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example, recent studies have leveraged frequent itemsets to build intrusion detection models [11], toconstruct classi�ers [12, 15], to build Yahoo!-like information hierarchies [25], to discover emergingpatterns [8]. We believe that more and more internet/web related data mining will require theability of �nding frequent itemsets.1.1 Apriori lives on a uniform minimum supportThe key to mining frequent itemsets is to prune the number of candidate itemsets generated. Thebest known strategy, called Apriori [2, 3], exploits the following property: if an itemset is frequent,so are all its subsets. Thus, Apriori generates itemsets in a level-wise manner where each candidatek-itemset fi1; : : : ; ik�2; ik�1; ikg in the kth iteration is generated from two frequent (k�1)-itemsetsfi1; : : : ; ik�2; ik�1g and fi1; : : : ; ik�2; ikg. A generated candidate can be further pruned if any subsetof size k � 1 is not frequent. Apriori lives on the essential assumption that all itemsets have a uni-form minimum support. Consider what happens if the minimum support of fcoffee; sugar; teagis 2% and the minimum support of fcoffee; teag, fsugar; teag, fcoffee; sugarg is 5%: it is le-gitimate that fcoffee; sugar; teag is frequent with respect to its minimum support, but none offcoffee; teag, fsugar; teag, fcoffee; sugarg is frequent with respect to their minimum support!In this case, Apriori fail to �nd the frequent itemset fcoffee; sugar; teag!1.2 The reality is not uniformIn reality, however, there are many good reasons that the minimum support is not uniform. First,deviation and exception often have much lower support than general trends. For example, rulesfor accidents are much less supported than rules for non-accidents, but the former are often moreinteresting than the latter. Second, the support requirement often varies with the support of itemscontained in an itemset. Rules containing bread and milk usually have higher support than rulescontaining food processor and pan. A similar scenario is that dense attributes such as States haveless support than sparse attributes such as Gender. Third, item presence has less support than itemabsence. Fourth, the support requirement often varies at di�erent concept levels of items [9, 21].Fifth, hierarchical classi�cation like [25] requires feature terms to be discovered at di�erent conceptlevels, thereby, requiring a non-uniform minimum support. Finally, in recommender systems [23],recommendation rules are required to cater for both big and small groups of customers. In general,rules of high support are well known to the user, and it is the rules of low support that may provideinteresting insights and need to be discovered.With existing algorithms that assume a uniform minimum support, the best that one can dois to apply such algorithms at the lowest minimum support speci�ed and �lter the result using theother minimum supports. This approach will generate many candidates that are later discarded.From our experience (see Section 7), the increase in the number of candidates often causes anon-linear increase of execution time and a drastic performance deterioration once page swappingtakes place between memory and disk, during the support counting that reads both candidates2



transactions from disk. In one case, as we reduced the minimum support from 0.065% to 0.060%,and to 0.047%, the execution time of Apriori increased from 940 to 9,858, and to 75,652 seconds!This clearly indicates that Apriori does not scale up well with respect to the decrease of minimumsupport. In the world of non-uniform minimum support, we need a technique that �nds the itemsetsabove their minimum supports without forcing the lowest minimum support on all itemsets.1.3 Our approachWe propose the notion of support constraints as a way to specify general constraints on minimumsupport. Informally, a support constraint states what itemsets are required to satisfy what minimumsupport. We shall consider support constraints of the form SCi(B1; : : : ; Bs) � �i, where s � 0. EachBj , called a bin, is a set of items that need not be distinguished with respect to the speci�cation ofminimum support. �i is a minimum support in the range [0..1], or a function that produces such aminimum support. The above support constraint speci�es that any itemset containing at least oneitem from each Bj must have the minimum support �i. The topic of this paper is to \push" suchsupport constraints into the itemset generation to prune candidates generated. We illustrate thisapproach using an example.Example 1.1 Consider four support constraintsSC1(B1; B3) � 0:2, SC2(B3) � 0:4, SC3(B2) � 0:6, SC0() � 0:8.Each bin Bi contains a disjoint set of items. We assume that, if more than one support constraintis applicable to an itemset, the one specifying the lowest minimum support is adopted. This isbecause adding more items to an itemset should not increase the minimum support of the itemset.With this in mind, we have� Case (i): SC1(B1; B3) � 0:2 speci�es minimum support 0.2 for any itemset containing (atleast) one item in each of B1 and B3.� Case (ii): SC2(B3) � 0:4 speci�es minimum support 0.4 for any itemset containing one itemin B3 but no item in B1 (otherwise, Case (i) applies).� Case (iii): SC3(B2) � 0:6 speci�es minimum support 0.6 for any itemset containing one itemin B2 but no item in B3 (otherwise, Case (ii) applies).� Case (iv): SC0() � 0:8 speci�es minimum support 0.8 for any other itemset (i.e., the defaultminimum support).There are two key issues in making use of these speci�cations:Constraint pushing. On the one hand, we would like to treat these cases separately so thatthe highest possible minimum support is applied in each case. On the other hand, we would liketo share the work done in di�erent cases so that each itemset is generated at most once. To seethis, let bi denotes any item from Bi. As in Apriori we like to generate itemset fb0; b1; b2g in Case(iii) using fb0; b1g generated in Case (iv) and fb0; b2g generated in Case (iii). This requires the3



minimum support 0.6 of fb0; b1; b2g to be \pushed" down to fb0; b1g, on the ground that fb0; b1; b2g\depends on" fb0; b1g, and further down to fb0g and fb1g. The pushed minimum support, i.e., 0.6,is lower than the speci�ed minimum support for fb0; b1g, fb0g, fb1g, i.e., 0.8, but is higher than thelowest minimum support 0.2. In this sense, we have pruned the minimum support 0.2 for certainitemsets and tightened up the search space. Our goal is to prune low minimum supports as muchas possible while still generating all itemsets above their speci�ed minimum supports.Order sensitivity. The above example has implicitly assumed that b3 does not follow b2in the item ordering used by the Apriori itemset generation. Suppose instead that b3 follows b2in the ordering. fb0; b1; b2; b3g would then depend on fb0; b1; b2g, and the minimum support 0.2for fb0; b1; b2; b3g would be pushed down to fb0; b1; b2g, and transitively, down to fb0; b1g, fb0; b2g,fb0g; fb1g; fb2g. In this case, a lower minimum support is pushed, compared with 0.6, and moreitemsets will be generated. The key idea of tightening up the search space is to order items so thatthe highest possible minimum support is pushed in each case. 2Here is the overview of our approach. We de�ne a framework for specifying support constraintsin Section 3. We then present a strategy for pushing support constraints into the Apriori itemsetgeneration in Section 4. The constraint pushing exploits the dependency between itemsets, rep-resented by an enumeration tree of bin sets, and determines the highest minimum support to bepushed to each itemset. This phase makes use of the information of given support constraints,but not the database. It turns out that the ordering of nodes in an enumeration tree drasticallyimpacts the pushed minimum support. We present several ordering strategies to maximize thepushed minimum support in Section 5. At the itemset generation phase, candidates are generatedas in Apriori but the pushed minimum support is used to determine whether a candidate is fre-quent. We call this strategy Adaptive Apriori, to emphasize that the pushed minimum support isdetermined individually for each itemset and that Adaptive Apriori generalizes Apriori to the case ofnon-uniform minimum support while preserving the Apriori itemset generation. The mining algo-rithm is presented in Section 6. We evaluate the e�ectiveness of this approach in Section 7. Finally,we conclude the paper in Section 8.2 Related workThe support-based Apriori pruning was �rst studied in [2, 3], and a similar idea in [14]. Nearly alllater frequent itemset minings rely on Apriori as a basic pruning strategy. Constraints other than theminimum support are considered in [16, 22]. However, none of these approaches considers pushingsupport constraints like ours. The correlation approach [1, 5] considers the support requirementrelative to the independence assumption, but not general support constraints or constraint pushing.Instead of abandoning the support requirement like in [7], our approach is to make the requirementmore realistic by allowing it di�erent for di�erent itemsets. [10] abandons the Apriori itemsetgeneration, but still critically relies on a uniform support requirement.[13] deals with a non-uniform minimum support. In [13], a minimum item support (or MIS) is4



associated with each item, and the minimum support of an itemset is de�ned to be the lowest MISassociated with the items in the itemset. This speci�cation is unnatural for three reasons. (i) TheMIS of individual items has to reect the minimum support of unseen itemsets at the speci�cationtime. (ii) In some applications the user may have a minimum support for an itemset as a singleconcept, e.g., fwhite;maleg, but not for individual items in the itemset (e.g., white or male).This \minimum itemset support" is usually lower than the minimum item support. (iii) Di�erentminimum supports cannot be speci�ed for two itemsets, like fwhite;maleg and fwhite;male; gradg,if a common item has the lowest MIS, like white. We overcome these di�culties by specifying theminimum support directly for itemsets. We will show that our speci�cation can model the MISspeci�cation, but the converse is not true.Our conference paper [24] reports the preliminary work of the approach considered here. Inthis paper, we extend that report by presenting the mining algorithm and detailed experimentalstudies.3 Specifying support constraintsAs in [2, 3], the database is a collection of transactions. Each transaction is a set of items takenfrom a �xed universe. A k-itemset is a set of k items. The support of an itemset I , denoted sup(I),is the fraction of the transactions containing all the items in I .3.1 The support speci�cationThe task of support speci�cation is to specify the minimum support for each itemset. Clearly, itis not practical to enumerate all itemsets. Our approach is to partition the set of items into bins,denoted as Bj , such that items that need not be distinguished in the speci�cation are in the samebin. Therefore, given a bag or multiset � = fB1; : : : ; Bkg of bins, all k-itemsets fi1; : : : ; ikg, whereij 2 Bj , have the same minimum support. � is called the schema of itemsets fi1; : : : ; ikg. Tospecify the minimum support for itemsets, we will specify the minimum support for schemas. Thismotivates the notion of support constraints.De�nition 3.1 (Support constraints) A support constraint (SC) has the form SCi(l1; : : : ; ls) ��i (or simply SCi � �i), s � 0. Each lj is either a bin or a variable for bins. �i, called a minimumsupport, is a function over l1; : : : ; ls and returns a real in [0::1]. The order of lj's does not matterand lj may repeat. A SC is ground if it contains no variable, otherwise, non-ground. A non-groundSC can be instantiated to a ground SC by replacing each variable with a bin. A support speci�cationis a non-empty set of SCs. 2There are two considerations in interpreting a SC. First, we can interpret a SC either as spec-ifying some items in an itemset, called the open interpretation, or as specifying all items in anitemset, called the closed interpretation. Second, a choice must be made if an itemset \matches"the item speci�cation of more than one SC. Consider itemset I = fb1; b2; b3; b4g of support 0.15, and5



SC1(B1; B2) � 0:1 and SC2(B3; B4) � 0:2, where bi is an item in Bi. In the open interpretation,I matches the item speci�cation of both SCs. Therefore, whether I is frequent depends on whichSC is used as the minimum support for I . Our decision is that the lower minimum support 0.1prevails. The rationale is simple: the minimum support of an itemset should not be increased byadding more items.De�nition 3.2 (Frequent itemsets) An itemset I matches a ground SCi � �i in the openinterpretation if I contains (at least) one item from each bin in SCi and these items are distinct.An itemset I matches a ground SCi � �i in the closed interpretation if I contains one item fromeach bin in SCi and these items are distinct, and I contains no other items. An itemset I matchesa non-ground SC if I matches some instantiation of the SC. The minimum support of itemset I ,denoted minsup(I), is the lowest �i of all SCi � �i matched by I . If I matches no SC, minsup(I)is unde�ned. An itemset I is frequent if minsup(I) is de�ned and sup(I) � minsup(I). 2The notion of \match" and minsup can be extended to schemas in a natural way. A schema� matches a ground SCi � �i in the open interpretation if SCi is a sub-bag of � 1. A schema �matches a ground SCi � �i in the close interpretation if SCi = �. A schema � matches a non-ground SCi � �i if � matches some instantiation of the SC. Let minsup(�) denote the minimumsupport for (the itemsets of) schema �. In the open interpretation, for ground SC1(�1) � �1and SC2(�2) � �2, if �1 � �2 and �1 > �2, SC1(�1) � �1 is never used. In fact, if any itemsetI matches SC1(�1) � �1, I also matches SC2(�2) � �2, and we always use the lower �2 as theminimum support for I . In this sense, SC1(�1) � �1 is redundant. From now on, we assume thatall redundant SCs are removed. With this assumption, a SC of the form SCi() � �i, if speci�ed,must have the highest minimum support and is used only when no other SC is matched. For thisreason, SCi() � �i is called the default SC.Example 3.1 (The running example) Consider the transactions and support speci�cation inFigure 1 in the open interpretation. Each item is represented by an integer from 0 to 8. For anyitemset I containing an item from B1 and an item from B3, I matches both SC1(B1; B3) � 0:2and SC2(B3) � 0:4. minsup(I) = 0:2 because the lowest minimum support of matched SCs isused. Some examples of such I are f0; 2g, f0; 2; 3g, and f2; 3; 4g. f2; 4; 7g, f2; 4; 8g, f4; 7; 8g, andf2; 4; 7; 8g all have minimum support 0.6, because they match only SC3(B2) � 0:6, and are frequent.f2; 7g and f2; 8g match only SC0() � 0:8, and f2; 7g is frequent but f2; 8g is not. 2Example 3.2 As an example of non-ground SCs and the closed interpretation, consider SCi(V1; : : : ; Vk) �sup(V1)� : : :� sup(Vk), 1 � k � 4, where Vi are variables. Each Bi contains the items of the samesupport, denoted sup(Bi). This SC speci�es the minimum support relative to the independenceassumption on item occurrence. With the closed interpretation, any itemset containing more than4 items has an unde�ned minimum support. 2We like to comment that, in SCi � �i, �i is required to be \evaluable" at the speci�cation time.A constant �i satis�es this requirement, so does any �i de�ned by values associated with bins Bi1A bag x is a sub-bag of a bag y if x is a subset of y with duplicates considered.6



databaseTID Items100 0,2,7200 0,4,7,8300 2,4,5,7,8400 1,2,4,7,8500 2,4,6,7,8 binsB0 1,7,8B1 2,6B2 4,5B3 0,3 a speci�cationSC0() � 0.8SC1(B1; B3) � 0:2SC2(B3) � 0:4SC3(B2) � 0:6Figure 1: The running example
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0.6/0.60.6/0.6 0.6/0.6 0.8/0.8 0.8/0.8Figure 2: A schema enumeration tree, marked with Sminsup=Pminsupthat are known at the speci�cation time, such as the maximum, minimum, or average support ofthe items in Bi. However, this requirement is not satis�ed if we specify the minimum con�dence ofrules � ! � by SC(�; �) � minconf � sup(�), where � and � are schemas and each bin containsa single item (thus, schemas and itemsets coincide). This is because sup(�) is unknown at thespeci�cation time. Even at the itemset generation, sup(�) is known only for frequent itemsets �.The notion of support constraints generalizes several existing classes of constraints in the contextof association rules mining. The classic uniform minimum support [2, 3] can be speci�ed by onedefault SCi() � �i with �i being the usual minimum support. The item constraints [22] canbe speci�ed by non-default SCs in which all minimum supports are equal. To model the MISspeci�cation in [12], we can group the items of the same support into a bin and specify the non-ground SCi(V1; : : : ; Vk) � minfsup(V1); : : : ; sup(Vk)g in the closed interpretation, where Vj arevariables for bins. However, it is not hard to see that the MIS speci�cation cannot model thespeci�cation in Example 3.2 nor a speci�cation such as SC1(B1; B2; B3) � 0:2, SC2(B1; B3) � 0:3,and SC2(B2; B3) � 0:4.We can construct association rules from frequent itemsets. There are three approaches to theconstruction, depending on which parts of rules the SCs are speci�ed. Let minconf denote theuser-speci�ed minimum con�dence for association rules.De�nition 3.3 (Association rules) For each pair of frequent itemsets I and I 0 such that I � I 0,� if sup(I 0)=sup(I) � minconf , Type I association rule I ! I 0 � I is constructed.� if sup(I 0)=sup(I 0� I) � minconf , Type II association rule I 0 � I ! I is constructed.7



� if sup(I 0)=sup(I 0� I) � minconf and I 0� I is frequent, Type III association rule I 0� I ! Iis constructed. 2For all types of rules X ! Y , SCs are enforced over XY because XY (i.e., I 0) is always frequent2. In addition, for Type I, II, III, respectively, SCs are further enforced over the antecedent X ,the consequent Y , and both the antecedent and the consequent. For Type I and Type III rulesX ! Y , the con�dence sup(XY )=sup(X) can be computed directly using frequent itemsets becauseboth XY and X are frequent. For Type II rules X ! Y , the antecedent X (i.e., I 0 � I) is notnecessarily frequent and an additional database scan is needed to �nd sup(X). If only the defaultSC is speci�ed, all types degenerate to the classic association rules.3.2 Typical scenarios of speci�cationUntil now, we have not said much about how the end user determines bins Bj and minimumsupport �i in a SC. Though this decision largely depends on applications, we consider severaltypical scenarios and hope that they are indicative to the end user.Support-based speci�cation. Typically, the minimum support for an itemset is a functionof the support of some or all items contained in the itemset. Example 3.2 and the MIS speci�cationare based on this idea. These examples illustrate three useful points. First, a bin Bj usuallycontains similarly supported items. Such bins can be found by computing the support of items inone pass of the transactions and then clustering the items based on their supports. Second, �i isusually a function of some representative supports of bins (such as the maximum, minimum, oraverage support in the bin), and the function of �i can be either chosen from a menu of built-infunctions or supplied by the user. Third, if the user does not have particular schemas in mind forspeci�cation, a generic speci�cation in the form of a non-ground SC can be used.Concept-based speci�cation. In the presence of an item concept hierarchy, it is desirableto specify SCs based on the generality of the item concepts. For example, SC1(c1; c2) � 2 �sup(c1)m � sup(c2)n states that any itemset containing at least one child of c1 and one child of c2 hasthe minimum support 2� sup(c1)m � sup(c2)n , where c1 and c2 are variables representing concepts, andm and n are the number of child concepts of c1 and c2.Attribute-based speci�cation. For a database in the form of a relational table, it makessense for each bin to correspond to the set of (attribute, value) pairs from the same attribute. Forexample, if States and Gender are attributes in the table, SC1(States; Gender) � N50 � N2 speci�esthat any itemset containing a state code and a gender has the minimum support N50 � N2 , whereN is the number of tuples in the relational table, N50 and N2 are the average support of state codesand the average support of gender.Enumeration-based speci�cation. The most exible speci�cation is explicitly enumeratingthe items in a bin, on the basis that they are not distinguishable with respect to the speci�cation.For example, SC1(B1; B2) � 0:1, where B1 = fmilk; cheeseg and B2 = fboots; sockg, says that any2XY is the shorthand of the union of X and Y . 8



itemset containing at least one item in B1 and one item in B2 has minimum support 0.1. In thiscase, the user is interested in only milk and cheese, rather than all dairy products, and only bootsand sock, rather than all footwear products.For the rest of the paper, we assume that a support speci�cation is chosen.4 Adaptive AprioriA key idea of our approach is to push SCs following the \dependency chain" of itemsets in theitemset generation in Apriori. This dependency is best described by a schema enumeration tree. Ina schema enumeration tree, each node (except the root) is labeled by a bin Bi. A node v representsthe schema given by the labels B1 : : :Bk along the path from the root to v. If a schema enumerationtree contains two sibling nodes representing schemas s1 = B1 : : :Bk�2Bk�1 and s2 = B1 : : :Bk�2Bk,where s1 is on the left of s2 if Bk�1 6= Bk , the schema enumeration tree also contains the noderepresenting schema s = B1 : : :Bk�2Bk�1Bk, as a child of the node for s1. s1 and s2 are calledgenerating schemas of s. Every schema depends on its generating schemas in that the former isconstructed by the latter. In Figure 2, B2B1 depends on B2 and B1, but not on B1B0 or B3.Several comments follow. (i) Unlike the static lexical ordering in a standard set enumeration tree[18], the ordering of nodes in a schema enumeration tree is determined dynamically on a per-nodebasis to achieve a certain optimality of constraint pushing. We will consider the ordering issue inSection 5. (ii) There is an one-to-one correspondence between nodes and the schemas representedby them. Thus, the terms \schema" and \node" are interchangeable. (iii) There should be noconfusion between Bi as a label and Bi as a schema (of length 1). As a label, Bi can occur atseveral nodes (like B2 in Figure 2), but as a schema, Bi is represented by a unique node. (iv)We can associate minsup with nodes, in the way of associating it with schemas. (v) A label Bi isallowed to repeat on a path to cover those itemsets containing more than one item from Bi.4.1 The pushed minimum supportConsider schema s = B1 : : :Bk�2Bk�1Bk , and its generating schemas s1 = B1 : : :Bk�2Bk�1 ands2 = B1 : : :Bk�2Bk . In the case of a uniform minimum support, if an itemset I = fi1; : : : ; ik�2; ik�1; ikgof s is frequent, so are I1 = fi1; : : : ; ik�2; ik�1g of s1 and I2 = fi1; : : : ; ik�2; ikg of s2. This prop-erty enables Apriori to generate candidate k-itemsets I using frequent (k � 1)-itemsets I1 and I2.However, this generation is not available for non-uniform minimum support because minsup(s),minsup(s1), minsup(s2) are not always the same. Our approach is to replace minsup with a newfunction, Pminsup, called the \pushed minimum support", such that Pminsup de�nes a super-set of the frequent itemsets and this superset can be computed in the manner of Apriori. Let usformalize this idea.Consider any function f from schemas s to [0::1]. We say that an itemset I of schema s isfrequent(f) if sup(I) � f(s). Let F (f) denote the set of frequent(f) itemsets.9



De�nition 4.1 (Pminsup) Let Pminsup be a function from (the schemas of) schema enumera-tion tree T to [0..1] satisfying:� Completeness: For every schema s in T such that minsup(s) is de�ned, Pminsup(s) �minsup(s);� Apriori-like: For every schema s and its generating schemas s1 and s2, whenever an item-set fi1; : : : ; ik�2; ik�1; ikg of s is frequent(Pminsup), so are fi1; : : : ; ik�2; ik�1g of s1 andfi1; : : : ; ik�2; ikg of s2;� Maximality: Pminsup is maximal with respect to Completeness and Apriori-like. 2Pminsup is called the pushed minimum support with respect to T and minsup. 2Intuitively, Completeness ensures that F (Pminsup) is a superset of F (minsup), Apriori-likepreserves the Apriori itemset generation of candidates, and Maximality ensures that F (Pminsup) istightest to satisfy Completeness and Maximality. Therefore, by replacing minsup with Pminsup,we are able to generate a tight superset of F (minsup) in the same manner as Apriori. This strategyis referred as to Adaptive Apriori. A bene�t of preserving the Apriori itemset generation is thatthe improvements of Apriori studied over the last several years (e.g., [6, 17, 19]) are immediatelyapplicable to Adaptive Apriori. The novelty of Adaptive Apriori, however, is that it breaks the barrierof uniform minimum support by de�ning the bestminimum support, i.e., Pminsup, for each schemaindividually with respect to the preservation of Apriori. In fact, Apriori is the special case of AdaptiveApriori where Pminsup is equal to the given uniform minimum support and the schema enumerationtree has a single path of the form root; B; : : : ; B, where the only bin B contains all the items.Unlike Apriori, Adaptive Apriori does not assure that every subset of a frequent(Pminsup) item-set be frequent(Pminsup). This is both good news and bad news. The good news is that thenumber of frequent(Pminsup) itemsets may not be necessarily exponential. Indeed, a frequent(f)itemset fi1; : : : ; ik�2; ik�1; ikg only assures that the subsets of the form fi1; : : : ; ij�1; ij; ipg befrequent(f), where j < p � k. There are only k(k � 1)=2 such subsets 3. Note that this doesnot mean that the other subsets are not frequent(f). Characterizing those f 's that do not de�neexponentially many frequent(f) itemsets is an interesting problem in itself. The bad news is thatpruning a candidate I of size k by checking a subset I 0 of size k � 1, as in Apriori, is now possibleonly if Pminsup(s) � Pminsup(s0), where s and s0 are the schemas of I and I 0. This is a naturalgeneralization of the subset based pruning in the case of non-uniform minimum support.At this point, two questions need to be answered. First, how do we determine Pminsup withrespect to a given schema enumeration tree T? Second, how do we generate a schema enumerationtree for which Pminsup is maximized? We will answer the �rst question in the rest of this sectionand answer the second question in Section 5. In the rest of the paper, we shall use the notationin Table 1. For example, for schema s = B3B2 in Figure 2, subtree(s) is the subtree rooted at s3For p = 1, there is 0 subset; for p = 2, there is 1 subset; for p = 3, there are 2 subsets; ....; for p = k, there arek � 1 subsets. 10



notation meanings a node or schemaL(s) the label of ssubtree(s) the subtree rooted at s�(s) the set of SCs matched by some schema in subtree(s)RS(s) the set of right siblings of s plus s itselfLS(s) the set of left siblings of sminsup(s) the minimum support of sSminsup(s) the lowest minimum support in �(s)Pminsup(s) the pushed minimum support of sTable 1: Notation for a schema enumeration tree(not shown); �(s) contains all SCs except SC1(B1; B3) � 0:2 because label B1 does not occur insubtree(s); Sminsup(s) is the lowest minimum support in �(s), i.e., 0.4; RS(s) contains schemasB3B2; B3B0; B3B3; and LS(s) contains schema B3B1. Notice that while minsup only depends onthe problem speci�cation, Pminsup and Sminsup also depend on the schema enumeration treeused.4.2 Determining PminsupConsider the running example and Figure 2. In subtree(B2), no schema matches SC1(B1; B3) � 0:2and SC2(B3) � 0:4 because label B3 does not occur in the subtree. In this sense, these SCs orminimum supports are pruned from subtree(B2). The same goes for subtree(B1) and subtree(B0).In general, for two generating nodes l and r (which must be siblings) with l on the left and r on theright, the node generated by l and r is a child of l and has label L(r), and L(r) occurs in subtree(l),but not in subtree(r). This has two implications, stated below.Corollary 4.1 Consider any node v in a schema enumeration tree T .1. Only the labels of nodes in RS(v) can occur in subtree(v). As such, all SCs containing thelabels of nodes in LS(v) are pruned from subtree(v).2. Only the nodes in subtree(v) and subtree(u) for u 2 LS(v) depend on v. As such, Pminsup(v) =minfSminsup(u) j u 2 LS(v)[ fvgg.Example 4.1 In Figure 2, each schema s is marked by Sminsup(s)=Pminsup(s). Since labelB3 does not occur in subtree(B2), all SCs containing B3 are pruned in subtree(B2), so �(B2) =fSC0() � 0:8; SC3(B2) � 0:6g and Sminsup(B2) = 0:6. Sminsup(B3) = 0:2. Pminsup(B2)= minfSminsup(B3), Sminsup(B2)g = 0:2. Pminsup(s) = 0:6 for s = B2B1; s = B2B0; s =B2B2 because SC1 � 0:2 and SC2 � 0:4 are pruned in subtree(s), and Pminsup(s) = 0:8 fors = B1B1; s = B1B0; s = B0B0 because SC1 � 0:2, SC2 � 0:4, and SC3 � 0:6 are pruned fromsubtree(s). By using Pminsup as the run time minimum support, we are able to tie up the supportrequirement and, at the same time, still enjoy the Apriori generation of frequent itemsets. 211



4.3 The characteristic of PminsupWe now analyze how Pminsup changes in a schema enumeration tree. This information can help usto �nd a schema enumeration tree that maximizes Pminsup. Refer to Table 1 for notation. As wemove from a left sibling l to a right sibling r, Corollary 4.1(1) implies that label L(l) is pruned fromsubtree(r), thereby, �(r) � �(l) and Sminsup(l) � Sminsup(r). As we move from a parent nodep to a child node c, �(c) is the set of SCs in �(p) matched by at least some schema in subtree(c),thereby, �(c) � �(p) and Sminsup(p) � Sminsup(c). The following theorems summarize thesecharacteristics.Theorem 4.1 Consider a schema enumeration tree.1. Let s1; : : : ; sk be the schemas at siblings from left to right. Then (a) Sminsup(si) �Sminsup(si+1); (b) Pminsup(si) = Pminsup(s1) = Sminsup(s1).2. Let s1; : : : ; sk be the schemas on a path starting from the root. Then (a) Sminsup(si) �Sminsup(si+1); (b) Pminsup(si) � Sminsup(si) � Pminsup(si+1).Proof: 1a and 2a follow immediately from the discussion preceding the theorem. 1b follows from1a and the de�nition of Pminsup. Now we show 2b. Let s0i+1 be the left-most sibling of si+1. Wehave Sminsup(si) � Sminsup(s0i+1) from 2a, and Sminsup(s0i+1) = Pminsup(si+1) from 1b. FromCorollary 4.1, Pminsup(si) � Sminsup(si). The transitivity of these equalities and inequalitiesimply Pminsup(si) � Sminsup(si) � Pminsup(si+1), i.e., 2b. 2From Theorem 4.1(2b), Pminsup is never decreased by moving from a parent p to a child c.The next theorem tells when Pminsup is actually increased.Theorem 4.2 Consider a parent node p and a child node c. The following are equivalent:1. p has a left sibling p0 such that Sminsup(p0) < Sminsup(p);2. p has a left sibling p0 such that Sminsup(p0) is pruned in subtree(p);3. Pminsup(p) < Pminsup(c).An intuitive proof of Theorem 4.2 is: the schemas in subtree(p0) depend on p, but not on c, there-fore, Pminsup(p) is constrained by the lowest minimum support in subtree(p0), but Pminsup(c)is not. Then 1 and 2 are two equivalent conditions for this di�erence to have e�ect on Pminsup(p)and Pminsup(c). For example, in Figure 3 (which contains only the nodes for non-empty setsof candidates), Sminsup(B3) < Sminsup(Bi), for i = 2; 1; 0, and every child of schema Bi has ahigher Pminsup than Bi does. This is because Sminsup(B3), i.e., 0.2, is pruned in subtree(Bi),for i = 2; 1; 0.Proof of Theorem 4.2: The equivalence of 1 and 2 follows from Theorem 4.1(1a) and the de�nitionof Sminsup. We show that 1 implies 3. Assume that 1 holds, that is, that p has a left siblingp0 such that Sminsup(p0) < Sminsup(p). By de�nition, Pminsup(p) � Sminsup(p0). From The-orem 4.1(2b), Sminsup(p) � Pminsup(c). Then 3 follows from the assumption Sminsup(p0) <12
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5 The ordering of nodesNow we answer the second question: how to construct a schema enumeration tree to maximizePminsup. Compare Figure 2 with Figure 4. The schema enumeration tree in Figure 2 is preferredbecause of higher Pminsup for most schemas. For example, Pminsup(B2B1) and Pminsup(B0B2)are 0.6 in Figure 2, but are 0.2 in Figure 4. This change is caused by placing labels B1 and B3 atthe right end at level 1 in Figure 4, which makes SC1(B1; B3) � 0:2 applicable in subtree(B2B1)and subtree(B0B2). Clearly, this example shows that the order of sibling nodes has an impact onPminsup. In general, however, no \optimal" order exists, as the next theorem shows. Therefore,a reasonable thing to do is to order sibling nodes heuristically to maximize Pminsup. In the restof this section, we consider several such heuristics.Theorem 5.1 (No optimal ordering) There exists a support speci�cation such that for anyschema enumeration tree T1, there exists another schema enumeration tree T2 and two schemass1 and s2 such that Pminsup1(s1) > Pminsup2(s1) and Pminsup2(s2) > Pminsup1(s2), wherePminsupi denotes the pushed minimum support with respect to Ti. 2Proof: Consider the support speci�cation: SC1() � �1 and SC2(B1; B2; B3) � �2, where �1 > �2.For any schema enumeration tree T1 with nodes B1; B2; B3 from left to right at level 1, there isschema enumeration tree T2 with nodes B2; B1; B3 from left to right at level 1. We can showthat Pminsup1(B2B3) = �1 and Pminsup2(B2B3) = �2. An intuitive proof is that, in T2 schemaB2B1B3 depends on (thus, �2 is pushed down to) B2B3, but in T1 schema B1B2B3 does not dependon B2B3. Similarly, we can show that Pminsup2(B1B3) = �1 and Pminsup1(B1B3) = �2. 2Assume that s1; : : : ; sk are the siblings from left to right. From Corollary 4.1(1), for i < j, L(si)does not occur in subtree(sj), and all SCs containing L(si) are pruned from �(sj). Therefore, if wewant to prune as early as possible the SCs specifying low minimum supports, label L(s1) for the�rst sibling s1 should occur in such SCs. Subsequently, to determine L(s2) for the second siblings2, we remove the SCs containing L(s1) and repeat the same consideration for the remaining SCs.The strategy is to greedily prune the lowest minimum support from all sibling subtrees on the right.Put another way, this strategy maximizes the chance of Sminsup(si) < Sminsup(sj), for all rightsiblings sj of si, and thus, the chance of the condition in Theorem 4.2(3). The following orderingstrategy is based on this idea.Strategy 1 Select the label specifying the lowest minimum support as the next sibling. 2Example 5.1 Consider ordering the child nodes of the root for the example in Figure 2 byStrategy 1. There is a tie between B1 and B3 as both specify the lowest minimum support inSC1(B1; B3) � 0:2. Suppose that B1 is selected as the �rst child. SC1(B1; B3) � 0:2 is thenpruned from subtree(B3), subtree(B2), and subtree(B0). We then select B3 as the second child be-cause it speci�es the lowest minimum support in the remaining SCs. SC2(B3) � 0:4 is then prunedfrom subtree(B2) and subtree(B0). Finally, we select B2 and B0 in that order. This gives the orderO1 = B1; B3; B2; B0 at level 1. Sminsup(B1) = 0:2, Sminsup(B3) = 0:4, Sminsup(B2) = 0:6, andSminsup(B0) = 0:8. From Theorem 4.2, Pminsup is increased by moving from nodes B3; B2; B014



to their child nodes. If we select B3 as the �rst child instead, the order is O2 = B3; B2; B1; B0. 2The above Strategy 1 is dynamic in that there is a separate round of selection for each sibling.In static Strategy 1 all siblings are selected in a single round, ignoring the interaction betweensiblings. Our second strategy is to greedily prune as many SCs as possible, in the hope that thedefault SC, which always speci�es the highest minimum support, can be used as early as possible.Thus, at each sibling from left to right, we select the label that occurs in the most number ofremaining SCs. In e�ect, this prunes all the SCs containing this label from the sibling subtreeson the right of the current sibling. Like Strategy 1, this strategy can be either dynamic or static.Unlike Strategy 1, the information about the minimum support in SCs is not used here.Strategy 2 Select the label specifying the most number of SCs as the next sibling. 2We can go one step further to maximize the number of si such that the default SC is used insubtree(si). A necessary and su�cient condition for such si is that a \cover" of �(p) is on theleft of si, where p is the parent node of si. A cover C of a set of SCs is a set of labels such thateach non-default SC contains at least one label in C. A minimum cover is a cover of the minimumsize. If a cover of �(p) is on the left of si, all non-default SCs in �(p) are pruned in subtree(si)because at least one label is missing for each SC. In this case, Sminsup(si) is either the defaultSC or unde�ned. On the other hand, if no cover of �(p) is on the left of si, some non-default SCremains applicable in subtree(si). To determine the relative order within a selected minimum cover,either Strategy 1 or Strategy 2 can be applied. This strategy is computationally feasible only for aspeci�cation of a small size because �nding a minimum cover is NP-complete. For a speci�cationof a large size, we can use a \small" cover to substitute for a minimum cover. Strategy 2 can beconsidered as such a substitution, as it greedily selects the label that covers the most number ofSCs.Strategy 3 Select a minimum cover of �(p) as the �rst few siblings, for the parent p. 2Example 5.2 In Example 5.1, if Strategy 3 is applied, the minimum cover C = fB2; B3g of�(root) is selected as the �rst two siblings at level 1. To determine the relative order of B3 andB2, we apply Strategy 1 or Strategy 2, both selecting B3 �rst. Thus, the order is the same as O2in Example 5.1. 2We conclude this section by making a few remarks. First, it is possible to have a hybrid strategythat combines more than one of the above rationales. For example, Strategy 1 can be used to breakthe tie arising from Strategy 2, or vice versa. More generally, one can de�ne some scoring functionto take such combinations into account. Such a scoring function can be easily incorporated withouta�ecting the rest of our algorithm. Second, the rationale of our node ordering is di�erent from thatof the item ordering in [6, 4]. The purpose of the item ordering is to reduce the cost of traversingthe enumeration tree of itemsets during the support counting [6] or to maximize the chance ofhitting a long pattern [4]. Our purpose is to maximize Pminsup for each node or schema.15



for each node p at level k � 1 do/* Step 1: Generate child nodes */if p is the root thenfor each bin Bi do create one child si of p with L(si) = Bi;elsefor each p0 in RS(p) do create one child si of p with L(si) = L(p0);/* Step 2: Order child nodes */order the child nodes si by one of the strategies in Section 5;/* Step 3: Compute �(si) and Pminsup(si) for child nodes */for each child si from left to right do�(si) := fSCi � �i 2 �(p) j SCi contains only the labels for nodes in RS(si)g;delete one occurrence of L(si) from the SCs in �(si);delete all redundant SCs from �(si);if �(si) is empty thendelete node si from the schema enumeration treeelsePminsup(si) := minfSminsup(sj ) j sj 2 LS(si) [ fsigg;Figure 5: Phase 16 The algorithmThe algorithm expands the schema enumeration tree iteratively, one level per iteration. Each itera-tion k has two phases. Phase 1 generates new nodes si at level k and determines Pminsup(si). Thisphase examines only the support speci�cation and schemas, not the database or itemsets. Phase 2generates frequent(Pminsup) at nodes si. In the following discussion, we assume that each nodep at level k� 1 is associated with the set of SCs at p, �(p), and relation Tp for frequent(Pminsup)itemsets of p. Please refer to Table 1 for notation. We explain the expansion from level k � 1 tolevel k.6.1 Phase 1Figure 5 gives the code for generating nodes si and determining Pminsup(si) and �(si). To expandto level k, three steps are performed. Step 1 creates child nodes si at level k and Step 2 ordersthese nodes according to one of the strategies proposed in Section 5. Step 3 computes �(si) andPminsup(si). We explain Step 3 using an example.Example 6.1 As in Example 5.1, the nodes at level 1 are in the order O2 = B3; B2; B1; B0. �(B3)is initialized to �(root) because B3 is the left-most child of the root. We delete label B3 from the SCsin �(B3) because every schema in subtree(B3) contains B3. Now �(B3) = fSC0() � 0:8; SC1(B1) �0:2; SC2() � 0:4; SC3(B2) � 0:6g. SC3(B2) � 0:6 and SC0() � 0:8 are redundant in the presenceof SC2() � 0:4, so are deleted from �(B3). This gives �(B3) = fSC1(B1) � 0:2; SC2() � 0:4g,where SC2() � 0:4 becomes the default SC in subtree(B3). By Corollary 4.1, Pminsup(B3) =16



Sminsup(B3) = 0:2. Similarly, for sibling B2, �(B2) = fSC3() � 0:6g, Sminsup(B2) = 0:6,Pminsup(B2) = 0:2; for sibling B1, �(B1) = fSC0() � 0:8g, Sminsup(B1) = 0:8, Pminsup(B1) =0:2; for sibling B0, �(B0) = fSC0() � 0:8g, Sminsup(B0) = 0:8, and Pminsup(B0) = 0:2. 2In Step 3, deleting one occurrence of L(si) from the SCs in �(si) is necessary for the correctnessat the next level. To see this, suppose that we have not deleted label B2 from �(B2) in theabove example. �(B2) would contain SC3(B2) � 0:6, rather than SC3() � 0:6. At node B2B0,since B2 is not a label of any node in RS(B2B0) (see Figure 2), SC3(B2) � 0:6 would not beincluded in �(B2B0) in Step 3. As a result, the default minimum support 0.8 would be used forPminsup(B2B0). This is wrong because B2B0 matches SC3(B2) � 0:6.6.2 Phase 2In this phase, we compute frequent(Pminsup) itemsets for all schemas si at level k. The detailis given in Figure 6. This part is similar to the Apriori itemset generation. If k = 1, we �ndall frequent(Pminsup) 1-itemsets in one scan of the transactions. Assume k > 1. Consider anyschema si = B1 : : :Bk�2Bk�1Bk at level k. Let p1 = B1 : : :Bk�2Bk�1 and p2 = B1 : : :Bk�2Bk bethe generating schemas of si. To generate the candidates of si, denoted by Tsi , we \join" Tp1 andTp2 as in Apriori [3] and scan the database for computing the support of candidates. To computethe support of candidates, the hash-tree implementation for subset function [3] can be used. ForAdaptive Apriori, however, two new pruning strategies, not shown in Figure 6, are available. First,before joining Tp1 and Tp2 , if Pminsup(si) > Pminsup(p1) or Pminsup(si) > Pminsup(p2), wecan skip over those tuples having support less than Pminsup(si). This pruning is not available inApriori where the minimum support of all itemsets is the same. The second new pruning strategyis that if, for some i, Pminsup(B1 : : :Bi�1Bi+1 : : :Bk) � Pminsup(B1 : : :Bk), we can prune allcandidates of schema B1 : : :Bk whose projection on B1 : : :Bi�1Bi+1 : : :Bk was not generated. Thisis a generalized form of Apriori's subset pruning in the case of non-uniform minimum support.Example 6.2 Continue with Example 6.1 and the schema enumeration tree in Figure 3, whichis produced by Strategy 3. Table 2 shows the work in Phase 1 and Phase 2. In the last column,frequent(Pminsup) itemsets are marked by p, and frequent(minsup) itemsets are marked by 4.The column Pminsup shows that, out of the 17 nodes expanded in the enumeration tree, 8 nodeshave used Pminsup higher than the lowest minimum support 0.2. The number of candidates gener-ated is 29, the number of frequent(Pminsup) itemsets is 22, and the number of frequent(minsup)itemsets is 17. In comparison, if we apply Apriori at minsup = 0:2, the number of candidates gen-erated and the number of frequent(minsup) itemsets are 85 and 73. If we adopt the \adversary"strategy, that is, �rst apply Strategy 3 to determine the order of siblings and then use the reversedorder, the number of candidates generated, the number of frequent(Pminsup) itemsets, and thenumber of frequent(minsup) itemsets are 89, 65, and 17, respectively. 217



/* Step 1: Generate candidates */for each node si at level k dogenerate the candidate set Tsi by joining Tp1 and Tp2 for generating schemas p1 and p2;/* Step 2: Find frequent(Pminsup) itemsets */compute sup(I) of all candidates I generated in Step 1 in one pass of transactions;prune all candidates I with sup(I) < Pminsup(si);/* Step 3: Delete empty nodes */for each node si at level k doif Tsi is empty thendelete node si from the schema enumeration tree;for each sj 2 LS(si) do delete the SCs containing L(si) from �(sj);Figure 6: Phase 27 EvaluationWe study the scalability with respect to the lowest minimum support speci�ed. The scalabilityis measured by the dead point, de�ned as the lowest minimum support at which page swappingbetween memory and disk starts to takes place. In our experiments, we observed that wheneverthe available physical memory dropped to a few Mbytes, the run did not �nish within 3 hoursand much longer time was needed. So, practically the dead point was taken as the lowest testedminimum support for which a run �nishes within 3 hours. All experiments were performed on PII300-MMX with 128MB memory and NT Server 4.0.A major advantage of preserving the Apriori itemset generation is that nearly all improvementsof Apriori over the last several years, by being smart in candidate generating and support counting,e.g., [6, 17, 19], are immediately applicable to Adaptive Apriori. Therefore, it is not necessary tocompare Adaptive Apriori with every such improvement. We chose only two algorithms for com-parison: Apriori [3] and Max Miner [4]. Apriori provides a baseline for measuring the bene�t of ourapproach. Max Miner generates only maximal frequent itemsets, so a good candidate to overcomethe bottleneck of itemest generation. Also, the ability of Max Miner to mine long itemsets makesMax Miner attractive in dealing with low minimum support. Since neither Apriori nor Max Minerhandles general support constraints, the lowest minimum support in a support speci�cation wasused for these algorithms.7.1 The synthetic datasetOur �rst experiment is to study the e�ectiveness of Adaptive Apriori over a range of support speci-�cations. We used the synthetic dataset from [3] with the following settings: 100K transactions of18



Phase 1 Phase 2k Node s �(s) Pminsup(s) minsup(s) Candidates I at s (sup(I))root SC1(B1B3) � 0:2SC2(B3) � 0:4SC3(B2) � 0:6SC0() � 0:81 B3 SC1(B1) � 0:2 0.2 0.4 f0g (0.4) p4SC2() � 0:4 f3g (0.0)B2 SC3() � 0:6 0.2 0.6 f4g (0.8) p4f5g (0.2) pB1 SC0() � 0:8 0.2 0.8 f2g (0.8) p4f6g (0.2) pB0 SC0() � 0:8 0.2 0.8 f1g (0.2) pf7g (1.0) p4f8g (0.8) p42 B3B1 SC1() � 0:2 0.2 0.2 f0; 2g (0.2) p4f0; 6g (0.0)B3B2 SC2() � 0:4 0.2 0.4 f0; 4g (0.2) pf0; 5g (0.0)B3B0 SC2() � 0:4 0.2 0.4 f0; 1g (0.0)f0; 7g (0.4) p4f0; 8g (0.2) pB2B1 SC3() � 0:6 0.6 0.6 f4; 2g (0.6) p4B2B0 SC3() � 0:6 0.6 0.6 f4; 7g (0.8) p4f4; 8g (0.8) p4B1B0 SC0() � 0:8 0.8 0.8 f2; 7g (0.8) p4f2; 8g (0.6)B0B0 SC0() � 0:8 0.8 0.8 f7; 8g (0.8) p43 B3B1B2 SC1() � 0:2 0.2 0.2 f0; 2; 4g (0.0)B3B1B0 SC1() � 0:2 0.2 0.2 f0; 2; 7g (0.2) p4f0; 2; 8g (0.0)B3B2B0 SC2() � 0:4 0.4 0.4B2B1B0 SC3() � 0:6 0.6 0.6 f4; 2; 7g (0.6) p4f4; 2; 8g (0.6) p4B2B0B0 SC3() � 0:6 0.6 0.6 f4; 7; 8g (0.8) p44 B2B1B0B0 SC3() � 0:6 0.6 0.6 f4; 2; 7; 8g (0.6) p4Table 2: Computation of frequent(Pminsup) itemsetsaverage length 10, 500 items, and the default settings for all other parameters. As shown in Figure7(a), a characteristic of this dataset is that most items have low support, less than 0.04 (or 4%).The same characteristic remains even if other settings are used. This presents an adversary case toour approach that relies on exploiting a large variance of support in the data.To generate a range of support speci�cations, we partitioned the support range into 4 intervalssuch that Bi contains the items with support in the ith interval and the number of items in Biis approximately equal. We de�ned the minimum support of SCi(Bi1 ; : : : ; Bik) � �i, k > 0, asfollows: �i = minfk�1 � S(Bi1)� : : :� S(Bik); 1g (1)where S(Bj) denotes the lowest item support for Bj (see Figure 7(b)), and  is an integer largerthan 1. The term k�1 was used to slow down the decrease of S(Bi1) � : : :� S(Bik) for large k,and to simulate di�erent support requirements. Figure 7(c) shows the 7 SCs corresponding to the19
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(b)Bins Support rangeB1 [0.00001, 0.00535]B2 [0.00536, 0.01397]B3 [0.01398, 0.02759]B4 [0.02765, 0.15113] (c)SCsSC1(B2; B3; B4) � �1SC2(B2; B3) � �2SC3(B2; B4) � �3SC4(B3; B4) � �4SC5(B2) � �5SC6(B3) � �6SC7(B4) � �7Figure 7: SCs for the synthetic dataset �1 �2 �3 �4 �5 �6 �71 0.0000021 0.000075 0.00015 0.00039 0.0054 0.014 0.0282 0.0000083 0.00015 0.00030 0.00077 0.0054 0.014 0.0283 0.000019 0.00023 0.00044 0.0012 0.0054 0.014 0.0284 0.000033 0.00030 0.00059 0.0016 0.0054 0.014 0.0285 0.000052 0.00038 0.00074 0.0019 0.0054 0.014 0.0288 0.00013 0.00060 0.0012 0.0031 0.0054 0.014 0.0289 0.00016 0.00067 0.0013 0.0035 0.0054 0.014 0.02810 0.00020 0.00075 0.0015 0.0039 0.0054 0.014 0.02813 0.00035 0.00097 0.0019 0.0050 0.0054 0.014 0.02815 0.00047 0.0011 0.0022 0.0058 0.0054 0.014 0.02817 0.00060 0.0013 0.0025 0.0066 0.0054 0.014 0.02818 0.00065 0.0014 0.0027 0.0070 0.0054 0.014 0.02820 0.00083 0.0015 0.0030 0.0077 0.0054 0.014 0.028Figure 8: The minimum support �i for the synthetic datasetnon-empty subsets of fB2; B3; B4g and Figure 8 shows the minimum support in these SCs. B1was excluded because S(B1) is too low. For each non-empty subset of the 7 SCs, we created onesupport speci�cation by adding SC0() � 0:03 as the default SC. In this way, we generated all the127 support speci�cations not involving B1.7.1.1 Benchmarking against AprioriThe bene�t of Adaptive Apriori is measured by benchmarking it against the classic Apriori. Weconsidered four measures: the execution time, the number of candidates generated, the number offrequent(Pminsup) itemsets, and the number of frequent(minsup) itemsets. A relative measureis the ratio of the measure for Adaptive Apriori to the measure for Apriori. Figure 9 plotted thefour relative measures for the 127 support speci�cations, where  = 15 and the static Strategy 120



a
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1R
e
la

ti
v
e
 #

 o
f 
c
a
n
d
id

a
te

s
 g

e
n
e
ra

te
d

Relative time

b
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e
la

ti
v
e
 #

 o
f 
fr

e
q
u
e
n
t(

P
m

in
s
u
p
) 

it
e
m

s
e
ts

Relative time

c
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e
la

ti
v
e
 #

 o
f 
fr

e
q
u
e
n
t(

m
in

s
u
p
) 

it
e
m

s
e
ts

Relative timeFigure 9: The measures relative to AprioriA
0

500
1000
1500
2000
2500
3000
3500
4000
4500
5000

0.010.020.030.040.050.060.070.08

T
im

e
 (

s
e
c
)

Minimum support (%)

static 1
static 2

average
Apriori

Max_Miner

B
0

500
1000
1500
2000
2500

3000
3500
4000

4500

0.020.030.040.050.060.07

T
im

e
 (

s
e
c
)

Minimum support (%)

static 1
static 2

average
Apriori

Max_Miner

C
0

100

200

300

400

500

600

700

0.050.10.150.20.250.30.35
T

im
e
 (

s
e
c
)

Minimum support (%)

static 1
static 2

average
Apriori

Max_MinerFigure 10: The dead points for the synthetic datasetwas used for Adaptive Apriori. In the �gures, each support speci�cation was represented by a point(x; y). The x-value represents the relative execution time, and the y-value represents the otherthree relative measures. Here are the main �ndings.� All points lie southwest of the corner point (1,1). This shows that Adaptive Apriori is moree�cient than Apriori in both time and space for all support speci�cations considered.� There are three clusters of points in Figure 9(a), indicated by the three boxes. Cluster 1contains the 64 points with 0 � x � 0:1, corresponding to the 64 speci�cations containingthe SC of length 3, i.e., SC1 � �1. Cluster 2 contains the 54 points with 0:2 � x � 0:8 and0 � y � 0:7, mostly representing the speci�cations that contain more SCs of length 2 thanSCs of length 1. Cluster 3 contains the 9 points with x � 0:7 and y � 0:8, mostly representingthe speci�cations that contain more SCs of length 1 than SCs of length 2. Intuitively, Clusters1, 2, and 3 correspond to large, medium, and small variances of minimum supports in supportspeci�cation, thereby, good, average, and bad cases for Adaptive Apriori.21



� Cluster 1 has a small relative time. At  = 15, the minimum support for Apriori is �1 =0:00047. At such a low minimum support, page swapping between memory and disk took placewhen the hash-tree was traversed for counting the support of candidates. This drasticallyincreased the execution time of Apriori. In fact, we had to stop Apriori after 3 hours of runningand used the measures obtained for the higher minimum support 0.0006, which �nished in9,858 seconds, as the replacement in computing the above relative measures. On the otherhand, all runs of Adaptive Apriori �nished in less than 538 seconds without page swapping, bybene�ting from using higher minimum supports in a speci�cation.� Cluster 2 represents the normal case where no page swapping took place in Apriori. In thiscase, the execution time was proportional to the number of candidate generated, and bothApriori and Adaptive Apriori were reasonably fast. As a result, the relative time is not verysmall.� Adaptive Apriori did not bene�t much for Cluster 3. To see this, consider the representativespeci�cation at point (0.95,0.95): SC4 � 0:0058; SC5 � 0:0054; SC6 � 0:014; SC7 �0:028; SC0 � 0:03. For this speci�cation, the minimum support used for Apriori is �5 = 0:0054(recall that  = 15). Only 815 itemsets satis�ed this minimum support. As a result, the otherminimum supports, i.e., 0.0058, 0.014, 0.028, and 0.03, are too high for most itemsets, andAdaptive Apriori could not bene�t from using them.7.1.2 The scalability with respect to minimum supportThe scalability is measured by the dead point as de�ned at the beginning of this section. Weconsider the three representative speci�cations (all refer to Figure 9(a)):� Speci�cation A at point (0.01,0.09) from Cluster 1: contains all 7 SCs. We set  at 20, 18,17, 13, 9, and 8, corresponding to the lowest minimum supports 0.00083, 0.00065, 0.00060,0.00035, 0.00016, and 0.00013.� Speci�cation B at point (0.36,0.12) from Cluster 2: contains SC2 � �2, SC3 � �3, SC5 � �5.We set  at 10, 9, 8, 5, 3, and 2, corresponding to lowest minimum supports being 0.00075,0.00067, 0.00060, 0.00038, 0.00023, and 0.00015.� Speci�cation C at point (0.95,0.95) from Cluster 3: contains SC4 � �4, SC5 � �5, SC6 � �6,SC7 � �7. We set  at 10, 8, 5, 4, 2, and 1, corresponding to lowest minimum supports being0.0039, 0.0031, 0.0019, 0.0016, 0.00077, and 0.00039.Shown in Figure 10(A), (B), (C) are the execution time for speci�cations A, B, C, respectively.The x-value represents the lowest minimum support in a speci�cation. \static 1" refers to staticStrategy 1 in Adaptive Apriori, etc., and \average" refers to the average of all nodes orderings inAdaptive Apriori. The dynamic strategies have a behavior similar to their static counterparts and22



were omitted. The right-most point on each curve represents the dead point, with the understandingthat for the next lowest minimum support tested, the run did not �nish within 3 hours.For speci�cation A, Apriori �rst reached the dead point (0.00065), followed by Max Miner(0.00060), \average" (0.00035), and \static 2" and \static 1"(0.00016). In fact, at the dead pointof \static 1", for 22% of the nodes expanded, Pminsup is higher than the lowest minimum support0.00016. This explains why \static 1" has a much smaller dead point. The experiment also showsthat even the random ordering of nodes can do better than not pushing support constraints atall. For Max Miner, as the minimum support became very low, the number of candidates grewfast because most lookahead tests failed. For Max Miner, the execution time does not include thepost-processing time for computing the support of all (not necessarily maximal) frequent itemsets.The result for speci�cation B in Figure 10(B) is similar to speci�cation A, except that thedi�erence between \static 1" and \static 2" diminished. The dead points are: 0.00067 for Apriori,0.00060 forMax Miner, 0.00038 for \average", 0.00023 for \static 1" and \static 2". For speci�cationC, the dead points are: 0.00077 for Apriori, Max Miner, and \average", and 0.00039 for \static 1"and \static 2". As mentioned in Section 7.1.2, the problem with speci�cation C is that AdaptiveApriori could not exploit the higher minimum supports due to low support in the data. For example,at the dead point of \static 1", only 5% of the nodes expanded used a Pminsup larger than thelowest minimum support 0.00039. As  was reduced, �5; �6; �7 remained unchanged, and so did thisproblem.7.2 The census datasetWe also experimented on the census data used in [20], which is a 5% random sample of the datacollected in Washington state in the 1990 census. The data has 23 attributes, 77 items 4 and126,229 transactions. Each transaction corresponds to an individual, and each item corresponds toan attribute/value pair. Figure 11(a) shows the distribution of item support. Unlike the syntheticdataset in Section 7.1, many items have a high support, say above 0.1, and the support varies overa wide range. We like to verify that Adaptive Apriori will bene�t from this favorable case.To generate the support speci�cation, we grouped the items from the same attribute into a bin,yielding 23 bins B1; : : : ; B23 for the 23 attributes. Figure 11(b) shows the lowest support, denotedS(Bi), and the size for each bin Bi. We speci�ed the following SCs in the closed interpretation:SCi(V1; : : : ; Vk) � �i(V1; : : : ; Vk) (k > 0) (2)where�i(V1; : : : ; Vk) = 8>><>>: 0:0000158 if k�1 � S(V1)� : : :� S(Vk) < 0:00001581 if k�1 � S(V1)� : : :� S(Vk) > 1k�1 � S(V1)� : : :� S(Vk) otherwise4originally 63 items, but we explicitly represented the FALSE value of the 14 binary attributes as items, making77 items in total. 23
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(b)Bins S(Bi) Size Bins S(Bi) SizeB19 0.0038 15 B14 0.0772 4B21 0.0084 6 B11 0.0846 2B12 0.0175 2 B7 0.0848 2B18 0.0180 2 B20 0.1046 3B5 0.0199 5 B13 0.2263 2B3 0.0232 4 B17 0.2360 2B16 0.0266 4 B22 0.2717 2B6 0.0349 2 B4 0.4107 2B23 0.0388 2 B10 0.4503 2B8 0.0403 2 B1 0.4589 2B15 0.0487 3 B2 0.4949 2B9 0.0733 4Figure 11: The bins for the census datasetwhere Vi is a bin variable and k � K for the maximal itemset size K speci�ed by the user.Each speci�cation is de�ned by a pair of  and K values. The lower bound of minimum support is0.0000158, corresponding to the support requirement of at least 2 transactions. Since the occurrenceof bins is symmetric, Strategy 2 and Strategy 3 do not impose a bias on the ordering of nodes, soare not considered here. We report only \static 1" as the \dynamic 1" did not make a tangibledi�erence. \average" refers to the average of 10 random orders for Adaptive Apriori.We varied  and K to simulate di�erent support requirements. In general, as  decreases andK increases, the lowest minimum support in a speci�cation decreases. The bottom of Figure 12shows the lowest minimum support for each (;K) pair. In Figure 12, on the left are the measuresfor  = 5, and on the right are the measures for  = 20. In Figure 12(4a,4b), the y-value forMax Miner is the number of maximal frequent itemsets. As before, the dead point is represented bythe right-most point on a curve. All algorithms were terminated after K iterations for the given K.For a small K, Max Miner worked very well. But as K increased, it lost to Adaptive Apriori becausemost lookahead tests failed. In general, Apriori and Max Miner reached the dead point earlier than\static 1" and \average". \static 1" and \average" performed better at  = 20 than at  = 5. Thisis because minimum supports are well spread at  = 20, as shown in the table in Figure 12.To get an insight into how Pminsup is actually distributed in the schema enumeration tree,we plotted Pminsup vs nodes numbered in the breath-�rst ordering for the dead point of \static1" at the settings ( = 20; K = 7) and ( = 5; K = 5). See Figure 13 and Figure 14. Though thetwo cases have the same lowest minimum support, 0.0000158, for the case of ( = 20; K = 7), theminimum supports are well spread and Adaptive Apriori was able to exploit a higher Pminsup for99% of the nodes expanded! For the case of ( = 5; K = 5), the minimum supports tended to becrowded towards 0.0000158, and only 88% (still a lot) of the nodes expanded have Pminsup higherthan 0.0000158.In summary, these experiments strongly supported our claim that if itemsets are of varied24
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