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Abstract

The iceberg cube miningcomputes all cellsv, corresponding to GROUP BY partitions, that satisfy

a given constraint on aggregated behaviors of the tuples in a GROUP BY partition. The number of

cells often is so large that the result cannot be realistically searched without pushing the constraint

into the search. Previous works have pushedanti-monotoneandmonotoneconstraints. However, many

useful constraints are neither anti-monotone nor monotone. We consider a general class ofaggregate

constraintsof the formf(v)θσ, wheref is an arithmetic function of SQL-like aggregates andθ is one

of <,≤,≥, >. We propose a novel pushing technique, calledDivide-and-Approximate, to push such

constraints. The idea is to recursivelydivide the search space andapproximatethe given constraint

using anti-monotone or monotone constraints in subspaces. This technique applies to a class called

separable constraints, which properly contains all constraints built by an arithmetic functionf of all

SQL aggregates.

Index Terms

Aggregate constraint, constrained data mining, data cube, iceberg cube mining, iceberg query.

I. I NTRODUCTION

Decision support systems, which rapidly gain competitive advantage for businesses, make

heavy use of aggregations for identifying trends. Theiceberg query, introduced in [8], per-

forms an aggregate function over a specified dimension list and then eliminates aggregate

values below some specified threshold. The prototypical iceberg query based on a relation

R(target1, · · · , targetk, rest) and a thresholdT is as follows:

SELECT target1, ..., targetk, count(rest)

FROM R

WHERE ...

GROUP BY target1, ..., targetk



HAVING count(rest)≥T

This query partitions the tuples according to the GROUP BY list and produces one row for each

partition with count(rest) above the thresholdT . In iceberg cube mining, the user specifies a

constraint in the HAVING clause, but not the GROUP BY list, and wants to find the result for

all GROUP BY lists. Acell specifies one GROUP BY partition. On a relation R(Product, Store,

Year, rest), for example, the cell{Toyota, V ancouver} specifies a partition for the GROUP BY

list “Product, Store”.{Toyota, V ancouver, 2000} and {Toyota} are a super-cell and sub-cell

of {Toyota, V ancouver}, respectively. Iceberg cube mining aims to compute all the cells for

the eight GROUP BY lists over Product, Store, Year, returning those satisfying the constraint in

the HAVING clause.

Performing one iceberg query per GROUP BY list does not share the work in different queries.

Computing the full cube then discarding unsatisfying cells suffers from the fact that the full cube

is too large to be realistically computed. Materializing “views” for efficient computation is useful

only if all the constraints are known in advance. A promising approach is “pushing” a given

constraint so that only likely satisfying cells are computed. Previous works have pushedanti-

monotoneconstraints [5], [2] andmonotoneconstraints [13]. In an anti-monotone constraint, if

a cell fails the constraint, so does every super-cell; in a monotone constraint, if a cell satisfies

the constraint, so does every super-cell. These properties provide a natural pruning opportunity.

However, anti-monotonicity or monotonicity like these are undesirable for two reasons. On one

hand, anti-monotonicity and monotonicity are too loose as a pruning strategy. Both properties

impose an exponential lower bound on the result size because all super-cells of a failed or

satisfying cell also fail or satisfy. A result of such size is neither efficient to compute nor easy

to be comprehended by for a human user. On the other hand, both properties are too restricted
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as an interestingness criterion. For example,sum(v) ≥ σ, avg(v) ≥ σ and var(v) ≤ σ are

neither anti-monotone nor monotone, but are useful for extracting patterns capturing minimum

(average) profit with a small variance.

We consider the problem of pushingaggregate constraintsof the form f(v)θσ in iceberg

cube mining.f is an arithmetic function of SQL-like aggregates,θ is a comparison operator,

σ is a threshold, andv is a cell-valued variable. As we will show,var(v) ≤ σ is in this form,

wherevar(v) computes the variance of the measure for the tuples that match the cellv. Pushing

an aggregate constraint presents a significant challenge because even if a cell fails or satisfies

the constraint, its super-cells still need to be examined. We like to answer two questions. First,

if a constraintf(v)θσ is not anti-monotone or monotone, can it be pushed into iceberg cube

mining? Second, is there a principled method that is independent of the specific form off? This

independence is essential because the user-specifiedf is unknown in advance. Two thoughts

underpin our study.

Divide-and-Approximate. If the given constraintC is neither anti-monotone nor monotone, we

can “approximate” it by some weaker or stronger constraintC ′ that has such monotonicities. For

example, we can approximateC by a weaker anti-monotone constraintC ′: if a cell fails C ′, all its

super-cells failC ′, therefore, fail the strongerC. Note that cells satisfyingC ′ may still fail C. The

effectiveness thus depends on finding strongestC ′ to minimize such false positives. To address

this issue, we divide the search space into subspaces and seek for individual approximation

in each subspace. By recursively applying this strategy to subspaces, the approximation in a

subspace approaches the given constraint. This strategy is calledDivide-and-Approximate.

Separable monotonicities. The above strategy applies to a class calledseparable constraints.

In a separable constraint,f(v)θσ, the occurrences of aggregates inf can be separated into two
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groups,A+ andA−, that affectf in the opposite way: as a cellv grows,f monotonically increases

via those inA+ and monotonically decreases via those inA−. For example, letpsum andnsum

be the sum of positive and negative measures,A− = {psum(v)} and A+ = {nsum(v)} for

psum(v)−nsum(v) ≥ σ. Therefore, by holding variablesv at the maximum cell or the minimum

cell for eitherA+ or A−, we are able to construct four types of approximation: weaker anti-

monotone, weaker monotone, stronger anti-monotone, and stronger monotone, to prune the search

of failed cells, the search of satisfying cells, or both. The details will be presented shortly. In

the case that only the minimum support is given, pruning satisfying sub-cells amounts to mining

maximal frequent cells in the literature [3], [6].

We review related work in Section II and define the problem in Section III. In Section IV, we

present the Divide-and-Approximate strategy and show that it applies to separable constraints.

In Section V and Section VI, we present an efficient implementation for the four types of

approximations. We evaluate the proposed approach in Section VII. Section VIII extends this

approach to Boolean combinations of aggregate constraints. We then conclude the paper.

II. RELATED WORK

Most works on data cubes focus on efficient computation of full cube [18], [1], view materi-

alization [10], range queries where a constraint occurs in the WHERE clause [11]. These results

cannot be applied because an aggregate constraint is specified for a cell through the HAVING

clause and is unknown at the time of view materialization. The full cube is often too large

compared to the result satisfying the aggregate constraint.

This study is related to the works on constrained data mining [5], [13], [9], [14], [4], [16], [15],

[17]. Those techniques are specific to pre-determined constraints, namely, item constraints [15],

minimum confidence/improvement [4], succinct constraints [13], convertible constraints [14],
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minimum average [9], and support constraints [17]. We consider all constraints specified by the

whole language of SQL-like aggregates and arithmetic operators (extended to Boolean operators),

and seek for a specification-independent push strategy. Further, aggregates in traditional rule

mining are “extensional” where the values being aggregated are associated with the items inv.

We consider “intensional” aggregates where the values being aggregated are associated with the

tuples that match the items inv. Techniques for the former, such as for the extensionalavg(v)

in [14], are not always applicable to the latter.

III. I CEBERGCUBE M INING

A database is a relational tableR with some columns calleddimensionsDi and some columns

calledmeasuresMi. A cell is a set of values,di1 · · · dik , over some GROUP BY listDi1 · · ·Dik ,

and defines the GROUP BY partition consisting of the tuples matchingdi1 · · · dik . SAT (c) de-

notes the GROUP BY partition defined by a cellc. For example,c = {Toyota, V ancouver, 2003}

is a cell on the GROUP BY list “Product, Store, Year”, andSAT (c) is the set of tuples containing

all the values inc. c = {Toyota, V ancouver, 2003} is a super-cell ofc′ = {Toyota, V ancouver},

in which caseSAT (c) must be a subset ofSAT (c′). avg(c), min(c), max(c), sum(c) compute

the average, minimum, maximum, sum of some measure of the tuples inSAT (c), andcount(c)

computes the number of tuples inSAT (c). ssum(c), psum(c), nsum(c) compute the sum of

square, positive sum and (unsigned) negative sum, respectively.v/c means holding the variable

v at the cellc.

Definition 3.1 (Constraints):A (aggregate) constraintC has the formf(v)θσ. f(v) is a func-

tion of cell-valued variablev, defined by aggregates, arithmetic operators+,−,×, /, and con-

stants.θ is one of<,≤,≥, >. σ is a real. A cellc satisfiesa constraintC if applying v/c to

C evaluates to true; otherwise,c fails C. CUBE(C) denotes the set of cells that satisfyC. C is
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weaker thanC ′ if CUBE(C ′) ⊆ CUBE(C).

Example 3.1:Let di, d
′
i be values on dimensionDi and letv be a cell-valued variable.v∪{di}

(resp.v∪{d′i}) denotes the variable for the cells obtained by unioning the dimension values inv

anddi. count(v ∪ {di})/count(v) ≥ σ specifiesassociation rules, v → di, above the minimum

confidenceσ [2]. count(v∪{di})/count(v∪{d′i}) ≥ σ specifiesemerging patternsv with respect

to the two partitions specified by two cellsdi and d′i [7]. var(v) ≤ σ specifies the maximum

variance constraint, where

var(v) =
Σt∈SAT (v)(M [t]−avg(v))2

count(v)
.

M [t] denotes the measure of tuplet. By rewriting and substituting, we have

var(v) = ssum(v)−2sum(v)avg(v)+avg(v)2count(v)
count(v)

.

In all examples, an optional minimum support can be specified separately.

Definition 3.2 (Iceberg cube mining):Given a databaseR, a constraintC, and a minimum

supportminsup the iceberg cube miningproblem is to findCUBE(C)∧CUBE(count(v)/|R| ≥

minsup), i.e., all frequent cells that satisfyC (|R| denotes the number of tuples inR).

We treat the minimum support differently because it is optional and is anti-monotone.

Below, the terms “a-monotone”/“m-monotone” refer to “anti-monotone”/“monotone”, respec-

tively, and “β-monotone” refers to either.β denotes the “complement” ofβ, i.e., a = m and

m = a.

Definition 3.3 (Monotonicity of constraints):C is a-monotoneif whenever a cell is not in

CUBE(C), neither is any super-cell.C is m-monotoneif whenever a cell is inCUBE(C), so

is every super-cell.

Definition 3.4 (Monotonicity of functions):A function x(y) is a-monotonewrt y if x de-

creases whenevery grows (for cell-valuedy) or increases (for real-valuedy). A function x(y)
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is m-monotonewrt y if x increases whenevery grows (for cell-valuedy) or increases (for

real-valuedy).

psum(v)− nsum(v) is m-monotone wrtpsum(v), a-monotone wrtnsum(v), and is neither

wrt v. The terms “a-monotone” and “m-monotone” are overloaded for both constraints and

functions, and are differentiated from the subjects involved.

Observation 3.1:(i) f(v) ≥ σ is β-monotone if and only iff(v) is β-monotone wrtv. (ii)

f(v) ≤ σ is β-monotone if and only iff(v) is β-monotone wrtv.

A similar observation holds forf(v) > σ andf(v) < σ.

IV. T HE PROPOSEDAPPROACH

A. Divide-and-Approximate

If the given constraint is neithera-monotone norm-monotone, we can push somea-monotone

or m-monotone approximation, called anapproximator. There are four types of approximators:

weakera-monotone approximators, strongera-monotone approximators, weakerm-monotone ap-

proximators, and strongerm-monotone approximators, calledwa-approximators, sa-approximators,

wm-approximatorsandsm-approximators, respectively. We useαβ for these approximators,sβ

for stronger approximators,wβ for weaker approximators,αa for a-monotone approximators,

andαm for m-monotone approximators.

If a cell c fails awa-approximator, we can prune the search of super-cells ofc because they fail

the given constraint. If a cellc fails awm-approximator we can prune the search of (failed) sub-

cells of c. If a cell c satisfiessa-approximator, we can prune the search of sub-cells ofc because

they satisfy the given constraint and can be generated directly fromc. If a cell c satisfies asm-

approximator, we can prune the search of (satisfying) super-cells ofc. However, a satisfying cell
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of a wβ-approximator may still fail the given constraint, and a failed cell of asβ-approximator

may still satisfy the given constraint. Minimizing such “false positives” and “false negatives”

depends on finding strongestwβ-approximators or weakestsβ-approximators. To address this

requirement, we seek for local approximators in subspaces. Below, we explain this strategy

using wa-approximators forsum(v) ≥ σ in the spaceS = {c | c is a sub-cell ofd1 · · · dp},

whered1 · · · dp is a fixed cell.

First, we rewritesum(v) ≥ σ into psum(v)− nsum(v) ≥ σ and regardpsum as the “profit”

andnsum as the “cost”.Ignoring the “cost” entirely gives the firstwa-approximator,psum(v) ≥

σ. Under-estimatingthe “cost” by the minimum for any cell gives a strongerwa-approximator,

i.e., psum(v)−nsum(d1 · · · dp) ≥ σ. That is, if it is so hopeless to pass the threshold even with

the minimum cost, there is no need to consider any super-cell ofv in S. A still better attempt

is to divide S into subspacesS1 = {d1c} and S0 = {c}, where c is a sub-cell ofd2 · · · dp,

and usepsum(v) − nsum(d1d2 · · · dp) ≥ σ in S1 and psum(v) − nsum(d2 · · · dp) ≥ σ in S0.

The latter is stronger than the former. We can apply this strategy recursively toS0 and S1 to

obtain increasingly strongerwa-approximators in subspaces. We call this strategyDivide-and-

Approximate.

B. Separable constraints

To obtain an approximator forf(v)θσ, the key is to separate the aggregates inf(v) into two

groups,A+ andA−, such that as a cellv grows,A+ increases the value off , andA− decreases

the value off . We then can obtain an approximator by holding the variablev in one of A+

and A− at the maximum cell or the minimum cell. Below,A+/c and A−/c mean holding the

variablev in A+ andA− at the cellc.

Example 4.1:Consideravg(v) ≥ σ, or writtenpsum(v)/count1(v)−nsum(v)/count2(v) ≥
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σ. The two occurrences ofcount are renamed because they have different memberships inA+ and

A−. Note that all aggregates now area-monotone wrtv. Let A+ = {nsum(v), count1(v)} and

A− = {psum(v), count2(v)}. avg is a-monotone wrt each aggregate inA+ and ism-monotone

wrt each aggregate inA−. Therefore, asv grows,avg increases viaA+ by composing twoa-

monotone functions, i.e.,avg wrt A+ andA+ wrt v, andavg decreases viaA− by composing

onem-monotone function with onea-monotone function, i.e.,avg wrt A− andA− wrt v. Let c

andc be the minimum and maximum cells. ApplyingA+/c gives thewa-approximator:

psum(v)/count1(c)− nsum(c)/count2(v) ≥ σ,

and applyingA−/c gives thesm-approximator:

psum(c)/count1(v)− nsum(v)/count2(c) ≥ σ.

To separate the aggregates intoA+ and A−, a requirement is that every aggregate beβ-

monotone andsign-preserved, i.e., never change the sign. Imagine what ifcount1 could have

changed the sign: its membership inA+ or A− would depend on the sign. Below, we rewrite

an aggregate constraint and partition the space to meet these requirements. First of all,psum,

nsum, count areβ-monotone and sign-preserved, andsum andavg can be rewritten into such

aggregates, i.e.,sum = psum−nsume andavg = (psum−nsume)/count. max andmin can be

rewritten intoβ-monotone and sign-preserved aggregates:max = pos×pmax−(1−pos)×nmin

andmin = neg × nmax + (1− neg)× pmin, where

• pos(v): return 1 if some tuple inSAT (v) has a non-negative measure (including 0), return

0 otherwise.

• neg(v): return 1 if some tuple inSAT (v) has a non-positive measure (including 0), return

0 otherwise.
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• pmax(v): return the maximum non-negative measure inSAT (v), return 0 if all measures

in SAT (v) are negative.

• pmin(v): return the minimum non-negative measure inSAT (v), return 0 if all measures

in SAT (v) are negative.

• nmax(v): return the maximum|M | whereM is a non-positive measure inSAT (v), return

0 if all measures inSAT (v) are positive.

• nmin(v): return the minimum|M | whereM is a non-positive measure inSAT (v), return

0 if all measures inSAT (v) are positive.

Note that these new aggregates areβ-monotone and sign-preserved.

Consider an arithmetic functionf of sign-preservedβ-monotone aggregates. Suppose thatf

containsk denominatorsZ1, · · · , Zk that are not sign-preserved. Asign-spaceconsists of all cells

c that agree on the sign ofZi, 1 ≤ i ≤ k. We denote a sign-space by a bitmapb1 · · · bk where

bi represents the sign ofZi, i.e., 1 for “-” and 0 for “+”. Conceptually, the whole space can be

partitioned into2k sign-spaces, corresponding to the2k bitmaps, such that in each sign-space

no denominator changes the sign. Below is the main result we like to establish.

Theorem 4.1:Consider an arithmetic functionf of sign-preservedβ-monotone aggregates.

There is a rewritingf ′ of f such that in each sign-space, every operand of× and / in f ′ is

sign-preserved.

Proof: In a sign-space, no denominator of/ changes the sign. If an operand of× changes

the sign, it must be an expression of+ and− because each aggregate is sign-preserved. We

can then distribute× over + and− in the expression. This distribution is repeated as long as

an operand of× changes the sign.
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We say thatf ′ in Theorem 4.1 is (×, /)-sign-preserved(wrt sign-spaces). In a sign-space,

since no operand of× and/ in f ′ changes the sign, each aggregate either increases or decreases

f ′, but not both, asv grows. In other words,f ′ is eitherm-monotone ora-monotone wrt each

aggregate inf ′, while fixing the other aggregates. Therefore, in each sign-space theA+/A−

membership of an aggregate inf ′ is well defined.

Definition 4.1 (Separable constraints):fθσ is a separable constraintif f is an arithmetic

function of sign-preservedβ-monotone aggregates.

In light of Theorem 4.1, we assume that a separable constraintfθσ is (×, /)-sign-preserved.

Definition 4.2 (A+ and A−): Consider a separable constraintfθσ and some sign-space. Let

A+ andA− be the partition of aggregates (occurrences) inf , denoted byf(A+; A−), such that

i) agg(v) is in A+ if agg(v) is β-monotone wrtv and if f is β-monotone wrtagg(v) in the

sign-space by fixing other aggregates, ii)agg(v) is in A− if agg(v) is β-monotone wrtv and if

f is β-monotone wrtagg(v) in the sign-space by fixing other aggregates.

In other words,A+ contains the aggregatesagg(v) whose monotonicity wrtv is the same as

f wrt agg(v). If we hold A− at constant,f(v) becomes composing two functions of the same

monotonicity, thus,m-monotone wrtv. A− contains the aggregatesagg(v) whose monotonicity

wrt v is the complement off wrt agg(v). If we hold A+ at constant,f(v) becomes composing

two functions of the complement monotonicity, thus,a-monotone wrtv.

Corollary 4.1: The following classes are separable constraints, with each (except the first)

generalizing the previous one. (i) All constraints built by arithmetic functions of SQL aggregates

count, sum, avg, max andmin. (ii) All constraints built by arithmetic functions ofcount, psum,

nsum, pos, neg, pmax, pmin, nmax, nmin. (iii) All constraints built by arithmetic functions

of sign-preservedβ-monotone aggregates.
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1. sum(v)θσ 8. sum(v ∪ {di})/sum(v ∪ {d′i})θσ

2. avg(v)θσ 9. avg(v)/max(v)θσ

3. var(v)θσ 10. avg(v)/min(v)θσ

4. count(v ∪ {di})− count(v ∪ {d′i})θσ 11. avg(v ∪ {di})/avg(v)θσ

5. count(v ∪ {di})/count(v)θσ 12. avg(v ∪ {di})/avg(v ∪ {d′i})θσ

6. count(v ∪ {di})/count(v ∪ {d′i})θσ 13. max(v)− avg(v)θσ

7. sum(v ∪ {di})− sum(v ∪ {d′i})θσ 14. min(v)− avg(v)θσ

TABLE I

SOME SEPARABLE CONSTRAINTS(di, d
′
i ARE CONSTANTS)

The above corollary conveys three points. First, separable constraints include most constraints

arising from real life. Second, the single strategy of Divide-and-Approximate provides a uniform

way to deal with all separable constraints. Third, the notion of separable constraints is open to

the arithmetic functionf and sign-preservedβ-monotone aggregates inf . This flexibility is

essential in real life where constraints are specified by the user and are not known in advance.

The following theorem tells how to computeA+ andA− for fθσ, denotedf(A+; A−)θσ, in

a given sign-space.

Theorem 4.2:Considerf1(A
+
1 ; A−

1 ) andf2(A
+
2 ; A−

2 ). (A+; A−) for a function built byf1 and

f2 is computed as follows.

1) −f1: A+ = A−
1 andA− = A+

1 .

2) f1 + f2: A+ = A+
1 ∪ A+

2 andA− = A−
1 ∪ A−

2 .

3) f1 − f2: A+ = A+
1 ∪ A−

2 andA− = A−
1 ∪ A+

2 .

4) f1 × f2: If the sign of (f1, f2) is (+, +), A+ = A+
1 ∪A+

2 andA− = A−
1 ∪A−

2 . If the sign

is (−,−), consider(−f1) × (−f2), thus, reduced to (1) and(+, +) sign. If the sign is
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(m) m-monotone (a) a-monotone

(w) weaker wm-approximator wa-approximator

obtained byA−/c obtained byA+/c

prune failed〈c, c〉 prune failed〈c, c〉

(s) stronger sm-approximator sa-approximator

obtained byA−/c obtained byA+/c

prune satisfying〈c, c〉 prune satisfying〈c, c〉

TABLE II

APPROXIMATORS FORf(v) ≤ σ

(m) m-monotone (a) a-monotone

(w) weaker wm-approximator wa-approximator

obtained byA−/c obtained byA+/c

prune failed〈c, c〉 prune failed〈c, c〉

(s) stronger sm-approximator sa-approximator

obtained byA−/c obtained byA+/c

prune satisfying〈c, c〉 prune satisfying〈c, c〉

TABLE III

APPROXIMATORS FORf(v) ≥ σ

(+,−), considerf1 × (−f2), and if the sign is(−, +), consider(−f1)× f2.

5) f1/f2: If the sign of (f1, f2) is (+, +), A+ = A+
1 ∪ A−

2 and A− = A−
1 ∪ A+

2 . Similar to

4), other signs of(f1, f2) can be reduced to 1) and(+, +) sign.

C. Approximators

Consider a sign-space. Let〈c, c〉 denote the set of cells withc as the minimum cell andc as

the maximum cell. Following Observation 3.1 and Definition 4.2, Tables II and III summarize

the construction ofαβ-approximators. These constructions remain unchanged by replacing≥

with > and replacing≤ with <. “Pruning satisfying〈c, c〉” means outputting the minimumc

and maximumc without testing the constraint for every cell bounded by them. To use these

approximators for pruning, we need to identify a sign-space and minimum/maximum cellsc

and c in the sign-space, and the space〈c, c〉 without enumerating its cells. We consider these

implementation issues in Section V.
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V. THE IMPLEMENTATION

A. Strongly separable constraints

The effectiveness ofαβ-approximators depends on having a large〈c, c〉 within a sign-space,

i.e., a “connected” sign-space.

Definition 5.1: A constraint issign-space connectedif every denominator is either sign-

preserved orβ-monotone wrtv. A constraint isstrongly separableif it is both separable and

sign-space connected.

In a strongly separable constraint, every denominator changes the signat most onceas the cell

v grows. In Table I, except for 8, 11, 12, all constraints are strongly separable. Ifavg is non-

negative, 8, 11 and 12 are strongly separable. Letsign(c) denote the the bitmap that identifies

the sign-space of a cellc.

Theorem 5.1 (Inward monotonicity):Consider a strongly separable constraint. (i) For every

cell c in 〈c, c〉, sign(c) = sign(c). (ii) If c and c fail an αβ-approximator, so do all cells in

〈c, c〉. (iii) If c andc satisfy anαβ-approximator, so do all cells in〈c, c〉.

Proof: (i) follows because the sign changes at most once as a cellv grows. (ii) and (iii)

follow becausec andc agree on whether to satisfy aαβ-approximator that is eithera-monotone

or m-monotone in〈c, c〉.

In other words, knowing that a minimumc and a maximumc fail (or satisfy) the constraint

is sufficient to know that all cells between them fail (or satisfy) the constraint. By identifying

suchc andc, we can prune the work of generating the partitions for all cells between them.
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B. Approximators originating at leaf nodes

In this section, we constructwa-approximators for a strongly separable constraintf ≥ σ,

f(A+/c; A−)θσ, wherec is the maximum cell that failsf ≥ σ. See the upper-right corner in

Table III. First, we describe the search space.

The lexicographic tree. A node in thelexicographic treecorresponds to a GROUP BY list

D1 · · ·Dk, k ≥ 0, in the lexicographic order. The root corresponds to the null GROUP BY

list and has one child for each dimensionDi, in the lexicographic order. For a non-root node

u = D1 · · ·Dk−1Dk with q siblings on its right,D1 · · ·Dk−1Dk+i, 1 ≤ i ≤ q, the ith child of u,

1 ≤ i ≤ q, is generated by the extra dimension at theith sibling of u, i.e., D1 · · ·DkDk+i (ith

child). tree(u) denotes the subtree rooted at nodeu and tail(u) denotes the set of dimensions

in tree(u). Note thattail(u) is represented by the leaf node on the left-most path intree(u).

The depth-first searchis illustrated by the sequence number next to each node in Figure 1.

First, we examine the empty cell at the root. Next, we produce partitionsa1 to ai. Next, we

produce partitionsa1b1, · · · at nodeAB, a1b1c1, · · · at nodeABC, a1b1c1d1, · · · at nodeABCD,

anda1b1c1d1e1, · · · at nodeABCDE, in that order. After completinga1b1c1d1, we “backtrack”

to nodeABCD to process other partitions at the node in a similar manner, “backtrack” to

nodeABC to partition on dimensionE. After completing thea1b1c1 partition, we proceed to

a1b1c2, a1b1c3, · · ·. We then “backtrack” to nodeAB to processa1b2, a1b3, · · ·, and “backtrack”

to A to processa2, a3, · · ·, and finally “backtrack” to the root to process other child nodes of

the root. This search was used in theBottom-Up Computation (BUC)[5] to find frequent cells,

where partitioning is stopped if a cell becomes infrequent.

Constructing wa-approximators. Consider a strongly separableC: f(v) ≥ σ. Suppose that

we reach a leaf nodeu0 and find a cellp at u0 fails C. Following Table III, we construct
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Fig. 1. The lexicographic tree forA, B, C, D, E

A E D C B

AB AE AD AC EB ED EC DB DC CB

ABC ABE ABD AEC AED ADC EBC EBD EDC DBC

ABCD ABCE ABED AECD EBCD

ABCDE

Fig. 2. The rollback tree forA, B, C, D, E

the wa-approximator in the sign-spacesign(p): Cp : f(A+/p; A−) ≥ σ. Consider an ancestor

uk of u0 such thatu0 is on the left-most path intree(uk) and sign(p[uk]) = sign(p). Define

tree(uk, p) = {p[u] | u is a node intree(uk)}, wherep[u] is the projection of cellp onto the

dimensions at the nodeu. Note thatp and p[uk] are the maximum cell and the minimum cell

in tree(uk, p), respectively. From Theorem 5.1, ifp[uk] fails Cp, all cells in tree(uk, p) fail Cp

(thusC).

To leverage the above pruning, we pushp to uk to mark that all cells intree(uk, p) fail Cp.

Particularly, on backtracking from thefirst child uk−1 to the parentuk, for eachp pushed to

uk−1, we check ifsign(p[uk]) = sign(p) and if p[uk] fails Cp. If both conditions hold, we push

p to uk. To exploit eachp pushed touk, for each remaining childwj of uk, we prune all tuples

that matchp over tail(wj), because such tuples generateonly cells in tree(uk, p), all of which

fail Cp. This new form of partitioning is formalized below.

The filtered-partitioning . A filter at uk refers to a cell pushed touk. Thefiltered-partitioning

for a child wj of uk refers to partitioning all the tuples atuk except those that match any filter
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at uk over tail(wj). By not partitioning such tuples, affected are only those cells intree(uk, p),

which are known to failCp. Note that it does not work to prune “all” partitioning belowp[uk]

because there may exist some partitionp′ at some nodeu in tree(uk) such thatp′ is not in

tree(uk, p), i.e., p′[uk] = p[uk] but p′[u] 6= p[u]. To tell if a cell in tree(uk) is in tree(uk, p), we

also partition the filters pushed touk, just like partitioning regular tuples. Such partitions are

calledauxiliary partitions.

Theorem 5.2:A cell in tree(uk) is in tree(uk, p) for some filterp if and only if the corre-

sponding auxiliary partition is non-empty.

Proof: For a cellc in tree(uk), if its auxiliary partition is non-empty, for every filterp in

the auxiliary partition,c is a sub-cell ofp, so in tree(uk, p). On the other hand, if a cellc is in

tree(uk, p), for some filterp at uk, p is a super-cell ofc, so belongs to the auxiliary partition

of c.

Example 5.1:Consider the constraintC: sum(v) ≥ σ, or written aspsum(v)−nsum(v) ≥ σ.

A+ = {nsum(v)} andA− = {psum(v)} because asv grows,sum increases viansum(v) and

decreases viapsum(v). In Figure 1, suppose that we reach a cellp at the leaf nodeu0 = ABCDE

and p fails C. The wa-approximatorCp is psum(v) − nsum(p) ≥ σ. Note thatnsum(p) is an

under-estimate ofnsum(v) for any cellv at a node intree(uk) such thatu0 is on the left-most

leaf in tree(uk).

On backtracking to the nodeABC, suppose thatp[ABC] is in sign(p) and failsCp. At the child

ABCE, the filtered-partitioning will not partition any tuplet such thatt[ABCE] = p[ABCE]

because they generate only cells intree(ABC, p). Subsequently, these tuples are not examined

in any lower partitioning. On backtracking to the nodeAB, if p[AB] is in sign(p) and failsCp,

at the childABD the filtered-partitioning will not partition any tuplet such thatt[ABDE] =
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p[ABDE], whereABDE = tree(ABD), and at the childABE, the filtered-partitioning will

not partition any tuplet such thatt[ABE] = p[ABE]. Note that, ifp[AB] satisfiesC(p), all

higher level sub-cells, i.e.,p[A] and the empty cell, must satisfyC(p).

Remarks. The effectiveness of filtered-partitioning depends on a filterp being pushed up a

left-most path to a high ancestoruk so that filtered-partitioning can be performed in a large

subtree belowuk. This occurs under the following conditions: the thresholdσ is so large that

the under-estimatensum(p) does not help to pass it, there are many negative measure values,

nsum(p) is a good approximation ofnsum(p[uk]). The last condition occurs when the values

in p[uk] are correlated to those inp − p[uk], or when the tuples matchingp[uk] but notp have

close-to-zero negative values.

C. Approximators originating at any nodes

So far, a filter is generated by partitioning all the way to a leaf node. If a minimum support is

specified, it makes sense to restrict filters to frequent cells. Consider Figure 1. Suppose that the

cell p = abcd at ABCD is frequent, but the cellabcde at nodeABCDE is not. Now, even if

we can pushp to uk = A, we cannot prune the cells intree(uk, p), i.e.,ac, ad, acd, abd, because

cells not intree(uk, p), i.e., ace, ade, acde, abde, “depend on” the cells intree(uk, p). The fact

that the dimensionE occurs in every leaf node presents the worst scenario for pruning cells not

involving E. This difficulty stems from the “sequential growth” of the lexicographic tree where

the ith child of a node is grown by theith sibling. We propose a novel “rollback growth” to

address this problem.

The rollback tree. Suppose thatu hasq siblings on its right,D1 · · ·Dk−1Dk+i, 1 ≤ i ≤ q.

For 1 ≤ i ≤ q, the ith child of u is generated using the(i − 1)th sibling (with 0 treated asq):

D1 · · ·DkDk+i−1. RBtree(u) denotes the subtree at a nodeu. RBtree(u, p) denotes the set of
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projected cells ofp onto the nodes inRBtree(u). As before,tail(u) denotes the dimensions in

RBtreee(u). Note that the rollback tree assumes no fixed order of dimensions.

Consider Figure 2. The first childAB of u = A is generated using the last siblingB of u; the

second childAE of u is generated using the first siblingE of u; and so on. The last dimension

E on the left-most pathABCDE now occurs in the second child of the nodes on this path (i.e.,

ABCE, ABE, AE, E), the second last dimensionD on the left-most pathABCDE occurs in

the third child of the nodes on this path (i.e.,ABD, AD, D), and so on. As a result,E does

not occur in the following subtrees:RBtree(AC), RBtree(AD), RBtree(ABD), RBtree(B),

RBtree(C), and RBtree(D). Therefore, we can use a cellp = abcd at the nodeABCD to

prune the sub-cells ofp in these subtrees. These subtrees are defined by the notion of filtering

scope.

Definition 5.2 (The filtering scope):Consider a (possibly non-leaf) nodeu0, a cell p at u0,

and the left-most pathuk, · · · , u0 in RBtree(uk), k ≥ 0. p is afilter generated atu0 andanchored

at uk if (i) p is frequent and failsC, (ii) no partition of p at the first child ofu0 satisfies (i),

(iii) uk is the highest possible node such thatsign(p[uk]) = sign(p) and failsCp. The filtering

scopeof p consists ofRBtree(wi, p), for k ≥ i ≥ 1, wherewi are the lasti− 1 child nodes of

ui. The tuples in the partition forp aregenerating tuplesof p.

Intuitively, wi are such child nodes ofui that tail(wi) contains only the dimensions at the

nodeu0. This ensures that all cells inRBtree(wi, p) are sub-cells ofp and pruning them has

no effect on any cell that is not a sub-cell ofp. (ii) ensures the maximality ofp. (iii) ensures

the maximality of the filtering scope ofp.

Example 5.2:Consider the rollback tree in Figure 2. Suppose thatp = abcd is a filter generated

at nodeABCD and anchored at nodeA. We haveu3 = A, u2 = AB, u1 = ABC, u0 = ABCD.
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The filtering scope ofp consists ofRBtree(AD, p) and RBtree(AC, p), whereAD and AC

are the last 2 child nodes ofu3, andRBtree(ABD, p), whereABD is the last child node ofu2.

If p = ebc is a filter generated at nodeEBC and anchored at nodeE, u2 = E, u1 = EB, u0 =

EBC, and the filtering scope ofp is RBtree(EC, p), whereEC is the last child node ofu2.

p = ebc is not a filter generated atEBC and anchored at the root becauseEBC is not on the

left-most path inRBtree(root).

Theorem 5.3:Let p be a filter generated atu0 and anchored atuk. (i) The filtering scope of

p is a subspace of〈p[uk], p〉. (ii) All cells in the filtering scope ofp fail Cp.

Proof: (i) follows from the above discussion. (ii) follows from Theorem 5.1 and (i).

D. The algorithm

Following the above discussions, we modify BUC for our purpose as follows. (i) We use

the rollback tree instead of the lexicographic tree. (ii) On backtracking from the first child

ui to the parentui+1, we push a filterp at the child to the parent ifp[ui+1] fails Cp and if

sign(p[ui+1]) = sign(p). A filter p at ui+1 is stored as〈p, i+1〉. (iii) For the jth child wj of ui+1,

wherej > 1, we apply Definition 5.2 to determine the filters for the filtered-partitioning atwj.

Thejth childwj from the left is therth child from the right, wherer = Num child(ui+1)−j+1.

So the filters for filtered-partitioning atwj have the form〈p, r + 1〉, wherep is a filter pushed

to ui+1. (iv) After processing all child nodes ofui+1, if no filter is pushed toui+1 (to ensure

the maximality in Definition 5.2(ii)) and if the current partitionp at ui+1 fails C, we generate a

new filter p at ui+1. (v) At each node, we partition filters to produce auxiliary partitions, which

are used to test if a cell is in any pruning scope.

For any two filters at the same node, their generating tuples are disjoint because neither filter is

a super-cell of another (Definition 5.2(ii)). Since each (frequent) filter has at leastminsup×|R|
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generating tuples, at most1/minsup filters are pushed to a node in the rollback tree. Therefore,

there are at mostl×1/minsup filters on a partitioning path of lengthl. This bound is independent

of the database size|R|, which is highly desirable for the scalability on very large databases. If

partitioning is implemented as “moving” instead of “copying”, this bound remains unchanged

after partitioning filters. For example, withminsup = 0.1%, we have at most1, 000 × l filters

on a path of lengthl.

VI. EXTENSION TO OTHER APPROXIMATORS

A wβ-approximator is effective when many cells fail the given constraint, i.e., the constraint

is tight. A sβ-approximator is effective when many cells satisfy the given constraint, i.e., the

constraint is loose. Below, we consider implementation for other approximators off ≥ σ. A

similar consideration applies to the comparators≤, >, <.

wm-approximators. A wm-approximator is obtained byA−/c and is used to prune failed

〈c, c〉 (Table III). c is the highest frequent cellp′ that failsC at some nodeuk. We construct the

wm-approximatorCp′ following Table III, and go down fromp′ following the left-most path,

identify c as the lowest frequent cellp that failsCp′ but satisfiessign(p′) = sign(p). Note that

p′ = p[uk]. From Theorem 5.1, all the cells in〈p[uk], p〉 fail Cp′ . Upon backtracking, like for

wa-approximators, we push the filterp up to the nodeuk, for the filtered-partitioning in the

filtering scope ofp. The filtering scope ofp is defined as in Definition 5.2, with “Cp” replaced

with “Cp[uk]”.

sm-approximators. A sm-approximator is obtained byA−/c and is used to prune satisfying

〈c, c〉 (Table III). We construct thesm-approximatorCp as in Table III. In Definition 5.2, replace

“fails” with “satisfies”. Theorem 5.1 implies that all the cells in the filtering scope ofp satisfy

Cp.
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sa-approximators. A sa-approximator is obtained byA+/c and is used to prune satisfying

〈c, c〉 (Table III). We look for the highest frequent cellp′, at someuk on the left-most path that

satisfiesC, constructing thesa-approximatorCp′, and look for the lowest frequent cellp on the

left-most path that satisfiesCp′ and sign(p) = sign(p′). In Definition 5.2, we replace “failsC”

with “satisfiesC” and replace “failsCp” with “satisfiesCp[uk]”. Theorem 5.1 implies that all the

cells in 〈p[uk], p〉, thus, in the filtering scope ofp, satisfyCp[uk]. The rest is similar to the case

of sm-approximators.

Combinations of approximators. Pushing both awβ-approximators and ansβ-approximators

prunes both failed and satisfying cells, whereas pushing both awm-approximator and awa-

approximator prunes failed cells by either approximator. This can be done by maintaining a

separate set of filters for each approximator. The bound on filters fork approximators isk times

the bound in Subsection V-D. Such combinations are beneficial if the subspaces pruned by

different approximators are largely non-overlapping. The perfect non-overlapping is guaranteed

by the combination ofwβ-approximators andsβ-approximators because the former prunes failed

cells and the latter prunes satisfying cells.

VII. E XPERIMENTS

We empirically evaluated the Divide-and-Approximate approach orDnA in short. TheDnA

family refers to the algorithms by pushingwa-approximators,sm-approximators,wm-approximators

and sa-approximators, denoted byWA, SM, WM and SA, and combinations of two approxi-

mators, denoted byWA/SM, WA/SA, WM/SM and WM/SA. We will explain why we do not

consider combinations of more than two approximators. We considered two constraints,sum ≥ σ

andavg ≥ σ, wheresum is rewritten intopsum(x)− nsum(x), with or without the minimum

support. These constraints capture a minimum requirement on two types of growth, i.e., difference
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Parameter Meaning Default setting

n number of tuples 100,000

m number of dimensions 15

card[i] cardinality of theith dimension 10

[0, Mmax] normally distributed positive measure [0, 10]

[−Mmin, 0] normally distributed negative measure[−10, 0]

α split factor of measure 0.5

β repeat factor of groups 1,000

γ Poisson mean of repeat dimension # 10

σ minimum sum 300

minsup minimum support 0.5%

TABLE IV

THE PARAMETERS OF THE DATA GENERATOR

and ratio.

We comparedDnA with BUC andBUC+. BUC pushes only the minimum support (when it

is specified).BUC+ pushes the minimum support and the weakera-monotonepsum ≥ σ. All

these algorithms are based on the depth-first search, which minimizes the difference contributed

by factors other than the proposed pruning. We considered two performance criteria,execution

timeandtuple examination. The tuple examination refers to the number of times a tuple or filter

is examined during partitioning. The partitioning operation was implemented by a linear sorting

algorithm called CountingSort in [5]. All algorithms were implemented in C and tested on a PC

with Windows 2000, CPU clock of 1G and memory of 512M.

A. Experiments on synthetic data sets

As pointed out in Section V-B, the effectiveness ofαβ-approximators depends on the distri-

bution of positive and negative measure values, the thresholdσ and the correlation of dimension
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values. Synthetic data sets were generated to simulate a wide range of such characteristics. We

iteratively added groups of new tuples using the parameters in Table IV. In each iteration, we

add a group ofr = rand() × β new tuplest1, · · · , tr that repeat the values ond randomly

determined dimensions.rand() generates a number uniformly distributed in the range[0, 1]. d

follows the Poisson distribution of the meanγ. γ andβ dictate the count of frequent cells. To

simulate the sharing of values between groups, a fraction, 0.5 in our experiments, of thed repeat

dimensions takes values from those of the previous group. For each tuple in a groupt1, · · · , tr,

we toss aα/(1 − α)-weighted coin to choose the normal distribution for the negative measure

or the normal distribution for the positive measure.1

The search of the full cube requires215 × 100, 000 = 3, 276, 800, 000 tuple examinations, at

0% minimum support, andBUC took about 9,000 seconds. For the trivial “true”C, every cell

satisfiesC, and soWM andWA are inapplicable.SM andSA pruned the search of the cells in

〈c, c〉 (see Table III), wherec is the empty cell andc is a maximal frequent cell. In this caseSM

and SA degenerated into mining maximal frequent cells. Figure 3 comparedSM and SA with

BUC for different minimum supports while fixing other parameters at the default setting. Hence,

our strategies provided additional pruning beyond the classica-monotonicity based pruning.

1) sum ≥ σ: Figure 4 and 5 show the results forsum ≥ σ.

The effect of minimum support. Figure 4(a,a’) plots the execution time on the left and tuple

examination on the right. Refer to Table IV for default settings. The first observation is that, as

the minimum support was reduced,BUC slowed down quickly, whereasBUC+ and theDnA

family picked up the pruning via the constraintpsum ≥ σ and the approximator. Particularly,

as the minimum support was reduced, eventually to 0% (not shown here), the time ofBUC

1The range [a,b] for the normal distribution has 95% confidence interval.
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Fig. 3. Minimum support only

quickly increased, eventually to 9,000 seconds, whereas the time of other algorithms remained

similar to that at the minimum support of 0.02%. This showed that the constraint pushing beyond

minimum support is important in dealing with explosion of computation.

In this experiment,wβ-approximators, i.e.,WA andWM, performed better thansβ-approximators,

i.e., SA and SM. Recall thatwβ-approximators prune failed cells, whereassβ-approximators

prune (the search of) satisfying cells (Table III). For the default thresholdσ = 300 and default

ranges[0, 10] and [−10, 0] of the positive and negative measures, it is easier to fail awβ-

approximator than to satisfy asβ-approximator. As a result, pruning failed cells is more effective

than pruning satisfying cells.

The effect of minimum sum. Figure 4(b,b’) plots the performance over a range of minimum

sumσ. WM andWA benefited from a largerσ, whereasSM andSA benefited from a smaller

σ, because a largerσ helps generate failed filters and a smallerσ helps generate satisfying

filters. With the default minimum support of 0.5%,BUC+ is not better thanBUC because the

minimum support constraint is stronger thanpsum ≥ σ. However, as in Figure 6(a,a’), for a

smaller minimum support,BUC+ benefited from the positive term constraint.
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The effect of correlation. Figure 4(c,c’) and (d,d’) show the performance for a range of

repeat factorβ and Poisson meanγ, respectively. For a “dense” data set with a largerβ or a

larger γ, all algorithms took a longer time.WM and WA performed better thanSM and SA

for the default setting ofσ = 300. The converse was observed for a smallerσ in Figure 4(b,b’)

where the existence of many satisfying cells made pruning such cells more effective.

The scalability. In Figure 5(e), we varied the number of dimensionsm from 15 to 21 and

kept the Poison meanγ at 2/3 of m and other parameters at the default setting. In Figure 5(f),

we varied the database sizen from 200K to 1,000K and kept the repeat factorβ at 1% of n

and other parameters at the default setting.WM andWA showed a better scalability than other

algorithms. But for a smallerσ, SM andSA were more scalable (not shown here).

The effect of split factor. Figure 5(g) shows the performance over a range of split factorα,

with other parameters at their default settings. A larger split factor generated more tuples with

a negative measure. This makes it easier to generate more filters required byWM and WA. In

this aspect, a large split factor is similar to a large minimum sum.

The effect of combining approximators. Figure 5(h) shows that combining “heterogeneous”

approximators, i.e., onewβ-approximator and onesβ-approximator, inherited the benefit of

both. As the split factor varied, one approximator became more effective, whereas the other

became less effective (see Figure 5(g)). Therefore, the pruning is effective in the whole range

of split factor. To the contrary, in a “homogeneous” combination of twowβ-approximators

or two sβ-approximators, each approximator made the other approximator redundant because

they reached the peak performance under a similar condition, i.e., either both prune failed cells

or both prune satisfying cells. We will not further consider combinations of three or more

types of approximators (such asWA/SA/SM) because such combinations always contained
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Fig. 5. sum ≥ σ continued

“homogeneous” approximators.

2) avg ≥ σ: The data set in this experiment is exactly same as forsum ≥ σ, except that all

measure values are positive. The default minimum averageσ is 6, which is 20% higher than the

mean 5. The performance was shown in Figure 6, which was quite similar to that forsum ≥ σ.

This shows that the pruning is effective for minimum requirements on both types of growth.

B. Experiments on real life data sets

We also experimented on the learning set of the KDD-CUP-98 data set [12]. We chose two

measures, 97NK, which represents the donation amount in 1997, and 95NK, which represents

the donation amount in 1995. 4,843 tuples have a nonzero value on 97NK, with the range
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Fig. 7. Experiments on the KDD-CUP-98 data set

[1, 200] and the mean 15.62. 23,317 tuples have a nonzero value on 95NK, with the range of

[1, 200] and the mean 13.25. We chose the constraintsum1(x) − sum2(x) ≥ σ, wheresum1

computes the sum of 97NK andsum2 computes the sum of 95NK. This constraint specifies

donor’s characteristics that improve the donation amount by at leastσ. The original data set

has 95,412 tuples. After removing all tuples having zero value on both 97NK and 95NK, we

have 26,600 remaining tuples. The original data set has 481 dimensions, most of which are not

related to the donation amount. We selected the following likely relevant 16 dimensions:

RECINHSE(2): In house file flag

RECP3(2): P3 file flag

RECPGVG(2): Planned giving file flag

RECSWEEP(2): Sweepstakes file flag

31



MDMAUD(5,4,5,2): The major donor matrix code

DOMAIN(6,5): Domain/Cluster code

CLUSTER(54): Code indicating which cluster group the donor falls into

HOMEOWNR(3): Home owner flag

NUMCHLD(8): Number oF children

INCOME(8): Household income

GENDER(7): Gender

WEALTH1(11): Wealth rating

The cardinality of each dimension is given in (). MDMAUD and DOMAIN have two or more

sub-dimensions, each of which is treated as a dimension.

The full search space at 0% minimum support is216 × 26, 600 = 1, 743, 257, 600 tuple

examinations. Figure 7(a,a’) showed the performance of all algorithms for a range of minimum

support, with the minimum sum fixed at 100. Figure 7(b,b’) showed the performance for a range

of minimum sum, with the minimum support fixed at 0.1%. Compared to the synthetic data set,

the improvement ofWA and WM over BUC+ was less on this data set. With only 4,843 out

of 26,600 tuples having nonzero 97NK donation,sum1 tends to be small andsum1(x) ≥ σ

used byBUC+ is somehow sufficient for pruning.SM and SA have a similar performance to

BUC+ because this data set did not produce so many satisfying cells to make pruning such cells

a big benefit. In fact, most of the 23,317 tuples with nonzero 95NK donation have zero 97NK

donation because only 4,843 tuples have nonzero 97NK donation. This situation is similar to

a large split factor in Figure 5(g) where more negative measures were generated than positive

measures.

C. Summary

The DnA family outperformedBUC+, which outperformedBUC, especially for a small

minimum support. Within theDnA family, WM and WA are effective when there are many
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failing cells because of a tight constraint.SM andSA are effective when there are many satisfying

cells because of a loose constraint. The “heterogeneous” combinations, i.e.,WA/SM, WA/SA,

WM/SM andWM/SA. could supplement the pruning strength in each case. The “homogeneous”

combinations, i.e.,WA/WM and SM/SA tend to add more overhead than benefits, due to

overlapping of pruning.

VIII. E XTENSION TO BOOLEAN CONSTRAINTS

Often, some Boolean combination of aggregate constraints must be satisfied for interesting

cells. A Boolean constraintis an expression of aggregate constraints, built using¬ (negation),∧

(conjunction) and∨ (disjunction). We consider a Boolean constraint in theconjunctive normal

form, D1 ∨ · · · ∨ Dk, where eachDi = Ci1 ∧ · · · ∧ Ciq is a conjunction of one or more

aggregate constraintsCij. An example is(avg(v) ≥ σ1) ∧ (var(v) ≤ σ2), which specifies the

cells forming homogeneous and profitable subpopulations by maximum variance and minimum

average, respectively. To extend our approach to Boolean constraints, no change is needed in the

notion of “weaker than” (Definition 3.1) and various monotonicities of constraints (Definition

3.3). Therefore, the notion ofαβ-approximators remains unchanged. Below, we extend the notion

of separable constraints.

Definition 8.1: A Boolean constraintD1 ∨ · · · ∨ Dk is separable(strongly separable) if for

everyDi = Ci1 ∧ · · · ∧ Ciq, every aggregate constraintCij is separable (strongly separable).

A sign-space corresponds to one assignment of “+” and “-” signs to each denominator in

C that is not sign-preserved. For a separable Boolean constraintC = D1 ∨ · · · ∨ Dk, where

Di = Ci1 ∧ · · · ∧ Ciq, we can obtain the (×, /)-sign-preserved form by applying Theorem 4.1 to

eachCij. (A+; A−) for eachCij is determined by Theorem 4.2.

Theorem 8.1:Consider a sign-space ofC. Let C ′ij be theαβ-approximator forCij constructed
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as in Tables II and III. LetC ′ beC with everyCij replaced withC ′ij. ThenC ′ is aαβ-approximator

of C in the sign-space.

Proof: Let op be∧ or ∨. The theorem follows because (1) ifx andy areβ-monotone, so

is x op y, (2) if x is weaker (stronger) thanx′ and if y is weaker (stronger) thany′, x op y is

weaker (stronger) thanx′ op y′.

Section IV, V, VI are now applicable to Boolean constraints, by constructingαβ-approximators

using Theorem 8.1. An interesting question is how this extension affects the effectiveness of

Divide-and-Approximate. The study in Section VII provides some insights. Since negation and

disjunction tend to relax the constraint, they make pruning satisfying cells more effective.SM and

SA would perform better in this case. In contrast, conjunction tightens up the condition, making

pruning failed cells more effective.WM and WA would perform better in this case. If both

negation/disjunction and conjunction occur, we recommend the “heterogeneous” combinations

WM/SM, WA/SA, WA/SM andWM/SA.

IX. CONCLUSION

Pushing aggregate constraints into iceberg cube mining presents a significant challenge, due to

the lack of the “well-behaved” anti-monotonicity or monotonicity. We presented a novel strategy

called Divide-and-Approximateto address this challenge, by combining two well-known ideas,

“divide-and-conquer” and “approximate”. This strategy does not depend on the specific form

of the f function in the constraint, therefore, is applicable when the constraint is unknown in

advance. Experiments showed promising results.
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