constraiBiM andSA are effective when there are many satisfying
cells because of a loose constraint. The “heterogeneous” combination8YASM, WA/SA,
WM/SM andWM/SA. could supplement the pruning strength in each case. The “homogeneous”
combinations, i.e. WA/WM and SM/SA tend to add more overhead than benefits, due to

overlapping of pruning.

VIIl. EXTENSION TOBOOLEAN CONSTRAINTS

Often, some Boolean combination of aggregate constraints must be satisfied for interesting
cells. ABoolean constraints an expression of aggregate constraints, built usirfgegation),A
(conjunction) andv (disjunction). We consider a Boolean constraint in domjunctive normal
form, Dy vV --- V Dy, where eachD; = C;; A --- A C;y IS @ conjunction of one or more
aggregate constraints;. An example is(avg(v) > o1) A (var(v) < o,), which specifies the
cells forming homogeneous and profitable subpopulations by maximum variance and minimum
average, respectively. To extend our approach to Boolean constraints, no change is needed in the
notion of “weaker than” (Definition 3.1) and various monotonicities of constraints (Definition
3.3). Therefore, the notion af3-approximators remains unchanged. Below, we extend the notion
of separable constraints.

Definition 8.1: A Boolean constrain®D; Vv --- V Dy is separable(strongly separableif for
everyD, = Ciy A --- A Cyy, €VEry aggregate constraidf; is separable (strongly separable).s

A sign-space corresponds to one assignment of “+” and “-” signs to each denominator in
C that is not sign-preserved. For a separable Boolean consttaiatD; V --- V Dy, where
D, =Ci N--- NCyiy, We can obtain thex(, /)-sign-preserved form by applying Theorem 4.1 to
eachC,;. (A*; A™) for eachC;; is determined by Theorem 4.2.

Theorem 8.1:Consider a sign-space 6f Let C;; be thea3-approximator forC;; constructed

33

as in Tables Il and llI. Le€” beC with everyC;; replaced withC;;. ThenC’ is aa3-approximator
of C in the sign-space.
Proof: Let op be A or V. The theorem follows because (1)xfandy are 5-monotone, so

is z op vy, (2) if x is weaker (stronger) than' and if y is weaker (stronger) thay, = op y is
weaker (stronger) tham' op /. [|

Section IV, V, VI are now applicable to Boolean constraints, by construetif@pproximators
using Theorem 8.1. An interesting question is how this extension affects the effectiveness of
Divide-and-Approximate. The study in Section VIl provides some insights. Since negation and
disjunction tend to relax the constraint, they make pruning satisfying cells more eff&ivand
SA would perform better in this case. In contrast, conjunction tightens up the condition, making
pruning failed cells more effective®M and WA would perform better in this case. If both
negation/disjunction and conjunction occur, we recommend the “heterogeneous” combinations

WM/SM, WA/SA, WA/SM and WM/SA.

IX. CONCLUSION

Pushing aggregate constraints into iceberg cube mining presents a significant challenge, due to
the lack of the “well-behaved” anti-monotonicity or monotonicity. We presented a novel strategy
called Divide-and-Approximateo address this challenge, by combining two well-known ideas,
“divide-and-conquer” and “approximate”. This strategy does not depend on the specific form
of the f function in the constraint, therefore, is applicable when the constraint is unknown in
advance. Experiments showed promising results.

Acknowledgements We wish to thank the reviewers for helpful comments.

34

REFERENCES

[1] S. Agarwal, R. Agarwal, and P. M. D. et al. On the computation of multidimensional aggregatésDB) 1996.
[2] R. Agrawal, T. Imilienski, and A. Swami. Mining association rules between sets of items in large datassteSMOD
pages 207-216, 1993.
[3] R. Bayardo. Efficient mining long patterns from databasesSIBMOD, pages 85-93, 1998.
[4] R. Bayardo, R. Agrawal, and D. Gunopulos. Constraint-based rule mining in large dense datab&SBd, 11999.
[5] K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg cus#&MOD, pages 359-370, 1999.
[6] D. Burdick, M. Calimlim, and J. Gehrke. Mafia: A maximal frequent itemset algorithm for transactional databases. In
ICDE, 2001.
[7] G. Dong and J. Li. Efficient mining of emerging patterns: discovering trends and differenc8$GKDD, pages 43-52,
1999.
[8] M. Fang, N. Shivakumar, H. Molina, R. Motwani, and J. Ullman. Computing iceberg queries efficien¥{.DB, pages
299-310, 1998.
[9] J. Han, J. Pei, G. Dong, and K. Wang. Efficient computation of iceberg cubes with complex meas@&sMI@D, 2001.
[10] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes efficien8IGMOD, 1996.
[11] C. T. Ho, R. Agrawal, and R. Srihant. Range queries in data cubeSIGMOD, 1997.
[12] KDD98. The kdd-cup-98 dataset. hitp://kdd.ics.uci.edu/databases/kddcup98/kddcup98.im®D, August 1998.
[13] R. Ng, L. V. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning optimizations of constrained associatio
ns rules. INSIGMOD, pages 13-24, 1998.
[14] J. Pei, J. Han, and L. V. S. Lakshmanan. Mining frequent itemsets with convertible constraif€&HEN2001.
[15] R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item constraint& DB, pages 67—-73, 1997.
[16] K. Wang, Y. He, D. Cheung, and F. Chin. Mining confident rules without support requireme@ikKi. ACM, 2001.
[17] K. Wang, Y. He, and J. Han. Pushing support constraints into frequent itemset minilg.Dis, 2000.
[18] Y. Zhao, P. M. Deshpande, and J. F. Naughton. An array-based algorithm for simultaneous multidimensional aggregates.

In SIGMOD, 1997.

35

