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Abstract

Interesting patterns often occur at varied levels of support. The classic association mining
based on a uniform minimum support, such as Apriori, either misses interesting patterns of low
support or suffers from the bottleneck of itemset generation caused by a low minimum support.
A better solution lies in exploiting support constraints, which specify what minimum support
is required for what itemsets, so that only the necessary itemsets are generated. In this paper,
we present a framework of frequent itemset mining in the presence of support constraints. Our
approach is to “push” support constraints into the Apriori itemset generation so that the “best”
minimum support is determined for each itemset at run time to preserve the essence of Apriori.
This strategy is called Adaptive Apriori. Experiments show that Adaptive Apriori is highly effective

in dealing with the bottleneck of itemset generation.
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1 Introduction

The association rules mining, first studied in [2, 3] for market-basket analysis, is to find all associ-
ation rules above some user-specified minimum support and minimum confidence. The bottleneck
of this problem is finding frequent itemsets (and their support), i.e., itemsets that have a support
above the minimum support. Since frequent itemsets serve as an estimation of joint probabilities

of events, the importance of mining frequent itemsets goes far beyond market-basket analysis. For
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example, recent studies have leveraged frequent itemsets to build intrusion detection models [11], to
construct classifiers [12, 15], to build Yahoo!-like information hierarchies [25], to discover emerging
patterns [8]. We believe that more and more internet/web related data mining will require the

ability of finding frequent itemsets.

1.1 Apriori lives on a uniform minimum support

The key to mining frequent itemsets is to prune the number of candidate itemsets generated. The
best known strategy, called Apriori [2, 3], exploits the following property: if an itemset is frequent,
so are all its subsets. Thus, Apriori generates itemsets in a level-wise manner where each candidate
k-itemset {i1,...,%k—2, tk—1, 1k} in the kth iteration is generated from two frequent (k — 1)-itemsets
{i1, .+ ik—2,ik—1} and {iy,...,ik_2, ik }. A generated candidate can be further pruned if any subset
of size k — 1 is not frequent. Apriori lives on the essential assumption that all itemsets have a uni-
form minimum support. Consider what happens if the minimum support of {cof fee, sugar,tea}
is 2% and the minimum support of {cof fee,tea}, {sugar,tea}, {cof fee, sugar} is 5%: it is le-
gitimate that {cof fee, sugar,tea} is frequent with respect to its minimum support, but none of
{cof fee tea}, {sugar,tea}, {cof fee, sugar} is frequent with respect to their minimum support!

In this case, Apriori fail to find the frequent itemset {cof fee, sugar,tea}!

1.2 The reality is not uniform

In reality, however, there are many good reasons that the minimum support is not uniform. First,
deviation and exception often have much lower support than general trends. For example, rules
for accidents are much less supported than rules for non-accidents, but the former are often more
interesting than the latter. Second, the support requirement often varies with the support of items
contained in an itemset. Rules containing bread and milk usually have higher support than rules
containing food processor and pan. A similar scenario is that dense attributes such as States have
less support than sparse attributes such as Gender. Third, item presence has less support than item
absence. Fourth, the support requirement often varies at different concept levels of items [9, 21].
Fifth, hierarchical classification like [25] requires feature terms to be discovered at different concept
levels, thereby, requiring a non-uniform minimum support. Finally, in recommender systems [23],
recommendation rules are required to cater for both big and small groups of customers. In general,
rules of high support are well known to the user, and it is the rules of low support that may provide
interesting insights and need to be discovered.

With existing algorithms that assume a uniform minimum support, the best that one can do
is to apply such algorithms at the lowest minimum support specified and filter the result using the
other minimum supports. This approach will generate many candidates that are later discarded.
From our experience (see Section 7), the increase in the number of candidates often causes a
non-linear increase of execution time and a drastic performance deterioration once page swapping

takes place between memory and disk, during the support counting that reads both candidates



transactions from disk. In one case, as we reduced the minimum support from 0.065% to 0.060%,
and to 0.047%, the execution time of Apriori increased from 940 to 9,858, and to 75,652 seconds!
This clearly indicates that Apriori does not scale up well with respect to the decrease of minimum
support. In the world of non-uniform minimum support, we need a technique that finds the itemsets

above their minimum supports without forcing the lowest minimum support on all itemsets.

1.3 Our approach

We propose the notion of support constraints as a way to specify general constraints on minimum
support. Informally, a support constraint states what itemsets are required to satisfy what minimum
support. We shall consider support constraints of the form SC;(Bu, ..., Bs) > 6;, where s > 0. Each
B;, called a bin, is a set of items that need not be distinguished with respect to the specification of
minimum support. §; is a minimum support in the range [0..1], or a function that produces such a
minimum support. The above support constraint specifies that any itemset containing at least one
item from each B; must have the minimum support ;. The topic of this paper is to “push” such
support constraints into the itemset generation to prune candidates generated. We illustrate this

approach using an example.

Example 1.1 Consider four support constraints

SC1(By, Bs) > 0.2, SC3(Bs) > 0.4, SC3(B3) > 0.6, SCy() > 0.8.
Each bin B; contains a disjoint set of items. We assume that, if more than one support constraint
is applicable to an itemset, the one specifying the lowest minimum support is adopted. This is

because adding more items to an itemset should not increase the minimum support of the itemset.
With this in mind, we have

e Case (i): SC1(B1, Bs) > 0.2 specifies minimum support 0.2 for any itemset containing (at

least) one item in each of By and Bs.

e Case (ii): SC3(Bs) > 0.4 specifies minimum support 0.4 for any itemset containing one item

in B3 but no item in By (otherwise, Case (i) applies).

e Case (iii): SC3(Bz) > 0.6 specifies minimum support 0.6 for any itemset containing one item

in By but no item in B3 (otherwise, Case (ii) applies).

e Case (iv): SCy() > 0.8 specifies minimum support 0.8 for any other itemset (i.e., the default

minimum support).

There are two key issues in making use of these specifications:

Constraint pushing. On the one hand, we would like to treat these cases separately so that
the highest possible minimum support is applied in each case. On the other hand, we would like
to share the work done in different cases so that each itemset is generated at most once. To see
this, let b; denotes any item from B;. As in Apriori we like to generate itemset {bg, by, b2} in Case

(iii) using {bg, b1} generated in Case (iv) and {bg, b2} generated in Case (iii). This requires the



minimum support 0.6 of {bg, by, b2} to be “pushed” down to {bg, by}, on the ground that {bg, by, b2}
“depends on” {bg, by}, and further down to {bp} and {b}. The pushed minimum support, i.e., 0.6,
is lower than the specified minimum support for {bo, b1}, {bo}, {b1}, i-e., 0.8, but is higher than the
lowest minimum support 0.2. In this sense, we have pruned the minimum support 0.2 for certain
itemsets and tightened up the search space. Our goal is to prune low minimum supports as much
as possible while still generating all itemsets above their specified minimum supports.

Order sensitivity. The above example has implicitly assumed that b3 does not follow by
in the item ordering used by the Apriori itemset generation. Suppose instead that bs follows by
in the ordering. {bg, by, bs,b3} would then depend on {bg, by, b}, and the minimum support 0.2
for {bo, by, b2, b3} would be pushed down to {bg, by, by}, and transitively, down to {bg, b1}, {bo, b2},
{bo},{b1},{b2}. In this case, a lower minimum support is pushed, compared with 0.6, and more
itemsets will be generated. The key idea of tightening up the search space is to order items so that

the highest possible minimum support is pushed in each case. O

Here is the overview of our approach. We define a framework for specifying support constraints
in Section 3. We then present a strategy for pushing support constraints into the Apriori itemset
generation in Section 4. The constraint pushing exploits the dependency between itemsets, rep-
resented by an enumeration tree of bin sets, and determines the highest minimum support to be
pushed to each itemset. This phase makes use of the information of given support constraints,
but not the database. It turns out that the ordering of nodes in an enumeration tree drastically
impacts the pushed minimum support. We present several ordering strategies to maximize the
pushed minimum support in Section 5. At the itemset generation phase, candidates are generated
as in Apriori but the pushed minimum support is used to determine whether a candidate is fre-
quent. We call this strategy Adaptive Apriori, to emphasize that the pushed minimum support is
determined individually for each itemset and that Adaptive Apriori generalizes Apriori to the case of
non-uniform minimum support while preserving the Apriori itemset generation. The mining algo-
rithm is presented in Section 6. We evaluate the effectiveness of this approach in Section 7. Finally,

we conclude the paper in Section 8.

2 Related work

The support-based Apriori pruning was first studied in [2, 3], and a similar idea in [14]. Nearly all
later frequent itemset minings rely on Apriori as a basic pruning strategy. Constraints other than the
minimum support are considered in [16, 22]. However, none of these approaches considers pushing
support constraints like ours. The correlation approach [1, 5] considers the support requirement
relative to the independence assumption, but not general support constraints or constraint pushing.
Instead of abandoning the support requirement like in [7], our approach is to make the requirement
more realistic by allowing it different for different itemsets. [10] abandons the Apriori itemset

generation, but still critically relies on a uniform support requirement.

[13] deals with a non-uniform minimum support. In [13], a minimum item support (or MIS) is



associated with each item, and the minimum support of an itemset is defined to be the lowest MIS
associated with the items in the itemset. This specification is unnatural for three reasons. (i) The
MIS of individual items has to reflect the minimum support of unseen itemsets at the specification
time. (ii) In some applications the user may have a minimum support for an itemset as a single
concept, e.g., {white, male}, but not for individual items in the itemset (e.g., white or male).
This “minimum itemset support” is usually lower than the minimum item support. (iii) Different
minimum supports cannot be specified for two itemsets, like {white, male} and {white, male, grad},
if a common item has the lowest MIS, like white. We overcome these difficulties by specifying the
minimum support directly for itemsets. We will show that our specification can model the MIS
specification, but the converse is not true.

Our conference paper [24] reports the preliminary work of the approach considered here. In
this paper, we extend that report by presenting the mining algorithm and detailed experimental

studies.

3 Specifying support constraints

As in [2, 3], the database is a collection of transactions. Each transaction is a set of items taken
from a fixed universe. A k-itemset is a set of k items. The support of an itemset I, denoted sup([/),

is the fraction of the transactions containing all the items in I.

3.1 The support specification

The task of support specification is to specify the minimum support for each itemset. Clearly, it
is not practical to enumerate all itemsets. OQur approach is to partition the set of items into bins,
denoted as Bj, such that items that need not be distinguished in the specification are in the same
bin. Therefore, given a bag or multiset § = {By,..., By} of bins, all k-itemsets {iy,...,i;}, where
i; € Bj, have the same minimum support.  is called the schema of itemsets {iy,...,it}. To
specify the minimum support for itemsets, we will specify the minimum support for schemas. This

motivates the notion of support constraints.

Definition 3.1 (Support constraints) A support constraint (SC) has the form SC;(ly,...,15) >
8; (or simply SC; > 6;), s > 0. Each [; is either a bin or a variable for bins. ;, called a minimum
support, is a function over [y, ...,[; and returns a real in [0..1]. The order of {;’s does not matter
and [; may repeat. A SC is ground if it contains no variable, otherwise, non-ground. A non-ground
SC can be instantiated to a ground SC by replacing each variable with a bin. A support specification
is a non-empty set of SCs. O

There are two considerations in interpreting a SC. First, we can interpret a SC either as spec-
ifying some items in an itemset, called the open interpretation, or as specifying «all items in an
itemset, called the closed interpretation. Second, a choice must be made if an itemset “matches”

the item specification of more than one SC. Consider itemset I = {by, bo, b3, b4} of support 0.15, and



SC1(B1, By) > 0.1 and SC5(Bs, B4) > 0.2, where b; is an item in B;. In the open interpretation,
I matches the item specification of both SCs. Therefore, whether I is frequent depends on which
SC is used as the minimum support for I. Our decision is that the lower minimum support 0.1
prevails. The rationale is simple: the minimum support of an itemset should not be increased by

adding more items.

Definition 3.2 (Frequent itemsets) An itemset [ matches a ground SC; > 6; in the open
interpretation if I contains (at least) one item from each bin in SC; and these items are distinct.
An itemset I matches a ground SC; > 6; in the closed interpretation if I contains one item from
each bin in SC; and these items are distinct, and I contains no other items. An itemset I matches
a non-ground SC if I matches some instantiation of the SC. The minimum support of itemset I,
denoted minsup(1l), is the lowest 8; of all SC; > 6; matched by I. If I matches no SC, minsup(I)
is undefined. An itemset [ is frequent if minsup(1l) is defined and sup(I) > minsup(l). O

The notion of “match” and minsup can be extended to schemas in a natural way. A schema
3 matches a ground SC; > 6; in the open interpretation if SC; is a sub-bag of 3 !. A schema f
matches a ground SC; > 68; in the close interpretation if SC; = 3. A schema 3 matches a non-
ground SC; > 6; if 3 matches some instantiation of the SC. Let minsup(3) denote the minimum
support for (the itemsets of) schema (. In the open interpretation, for ground SCy(51) > 6,
and SCq(fB3) > 03, if 1 DO [z and 01 > 03, SC1(81) > 61 is never used. In fact, if any itemset
I matches SC1(p1) > 601, I also matches SC3(f2) > 02, and we always use the lower 6, as the
minimum support for I. In this sense, SC1(81) > 6 is redundant. From now on, we assume that
all redundant SCs are removed. With this assumption, a SC of the form SC;() > 6;, if specified,
must have the highest minimum support and is used only when no other SC is matched. For this

reason, SC;() > 6; is called the default SC.

Example 3.1 (The running example) Consider the transactions and support specification in
Figure 1 in the open interpretation. Each item is represented by an integer from 0 to 8. For any
itemset [ containing an item from B; and an item from Bs, I matches both SCy(By, Bs) > 0.2
and SC%(Bs) > 0.4. minsup(l) = 0.2 because the lowest minimum support of matched SCs is
used. Some examples of such [ are {0,2}, {0,2,3}, and {2,3,4}. {2,4,7}, {2,4,8}, {4,7,8}, and
{2,4,7,8} all have minimum support 0.6, because they match only SC5(B3) > 0.6, and are frequent.
{2,7} and {2,8} match only SCy() > 0.8, and {2, 7} is frequent but {2,8} is not. O

Example 3.2 Asan example of non-ground SCs and the closed interpretation, consider SC;(V7, ..
sup(Vi) X ... x sup(V), 1 <k <4, where V; are variables. Each B; contains the items of the same
support, denoted sup(B;). This SC specifies the minimum support relative to the independence
assumption on item occurrence. With the closed interpretation, any itemset containing more than

4 items has an undefined minimum support. O

We like to comment that, in SC; > 8, 6; is required to be “evaluable” at the specification time.

A constant 6; satisfies this requirement, so does any #; defined by values associated with bins B;

YA bag x is a sub-bag of a bag y if & is a subset of y with duplicates considered.

.,Vk) >



database

TID | Items bins a specification
100 | 0,2,7 By | 1,7,8 SCy() > 0.8

200 | 0,4,7,8 B | 2,6 SC1(By, B3) > 0.2
300 | 2,4,5,7,8 By | 45 SC2(Bs) > 04
400 | 1,247,8 Bs | 0,3 SC5(B,) > 0.6
500 | 2,4,6,7,8

Figure 1: The running example

@ 0.6/0.2 0.8/0.2 08/02
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0.2/0.2 0.4/02 0.4/0.2 0.4/0.2 0.6/0.6 0.6/0.6 0.6/0.6 0.8/0.8 08/08 0.8/0.8

Figure 2: A schema enumeration tree, marked with Sminsup/Pminsup

that are known at the specification time, such as the maximum, minimum, or average support of
the items in B;. However, this requirement is not satisfied if we specify the minimum confidence of
rules a« — 3 by SC(«a, 3) > minconf x sup(a), where a and 3 are schemas and each bin contains
a single item (thus, schemas and itemsets coincide). This is because sup(«) is unknown at the
specification time. Even at the itemset generation, sup(«) is known only for frequent itemsets a.

The notion of support constraints generalizes several existing classes of constraints in the context
of association rules mining. The classic uniform minimum support [2, 3] can be specified by one
default SC;() > 6; with 6; being the usual minimum support. The item constraints [22] can
be specified by non-default SCs in which all minimum supports are equal. To model the MIS
specification in [12], we can group the items of the same support into a bin and specify the non-
ground SC;(Vy,..., Vi) > min{sup(V;),...,sup(Vy)} in the closed interpretation, where V; are
variables for bins. However, it is not hard to see that the MIS specification cannot model the
specification in Example 3.2 nor a specification such as SC1(By, By, Bs) > 0.2, SC3(Bq, Bs) > 0.3,
and SC5(Bs, B3) > 0.4.

We can construct association rules from frequent itemsets. There are three approaches to the
construction, depending on which parts of rules the SCs are specified. Let minconf denote the

user-specified minimum confidence for association rules.

Definition 3.3 (Association rules) For each pair of frequent itemsets I and I' such that I C I,
o if sup(I')/sup(l) > minconf, Type I association rule I — I' — I is constructed.

o if sup(I')/sup(l’ — I) > minconf, Type Il association rule I’ — I — [ is constructed.



o if sup(I')/sup(I' = I) > minconf and I' — I is frequent, Type III association rule I’ — T — T

1s constructed. O

For all types of rules X — Y| SCs are enforced over XY because XY (i.e., I') is always frequent
2. In addition, for Type I, II, 111, respectively, SCs are further enforced over the antecedent X,
the consequent Y, and both the antecedent and the consequent. For Type I and Type III rules
X =Y, the confidence sup(XY)/sup(X) can be computed directly using frequent itemsets because
both XY and X are frequent. For Type II rules X — V| the antecedent X (i.e., I’ — I) is not
necessarily frequent and an additional database scan is needed to find sup(X). If only the default

SC is specified, all types degenerate to the classic association rules.

3.2 Typical scenarios of specification

Until now, we have not said much about how the end user determines bins B; and minimum
support #; in a SC. Though this decision largely depends on applications, we consider several

typical scenarios and hope that they are indicative to the end user.

Support-based specification. Typically, the minimum support for an itemset is a function
of the support of some or all items contained in the itemset. Example 3.2 and the MIS specification
are based on this idea. These examples illustrate three useful points. First, a bin B; usually
contains similarly supported items. Such bins can be found by computing the support of items in
one pass of the transactions and then clustering the items based on their supports. Second, 8; is
usually a function of some representative supports of bins (such as the maximum, minimum, or
average support in the bin), and the function of #; can be either chosen from a menu of built-in
functions or supplied by the user. Third, if the user does not have particular schemas in mind for

specification, a generic specification in the form of a non-ground SC can be used.

Concept-based specification. In the presence of an item concept hierarchy, it is desirable

to specify SCs based on the generality of the item concepts. For example, SCy(cy, ) > 2 X

sup(c1) % sup(cz)
n

P states that any itemset containing at least one child of ¢; and one child of ¢; has

sup(c1) % sup(cz)

P =, where ¢; and ¢y are variables representing concepts, and

the minimum support 2 X
m and n are the number of child concepts of ¢; and cs.
Attribute-based specification. For a database in the form of a relational table, it makes

sense for each bin to correspond to the set of (attribute, value) pairs from the same attribute. For
example, if States and Gender are attributes in the table, SCy(States, Gender) > % X % specifies

that any itemset containing a state code and a gender has the minimum support % X %, where
N is the number of tuples in the relational table, % and % are the average support of state codes

and the average support of gender.

Enumeration-based specification. The most flexible specification is explicitly enumerating
the items in a bin, on the basis that they are not distinguishable with respect to the specification.
For example, SC1(By, By) > 0.1, where By = {milk, cheese} and By = {boots, sock}, says that any

2XY is the shorthand of the union of X and Y.



itemset containing at least one item in By and one item in B has minimum support 0.1. In this
case, the user is interested in only milk and cheese, rather than all dairy products, and only boots

and sock, rather than all footwear products.

For the rest of the paper, we assume that a support specification is chosen.

4 Adaptive Apriori

A key idea of our approach is to push SCs following the “dependency chain” of itemsets in the
itemset generation in Apriori. This dependency is best described by a schema enumeration tree. In
a schema enumeration tree, each node (except the root) is labeled by a bin B;. A node v represents
the schema given by the labels By ... By along the path from the root to v. If a schema enumeration
tree contains two sibling nodes representing schemas sy = By ... Br_9Br_1 and s = By ... Bp_2 By,
where sy is on the left of sy if By_; # By, the schema enumeration tree also contains the node
representing schema s = By ...Bp_2Br_1 By, as a child of the node for s1. s; and sy are called
generating schemas of s. Every schema depends on its generating schemas in that the former is
constructed by the latter. In Figure 2, By By depends on By and By, but not on By By or Bs.
Several comments follow. (i) Unlike the static lexical ordering in a standard set enumeration tree
[18], the ordering of nodes in a schema enumeration tree is determined dynamically on a per-node
basis to achieve a certain optimality of constraint pushing. We will consider the ordering issue in
Section 5. (ii) There is an one-to-one correspondence between nodes and the schemas represented
by them. Thus, the terms “schema” and “node” are interchangeable. (iii) There should be no
confusion between B; as a label and B; as a schema (of length 1). As a label, B; can occur at
several nodes (like By in Figure 2), but as a schema, B; is represented by a unique node. (iv)
We can associate minsup with nodes, in the way of associating it with schemas. (v) A label B; is

allowed to repeat on a path to cover those itemsets containing more than one item from B;.

4.1 The pushed minimum support

Consider schema s = By ...Bg_2Bp_1 By, and its generating schemas sy = By...Bp_92B;_1 and
Sg = By ...Bj_2Bg. In the case of a uniform minimum support, if an itemset I = {iy, ..., ix—2,g—1, %}
of s is frequent, so are Iy = {iy,...,ik—2,ik—1} of sy and Iy = {iy,...,ip—_2,1x} of sy. This prop-
erty enables Apriori to generate candidate k-itemsets [ using frequent (k — 1)-itemsets Iy and Is.
However, this generation is not available for non-uniform minimum support because minsup(s),
minsup(sy), minsup(sz) are not always the same. Our approach is to replace minsup with a new
function, Pminsup, called the “pushed minimum support”, such that Pminsup defines a super-
set of the frequent itemsets and this superset can be computed in the manner of Apriori. Let us

formalize this idea.

Consider any function f from schemas s to [0..1]. We say that an itemset [ of schema s is
frequent(f) if sup(I) > f(s). Let F'(f) denote the set of frequent(f) itemsets.



Definition 4.1 (Pminsup) Let Pminsup be a function from (the schemas of) schema enumera-

tion tree T to [0..1] satisfying:

e Completeness: For every schema s in T such that minsup(s) is defined, Pminsup(s) <

minsup(s);

o Apriori-like: For every schema s and its generating schemas sy and sg, whenever an item-
set {i1,...,%—2, k-1, 1k} of s is frequent(Pminsup), so are {i1,...,ik_2,7k—1} of s; and

{i17 .. .7’L'k_277:k} Of 595

o Mazimality: Pminsup is maximal with respect to Completeness and Apriori-like. O

Pminsup is called the pushed minimum support with respect to T" and meinsup. O

Intuitively, Completeness ensures that F'(Pminsup) is a superset of F'(minsup), Apriori-like
preserves the Apriori itemset generation of candidates, and Maximality ensures that F'(Pminsup) is
tightest to satisfy Completeness and Maximality. Therefore, by replacing minsup with Pminsup,
we are able to generate a tight superset of I'(minsup) in the same manner as Apriori. This strategy
is referred as to Adaptive Apriori. A benefit of preserving the Apriori itemset generation is that
the improvements of Apriori studied over the last several years (e.g., [6, 17, 19]) are immediately
applicable to Adaptive Apriori. The novelty of Adaptive Apriori, however, is that it breaks the barrier
of uniform minimum support by defining the best minimum support, i.e., Pminsup, for each schema
individually with respect to the preservation of Apriori. In fact, Apriori is the special case of Adaptive
Apriori where Pminsup is equal to the given uniform minimum support and the schema enumeration
tree has a single path of the form root, B, ..., B, where the only bin B contains all the items.

Unlike Apriori, Adaptive Apriori does not assure that every subset of a frequent(Pminsup) item-
set be frequent(Pminsup). This is both good news and bad news. The good news is that the
number of frequent(Pminsup) itemsets may not be necessarily exponential. Indeed, a frequent(f)
itemset {i1,...,%5—2,%k_1, 5} only assures that the subsets of the form {iy,...,7;_1,%;,%,} be
frequent(f), where j < p < k. There are only k(k — 1)/2 such subsets ®. Note that this does
not mean that the other subsets are not frequent(f). Characterizing those f’s that do not define
exponentially many frequent(f) itemsets is an interesting problem in itself. The bad news is that
pruning a candidate I of size k by checking a subset I’ of size k — 1, as in Apriori, is now possible
only if Pminsup(s) > Pminsup(s'), where s and s’ are the schemas of I and I’. This is a natural
generalization of the subset based pruning in the case of non-uniform minimum support.

At this point, two questions need to be answered. First, how do we determine Pminsup with
respect to a given schema enumeration tree 7’7 Second, how do we generate a schema enumeration
tree for which Pminsup is maximized? We will answer the first question in the rest of this section
and answer the second question in Section 5. In the rest of the paper, we shall use the notation

in Table 1. For example, for schema s = B3B3 in Figure 2, subtree(s) is the subtree rooted at s

*For p = 1, there is 0 subset; for p = 2, there is 1 subset; for p = 3, there are 2 subsets; ....; for p = k, there are
k — 1 subsets.

10



notation meaning

s a node or schema

L(s) the label of s

subtree(s) the subtree rooted at s

a(s) the set of SCs matched by some schema in subtree(s)
RS(s) the set of right siblings of s plus s itself

LS5(s) the set of left siblings of s

minsup(s) the minimum support of s

Sminsup(s) | the lowest minimum support in o(s)

Pminsup(s) | the pushed minimum support of s

Table 1: Notation for a schema enumeration tree

(not shown); o(s) contains all SCs except SCy(By, Bs) > 0.2 because label By does not occur in
subtree(s); Sminsup(s) is the lowest minimum support in o(s), i.e., 0.4; RS(s) contains schemas
BsBs, Bs By, B3Bs; and LS(s) contains schema BsBy. Notice that while minsup only depends on
the problem specification, Pminsup and Sminsup also depend on the schema enumeration tree

used.

4.2 Determining Pminsup

Consider the running example and Figure 2. In subtree(B;), no schema matches SC1(B;, Bs) > 0.2
and SCy(Bs) > 0.4 because label Bs does not occur in the subtree. In this sense, these SCs or
minimum supports are pruned from subtree(By). The same goes for subtree(B;) and subtree(By).
In general, for two generating nodes [ and r (which must be siblings) with [ on the left and r on the
right, the node generated by [ and r is a child of [ and has label L(r), and L(r) occurs in subtree(l),

but not in subtree(r). This has two implications, stated below.

Corollary 4.1 Consider any node v in a schema enumeration tree 7.

1. Only the labels of nodes in RS(v) can occur in subtree(v). As such, all SCs containing the

labels of nodes in LS(v) are pruned from subtree(v).

2. Ouly the nodes in subtree(v) and subtree(u) for u € LS(v) depend on v. Assuch, Pminsup(v)
min{Sminsup(u) | v € LS(v)U {v}}.

Example 4.1 In Figure 2, each schema s is marked by Sminsup(s)/Pminsup(s). Since label
Bs does not occur in subtree(Bs), all SCs containing Bs are pruned in subtree(Bs), so o(Bs) =
{SCus() > 0.8, SC5(Bz) > 0.6} and Sminsup(Bz) = 0.6. Sminsup(Bs) = 0.2. Pminsup(Bsz)
= min{Sminsup(Bs), Sminsup(By)} = 0.2. Pminsup(s) = 0.6 for s = ByBy,s = BBy, s =
B3 By because SC7 > 0.2 and SC3 > 0.4 are pruned in subtree(s), and Pminsup(s) = 0.8 for
s = B1B1,s = B1Bg,s = ByBgy because SC7 > 0.2, SCy > 0.4, and SC3 > 0.6 are pruned from
subtree(s). By using Pminsup as the run time minimum support, we are able to tie up the support

requirement and, at the same time, still enjoy the Apriori generation of frequent itemsets. O

11



4.3 The characteristic of Pminsup

We now analyze how Pmansup changes in a schema enumeration tree. This information can help us
to find a schema enumeration tree that maximizes Pminsup. Refer to Table 1 for notation. As we
move from a left sibling [ to a right sibling r, Corollary 4.1(1) implies that label L({) is pruned from
subtree(r), thereby, o(r) C o(l) and Sminsup(l) < Sminsup(r). As we move from a parent node
p to a child node ¢, o(c) is the set of SCs in o(p) matched by at least some schema in subtree(c),
thereby, o(c) C o(p) and Sminsup(p) < Sminsup(c). The following theorems summarize these

characteristics.

Theorem 4.1 Consider a schema enumeration tree.

1. Let s1,...,s; be the schemas at siblings from left to right. Then (a) Sminsup(s;) <
Sminsup(sit1); (b) Pminsup(s;) = Pminsup(s;) = Sminsup(sy).

2. Let s1,...,s; be the schemas on a path starting from the root. Then (a) Sminsup(s;) <
Sminsup(sit1); (b) Pminsup(s;) < Sminsup(s;) < Pminsup(s;y1).

Proof: 1a and 2a follow immediately from the discussion preceding the theorem. 1b follows from
la and the definition of Pminsup. Now we show 2b. Let s! ; be the left-most sibling of ;1. We
have Sminsup(s;) < Sminsup(si, ) from 2a, and Sminsup(sl, ) = Pminsup(s;y1) from 1b. From
Corollary 4.1, Pminsup(s;) < Sminsup(s;). The transitivity of these equalities and inequalities
imply Pminsup(s;) < Sminsup(s;) < Pminsup(s;y1), i.e., 2b. O

From Theorem 4.1(2b), Pminsup is never decreased by moving from a parent p to a child c.

The next theorem tells when Pminsup is actually increased.

Theorem 4.2 Consider a parent node p and a child node ¢. The following are equivalent:
1. p has a left sibling p’ such that Sminsup(p’) < Sminsup(p);
2. p has a left sibling p’ such that Sminsup(p’) is pruned in subtree(p);

3. Pminsup(p) < Pminsup(c).

An intuitive proof of Theorem 4.2 is: the schemas in subtree(p’) depend on p, but not on ¢, there-
fore, Pminsup(p) is constrained by the lowest minimum support in subtree(p'), but Pminsup(c)
is not. Then 1 and 2 are two equivalent conditions for this difference to have effect on Pminsup(p)
and Pminsup(c). For example, in Figure 3 (which contains only the nodes for non-empty sets
of candidates), Sminsup(Bs) < Sminsup(B;), for i = 2,1,0, and every child of schema B; has a
higher Pminsup than B; does. This is because Sminsup(Bs), i.e., 0.2, is pruned in subtree(B;),
fori=2,1,0.

Proof of Theorem 4.2: The equivalence of 1 and 2 follows from Theorem 4.1(1a) and the definition
of Sminsup. We show that 1 implies 3. Assume that 1 holds, that is, that p has a left sibling
p’ such that Sminsup(p’) < Sminsup(p). By definition, Pminsup(p) < Sminsup(p’). From The-
orem 4.1(2b), Sminsup(p) < Pminsup(c). Then 3 follows from the assumption Sminsup(p’) <

12
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Figure 4: A different schema enumeration tree, marked with Sminsup/Pminsup

Sminsup(p). We now show that 3 implies 1. Let ¢’ and p’ be the left-most siblings of ¢ and p.
Suppose that 1 fails. Then Sminsup(p’) = Sminsup(p). From Theorem 4.1(1b), Pminsup(p) =
Sminsup(p’) and Pminsup(c) = Sminsup(c’), by definition, Sminsup(¢’) = Sminsup(p). These
equalities together imply Pminsup(c) = Pminsup(p), i.e., the failure of 3. This proves the equiv-
alence of 1 and 3. O

The above theorems give a clear picture of how Pminsup changes in a schema enumeration
tree: (a) All sibling nodes have the same Pminsup. (b) As we move down from a parent p to a
child ¢, Pminsup never decreases. (c) Whether Pminsup is actually increased, thereby, tightening
up the search space, depends on whether p has a left sibling with a lower Sminsup. It turns out

that the ordering of siblings has a major impact on (c). Section 5 will study this issue.
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5 The ordering of nodes

Now we answer the second question: how to construct a schema enumeration tree to maximize
Pmansup. Compare Figure 2 with Figure 4. The schema enumeration tree in Figure 2 is preferred
because of higher Pminsup for most schemas. For example, Pminsup(BzB;) and Pminsup(ByBz)
are 0.6 in Figure 2, but are 0.2 in Figure 4. This change is caused by placing labels By and Bs at
the right end at level 1 in Figure 4, which makes SC1(By, Bs) > 0.2 applicable in subtree(BzB;)
and subtree(ByBz). Clearly, this example shows that the order of sibling nodes has an impact on
Pmansup. In general, however, no “optimal” order exists, as the next theorem shows. Therefore,
a reasonable thing to do is to order sibling nodes heuristically to maximize Pminsup. In the rest

of this section, we consider several such heuristics.

Theorem 5.1 (No optimal ordering) There exists a support specification such that for any
schema enumeration tree 77, there exists another schema enumeration tree 75 and two schemas
s1 and sp such that Pminsup;(s1) > Pminsupz(si) and Pminsupy(sg) > Pminsup(sz), where

Pminsup; denotes the pushed minimum support with respect to 7;. O

Proof. Consider the support specification: SC() > 6, and SC3(By, By, B3) > 83, where 6; > 6.
For any schema enumeration tree T} with nodes By, By, B3 from left to right at level 1, there is
schema enumeration tree Tp with nodes By, By, B3 from left to right at level 1. We can show
that Pminsup;(B2Bs) = 61 and Pminsupz(Bz2B3) = 6. An intuitive proof is that, in 7% schema
B3 By Bs depends on (thus, 63 is pushed down to) Bz Bs, but in T} schema By B Bs does not depend
on By Bs. Similarly, we can show that Pminsup,(B1Bs) = 61 and Pminsup;(B1Bs) = 63. O
Assume that sq, ..., s, are the siblings from left to right. From Corollary 4.1(1), for i < j, L(s;)
does not occur in subtree(s;), and all SCs containing L(s;) are pruned from o(s;). Therefore, if we
want to prune as early as possible the SCs specifying low minimum supports, label L(s1) for the
first sibling s; should occur in such SCs. Subsequently, to determine L(sz) for the second sibling
sy, we remove the SCs containing L(s;) and repeat the same consideration for the remaining SCs.
The strategy is to greedily prune the lowest minimum support from all sibling subtrees on the right.
Put another way, this strategy maximizes the chance of Sminsup(s;) < Sminsup(s;), for all right
siblings s; of s;, and thus, the chance of the condition in Theorem 4.2(3). The following ordering

strategy is based on this idea.
Strategy 1 Select the label specifying the lowest minimum support as the next sibling. O

Example 5.1 Consider ordering the child nodes of the root for the example in Figure 2 by
Strategy 1. There is a tie between By and Bjs as both specify the lowest minimum support in
SC1(B1, Bs) > 0.2. Suppose that B; is selected as the first child. SC(Bq, Bs) > 0.2 is then
pruned from subtree(Bs), subtree(Bs), and subtree(By). We then select B as the second child be-
cause it specifies the lowest minimum support in the remaining SCs. SC3(Bs) > 0.4 is then pruned
from subtree(Bz) and subtree(Bg). Finally, we select By and By in that order. This gives the order
O1 = By, Bs, By, By at level 1. Sminsup(By) = 0.2, Sminsup(Bs) = 0.4, Sminsup(Bz) = 0.6, and

Sminsup(Bg) = 0.8. From Theorem 4.2, Pminsup is increased by moving from nodes Bs, By, By
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to their child nodes. If we select B3 as the first child instead, the order is Oy = B3, Bs, By, By. O

The above Strategy 1 is dynamic in that there is a separate round of selection for each sibling.
In static Strategy 1 all siblings are selected in a single round, ignoring the interaction between
siblings. Our second strategy is to greedily prune as many SCs as possible, in the hope that the
default SC, which always specifies the highest minimum support, can be used as early as possible.
Thus, at each sibling from left to right, we select the label that occurs in the most number of
remaining SCs. In effect, this prunes all the SCs containing this label from the sibling subtrees
on the right of the current sibling. Like Strategy 1, this strategy can be either dynamic or static.

Unlike Strategy 1, the information about the minimum support in SCs is not used here.
Strategy 2 Select the label specifying the most number of SCs as the next sibling. O

We can go one step further to maximize the number of s; such that the default SC is used in
subtree(s;). A necessary and sufficient condition for such s; is that a “cover” of o(p) is on the
left of s;, where p is the parent node of s;. A cover C' of a set of SCs is a set of labels such that
each non-default SC contains at least one label in C'. A minimum cover is a cover of the minimum
size. If a cover of o(p) is on the left of s;, all non-default SCs in o(p) are pruned in subtree(s;)
because at least one label is missing for each SC. In this case, Sminsup(s;) is either the default
SC or undefined. On the other hand, if no cover of o(p) is on the left of s;, some non-default SC
remains applicable in subtree(s;). To determine the relative order within a selected minimum cover,
either Strategy 1 or Strategy 2 can be applied. This strategy is computationally feasible only for a
specification of a small size because finding a minimum cover is NP-complete. For a specification
of a large size, we can use a “small” cover to substitute for a minimum cover. Strategy 2 can be

considered as such a substitution, as it greedily selects the label that covers the most number of

SCs.

Strategy 3 Select a minimum cover of o(p) as the first few siblings, for the parent p. O

Example 5.2 In Example 5.1, if Strategy 3 is applied, the minimum cover C' = {By, B3} of
o(root) is selected as the first two siblings at level 1. To determine the relative order of Bs and
Bs, we apply Strategy 1 or Strategy 2, both selecting Bs first. Thus, the order is the same as O,
in Example 5.1. O

We conclude this section by making a few remarks. First, it is possible to have a hybrid strategy
that combines more than one of the above rationales. For example, Strategy 1 can be used to break
the tie arising from Strategy 2, or vice versa. More generally, one can define some scoring function
to take such combinations into account. Such a scoring function can be easily incorporated without
affecting the rest of our algorithm. Second, the rationale of our node ordering is different from that
of the item ordering in [6, 4]. The purpose of the item ordering is to reduce the cost of traversing
the enumeration tree of itemsets during the support counting [6] or to maximize the chance of

hitting a long pattern [4]. Our purpose is to maximize Pminsup for each node or schema.
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for each node p at level k — 1 do

/* Step 1: Generate child nodes */
if p is the root then
for each bin B; do create one child s; of p with L(s;) = By;
else
for each p’ in RS(p) do create one child s; of p with L(s;) = L(p');

/* Step 2: Order child nodes */

order the child nodes s; by one of the strategies in Section 5;

/* Step 3: Compute o(s;) and Pminsup(s;) for child nodes */
for each child s; from left to right do
o(s;) := {SC; > 0; € o(p) | SC; contains only the labels for nodes in RS(s;)};
delete one occurrence of L(s;) from the SCs in o (s;);
delete all redundant SCs from o(s;);
if o(s;) is empty then
delete node s; from the schema enumeration tree
else
Pminsup(s;) := min{Sminsup(s;) | s; € LS(s;) U {si}};

Figure 5: Phase 1

6 The algorithm

The algorithm expands the schema enumeration tree iteratively, one level per iteration. Each itera-
tion k has two phases. Phase 1 generates new nodes s; at level k and determines Pminsup(s;). This
phase examines only the support specification and schemas, not the database or itemsets. Phase 2
generates frequent(Pminsup) at nodes s;. In the following discussion, we assume that each node
p at level k£ — 1 is associated with the set of SCs at p, o(p), and relation T, for frequent(Pminsup)
itemsets of p. Please refer to Table 1 for notation. We explain the expansion from level £ — 1 to

level k.

6.1 Phase 1

Figure 5 gives the code for generating nodes s; and determining Pminsup(s;) and o(s;). To expand
to level k, three steps are performed. Step 1 creates child nodes s; at level k and Step 2 orders
these nodes according to one of the strategies proposed in Section 5. Step 3 computes o(s;) and

Pminsup(s;). We explain Step 3 using an example.

Example 6.1 Asin Example 5.1, the nodes at level 1 are in the order Oy = Bs, By, By, Bg. 0(B3)
is initialized to o(root) because Bs is the left-most child of the root. We delete label Bs from the SCs
in o(B3) because every schema in subtree(Bs) contains Bs. Now o(Bs3) = {5Cy() > 0.8, 5C(B;) >
0.2,5C%() > 0.4,5C5(B2) > 0.6}. SC3(By) > 0.6 and SCy() > 0.8 are redundant in the presence
of SCy() > 0.4, so are deleted from o(Bs). This gives o(Bs3) = {SC1(By) > 0.2,SC5() > 0.4},
where SC3() > 0.4 becomes the default SC in subtree(Bs). By Corollary 4.1, Pminsup(Bs) =
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Sminsup(Bs) = 0.2. Similarly, for sibling By, o(Bz) = {SC5() > 0.6}, Sminsup(Bz) = 0.6
Pminsup(By) = 0.2; for sibling By, o(B;1) = {5Cu() > 0.8}, Sminsup(By) = 0.8, Pminsup(By)
0.2; for sibling By, o(By) = {SCo() > 0.8}, Sminsup(By) = 0.8, and Pminsup(By) = 0.2. O

In Step 3, deleting one occurrence of L(s;) from the SCs in o(s;) is necessary for the correctness
at the next level. To see this, suppose that we have not deleted label By from o(Bz) in the
above example. o(B;z) would contain SC5(Bz) > 0.6, rather than SC3() > 0.6. At node By By,
since By is not a label of any node in RS(B;By) (see Figure 2), SC5(B;) > 0.6 would not be
included in ¢(BzBp) in Step 3. As a result, the default minimum support 0.8 would be used for
Pminsup(ByBy). This is wrong because By By matches SC5(B3) > 0.6.

6.2 Phase 2

In this phase, we compute frequent(Pminsup) itemsets for all schemas s; at level k. The detail
is given in Figure 6. This part is similar to the Apriori itemset generation. If & = 1, we find
all frequent(Pminsup) 1-itemsets in one scan of the transactions. Assume k > 1. Consider any
schema s; = By...Br_2Bp_1 By at level k. Let py = By ...Bp_9Br_1 and po = By ...Br_9B; be
the generating schemas of s;. To generate the candidates of s;, denoted by T, we “join” T}, and
Ty, as in Apriori [3] and scan the database for computing the support of candidates. To compute
the support of candidates, the hash-tree implementation for subset function [3] can be used. For
Adaptive Apriori, however, two new pruning strategies, not shown in Figure 6, are available. First,
before joining T}, and T),,, if Pminsup(s;) > Pminsup(p;) or Pminsup(s;) > Pminsup(pz), we
can skip over those tuples having support less than Pminsup(s;). This pruning is not available in
Apriori where the minimum support of all itemsets is the same. The second new pruning strategy
is that if, for some ¢, Pminsup(B;...B;—1Biy1...Br) < Pminsup(By ...By), we can prune all
candidates of schema By ... By whose projection on By ... B;_1B;y1 ... B was not generated. This

is a generalized form of Apriori’s subset pruning in the case of non-uniform minimum support.

Example 6.2 Continue with Example 6.1 and the schema enumeration tree in Figure 3, which
is produced by Strategy 3. Table 2 shows the work in Phase 1 and Phase 2. In the last column,
frequent(Pminsup) itemsets are marked by +/, and frequent(minsup) itemsets are marked by A.
The column Pminsup shows that, out of the 17 nodes expanded in the enumeration tree, 8 nodes
have used Pminsup higher than the lowest minimum support 0.2. The number of candidates gener-
ated is 29, the number of frequent(Pminsup) itemsets is 22, and the number of frequent(minsup)
itemsets is 17. In comparison, if we apply Apriori at minsup = 0.2, the number of candidates gen-
erated and the number of frequent(minsup) itemsets are 85 and 73. If we adopt the “adversary”
strategy, that is, first apply Strategy 3 to determine the order of siblings and then use the reversed
order, the number of candidates generated, the number of frequent(Pminsup) itemsets, and the

number of frequent(minsup) itemsets are 89, 65, and 17, respectively. O
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/* Step 1: Generate candidates */
for each node s; at level £ do

generate the candidate set T, by joining 7}, and 7}, for generating schemas p; and po;

/* Step 2: Find frequent(Pminsup) itemsets */
compute sup([) of all candidates I generated in Step 1 in one pass of transactions;

prune all candidates I with sup(I) < Pminsup(s;);

/* Step 3: Delete empty nodes */
for each node s; at level £ do
if T, is empty then
delete node s; from the schema enumeration tree;
for each s; € LS(s;) do delete the SCs containing L(s;) from o(s;);

Figure 6: Phase 2

7 Evaluation

We study the scalability with respect to the lowest minimum support specified. The scalability
is measured by the dead point, defined as the lowest minimum support at which page swapping
between memory and disk starts to takes place. In our experiments, we observed that whenever
the available physical memory dropped to a few Mbytes, the run did not finish within 3 hours
and much longer time was needed. So, practically the dead point was taken as the lowest tested
minimum support for which a run finishes within 3 hours. All experiments were performed on PII
300-MMX with 128MB memory and NT Server 4.0.

A major advantage of preserving the Apriori itemset generation is that nearly all improvements
of Apriori over the last several years, by being smart in candidate generating and support counting,
e.g., [6, 17, 19], are immediately applicable to Adaptive Apriori. Therefore, it is not necessary to
compare Adaptive Apriori with every such improvement. We chose only two algorithms for com-
parison: Apriori [3] and Max_Miner [4]. Apriori provides a baseline for measuring the benefit of our
approach. Max_Miner generates only maximal frequent itemsets, so a good candidate to overcome
the bottleneck of itemest generation. Also, the ability of Max_Miner to mine long itemsets makes
Max_Miner attractive in dealing with low minimum support. Since neither Apriori nor Max_Miner
handles general support constraints, the lowest minimum support in a support specification was

used for these algorithms.

7.1 The synthetic dataset

Our first experiment is to study the effectiveness of Adaptive Apriori over a range of support speci-

fications. We used the synthetic dataset from [3] with the following settings: 100K transactions of
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Phase 1 Phase 2
k | Node s | o(s) | Pminsup(s) | minsup(s) | Candidates I at s (sup({))
root 501 (BlBg)) Z 0.2
SC>(Bs) > 04
SCs(B2) > 0.6
SCq() > 0.8
1] B SCi(B)>02 |02 04 {0} (0.4) VA
SC() > 04 {3} (0.0)
Ba 5C:() > 0.6 0.2 0.6 {1y (0.8) VA
{5} (0:2) v
B SCo() > 0.8 0.2 08 {2} (08) VA
{6} (0.2) v
Bo SCo() > 0.8 0.2 08 Yy (02)
{7} (1L0) VA
{8} (0.8) VA
2 | BaBi SCi() > 0.2 0.2 0.2 {0,2} (0.2) VA
{0,6} (0.0)
B:B, 5C>() > 0.4 0.2 04 10,4} (0.2) v/
{0,5} (0.0)
BaBo 5C>() > 0.4 0.2 04 {0,1} (0.0)
{0,7} (0.4) /A
{0.8) (02) v
BB 5C:() > 0.6 0.6 0.6 1,2} (0.6) VA
B2Bo 5C:() > 0.6 0.6 0.6 1,7} (0.8) VA
{4,8} (0.8) /A
B1Bo 5Co() > 0.8 0.8 0.8 2,7} (08) VA
{2,8} (0.6)
BoBo 5Co() > 0.8 0.8 0.8 7,87 (0.8) VA
3 | BaB1Ba 5Ci() > 0.2 0.2 0.2 {0,2,4} (0.0)
B:B1 B, SCi() > 0.2 0.2 0.2 10,2,7} (0.2) VA
{0,2,8} (0.0)
B:B. B, 5C>() > 0.4 04 04
B.B1 B, 5C:() > 0.6 0.6 0.6 14,2,7} (0.6) VA
{4,2,8} (0.6) /A
B2 BoBs 5C:() > 0.6 0.6 0.6 {1,7,8) (0.8) VA
1| B2B1BoBo | SCs() > 0.6 0.6 0.6 {1,2,7,8} (0.6) VA&

Table 2: Computation of frequent(Pminsup) itemsets

average length 10, 500 items, and the default settings for all other parameters. As shown in Figure
7(a), a characteristic of this dataset is that most items have low support, less than 0.04 (or 4%).
The same characteristic remains even if other settings are used. This presents an adversary case to

our approach that relies on exploiting a large variance of support in the data.

To generate a range of support specifications, we partitioned the support range into 4 intervals
such that B; contains the items with support in the ith interval and the number of items in B;
is approximately equal. We defined the minimum support of SC;(B;,...,B;,) > 6;, k > 0, as
follows:

0; = min{y*"1 x S(B;) x ...

X S(Biy), 1} (1)

where S(B;) denotes the lowest item support for B; (see Figure 7(b)), and v is an integer larger

than 1. The term v*~! was used to slow down the decrease of S(B;,) x ... x S(B;,) for large k,

and to simulate different support requirements. Figure 7(c) shows the 7 SCs corresponding to the
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= | v) EC |
g 140 1 ‘ Bins ‘ Support range ‘ SC1(Bs, Bs, Ba) > 01
= 120 | 1 SCQ(BQ,B )>92
5 100} I ['Bi 10.00001, 0.00535]
3 SCs5(Ba, By) > 03
£ wf | By | [0.00536, 0.01397]
ER ] SC4(Bs, By) > 0,4
Bs [0.01398, 0.02759]
4 1 SCs(B2) > 05
20 f 1 By [0.02765, 0.15113]
0 L SCs(Bs) > 0
0 002 004 0.06 0.08 01 012 014 0.16 SC7(By) > 07
Support range —
Figure 7: SCs for the synthetic dataset
Bl 0, 05 04 105 [os ] ]

1 ] 0.0000021 | 0.000075 | 0.00015 | 0.00039 | 0.0054 | 0.014 | 0.028
0.0000083 | 0.00015 | 0.00030 | 0.00077 | 0.0054 | 0.014 | 0.028
0.000019 | 0.00023 | 0.00044 | 0.0012 | 0.0054 | 0.014 | 0.028
0.000033 | 0.00030 | 0.00059 | 0.0016 | 0.0054 | 0.014 | 0.028
0.000052 | 0.00038 | 0.00074 | 0.0019 | 0.0054 | 0.014 | 0.028
0.00013 0.00060 | 0.0012 | 0.0031 | 0.0054 | 0.014 | 0.028
0.00016 0.00067 | 0.0013 | 0.0035 | 0.0054 | 0.014 | 0.028
10 | 0.00020 0.00075 | 0.0015 | 0.0039 | 0.0054 | 0.014 | 0.028
13 | 0.00035 0.00097 | 0.0019 | 0.0050 | 0.0054 | 0.014 | 0.028
15 ] 0.00047 0.0011 0.0022 | 0.0058 | 0.0054 | 0.014 | 0.028
17 1 0.00060 0.0013 0.0025 | 0.0066 | 0.0054 | 0.014 | 0.028
18 | 0.00065 0.0014 0.0027 | 0.0070 | 0.0054 | 0.014 | 0.028
20 | 0.00083 0.0015 0.0030 | 0.0077 | 0.0054 | 0.014 | 0.028

O | O = | W |

Figure 8: The minimum support @; for the synthetic dataset

non-empty subsets of {Bsy, Bs, B4} and Figure 8 shows the minimum support in these SCs. B
was excluded because S(Bi) is too low. For each non-empty subset of the 7 SCs, we created one
support specification by adding SCy() > 0.03 as the default SC. In this way, we generated all the

127 support specifications not involving Bj.

7.1.1 Benchmarking against Apriori

The benefit of Adaptive Apriori is measured by benchmarking it against the classic Apriori. We
considered four measures: the execution time, the number of candidates generated, the number of
frequent(Pminsup) itemsets, and the number of frequent(minsup) itemsets. A relative measure
is the ratio of the measure for Adaptive Apriori to the measure for Apriori. Figure 9 plotted the

four relative measures for the 127 support specifications, where v = 15 and the static Strategy 1
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Figure 9: The measures relative to Apriori
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Figure 10: The dead points for the synthetic dataset

was used for Adaptive Apriori. In the figures, each support specification was represented by a point

(z,y). The z-value represents the relative execution time, and the y-value represents the other

three relative measures. Here are the main findings.

e All points lie southwest of the corner point (1,1). This shows that Adaptive Apriori is more

efficient than Apriori in both time and space for all support specifications considered.

e There are three clusters of points in Figure 9(a), indicated by the three boxes. Cluster 1

contains the 64 points with 0 < & < 0.1, corresponding to the 64 specifications containing
the SC of length 3, i.e., SCy > 6. Cluster 2 contains the 54 points with 0.2 < 2 < 0.8 and
0 <y < 0.7, mostly representing the specifications that contain more SCs of length 2 than

SCs of length 1. Cluster 3 contains the 9 points with > 0.7 and y > 0.8, mostly representing

the specifications that contain more SCs of length 1 than SCs of length 2. Intuitively, Clusters

1, 2, and 3 correspond to large, medium, and small variances of minimum supports in support

specification, thereby, good, average, and bad cases for Adaptive Apriori.
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e Cluster 1 has a small relative time. At v = 15, the minimum support for Apriori is #; =
0.00047. At such alow minimum support, page swapping between memory and disk took place
when the hash-tree was traversed for counting the support of candidates. This drastically
increased the execution time of Apriori. In fact, we had to stop Apriori after 3 hours of running
and used the measures obtained for the higher minimum support 0.0006, which finished in
9,858 seconds, as the replacement in computing the above relative measures. On the other
hand, all runs of Adaptive Apriori finished in less than 538 seconds without page swapping, by

benefiting from using higher minimum supports in a specification.

e Cluster 2 represents the normal case where no page swapping took place in Apriori. In this
case, the execution time was proportional to the number of candidate generated, and both
Apriori and Adaptive Apriori were reasonably fast. As a result, the relative time is not very

small.

e Adaptive Apriori did not benefit much for Cluster 3. To see this, consider the representative
specification at point (0.95,0.95): SC4y > 0.0058, SC5 > 0.0054, SCs > 0.014, SC7 >
0.028, SCy > 0.03. For this specification, the minimum support used for Aprioriis 65 = 0.0054
(recall that v = 15). Only 815 itemsets satisfied this minimum support. As a result, the other
minimum supports, i.e., 0.0058, 0.014, 0.028, and 0.03, are too high for most itemsets, and
Adaptive Apriori could not benefit from using them.

7.1.2 The scalability with respect to minimum support

The scalability is measured by the dead point as defined at the beginning of this section. We

consider the three representative specifications (all refer to Figure 9(a)):

e Specification A at point (0.01,0.09) from Cluster 1: contains all 7 SCs. We set v at 20, 18,
17, 13, 9, and 8, corresponding to the lowest minimum supports 0.00083, 0.00065, 0.00060,
0.00035, 0.00016, and 0.00013.

e Specification B at point (0.36,0.12) from Cluster 2: contains SCy > 65, SC5 > 03, SC5 > 65.
We set v at 10, 9, 8, 5, 3, and 2, corresponding to lowest minimum supports being 0.00075,
0.00067, 0.00060, 0.00038, 0.00023, and 0.00015.

e Specification C at point (0.95,0.95) from Cluster 3: contains SCy > 04, SC5 > 05, SCs > 5,
SCr > 0;. Weset v at 10, 8, 5, 4, 2, and 1, corresponding to lowest minimum supports being
0.0039, 0.0031, 0.0019, 0.0016, 0.00077, and 0.00039.

Shown in Figure 10(A), (B), (C) are the execution time for specifications A, B, C, respectively.
The z-value represents the lowest minimum support in a specification. “static 17 refers to static
Strategy 1 in Adaptive Apriori, etc., and “average” refers to the average of all nodes orderings in

Adaptive Apriori. The dynamic strategies have a behavior similar to their static counterparts and
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were omitted. The right-most point on each curve represents the dead point, with the understanding
that for the next lowest minimum support tested, the run did not finish within 3 hours.

For specification A, Apriori first reached the dead point (0.00065), followed by Max_Miner
(0.00060), “average” (0.00035), and “static 2”7 and “static 17(0.00016). In fact, at the dead point
of “static 17, for 22% of the nodes expanded, Pminsup is higher than the lowest minimum support
0.00016. This explains why “static 1”7 has a much smaller dead point. The experiment also shows
that even the random ordering of nodes can do better than not pushing support constraints at
all. For Max_Miner, as the minimum support became very low, the number of candidates grew
fast because most lookahead tests failed. For Max_Miner, the execution time does not include the
post-processing time for computing the support of all (not necessarily maximal) frequent itemsets.

The result for specification B in Figure 10(B) is similar to specification A, except that the
difference between “static 1”7 and “static 2” diminished. The dead points are: 0.00067 for Apriori,
0.00060 for Max_Miner, 0.00038 for “average”, 0.00023 for “static 17 and “static 2”7. For specification
C, the dead points are: 0.00077 for Apriori, Max_Miner, and “average”, and 0.00039 for “static 17
and “static 2”7. As mentioned in Section 7.1.2, the problem with specification C is that Adaptive
Apriori could not exploit the higher minimum supports due to low support in the data. For example,
at the dead point of “static 17, only 5% of the nodes expanded used a Pminsup larger than the
lowest minimum support 0.00039. As v was reduced, 85, g, 87 remained unchanged, and so did this

problem.

7.2 The census dataset

We also experimented on the census data used in [20], which is a 5% random sample of the data
collected in Washington state in the 1990 census. The data has 23 attributes, 77 items * and
126,229 transactions. Each transaction corresponds to an individual, and each item corresponds to
an attribute/value pair. Figure 11(a) shows the distribution of item support. Unlike the synthetic
dataset in Section 7.1, many items have a high support, say above 0.1, and the support varies over
a wide range. We like to verify that Adaptive Apriori will benefit from this favorable case.

To generate the support specification, we grouped the items from the same attribute into a bin,
yielding 23 bins By, ..., Bzs for the 23 attributes. Figure 11(b) shows the lowest support, denoted
S(B;), and the size for each bin B;. We specified the following SCs in the closed interpretation:

SCZ'(Vl,...,Vk) Zei(vl,...,vk) (k>0) (2)
where
0.0000158 if vF=1 % S(V1) % ... x S(Vi) < 0.0000158
0:(Vi,...,Vi) =14 1 if Al S(V) x ... x S(V) > 1

YRl S(Vi) x ... x S(V}) otherwise

Yoriginally 63 items, but we explicitly represented the FALSE value of the 14 binary attributes as items, making

77 items in total.
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(b)

Bins | S(B;) | Size | | Bins | S(B;) | Size |

35 ——
0| | Bio 0.0038 | 15 By 0.0772 | 4
- By 0.0084 | 6 By 0.0846 | 2
£ Bis 0.0175 | 2 Br 0.0848 | 2
;g 20+ 1 Bis 0.0180 | 2 Boyg 0.1046 | 3
5 sl | Bs | 0.0199 [ 5 Bi; | 0.2263 | 2
£ Bs 0.0232 | 4 Bz 0.2360 | 2
z 10r ] Bis | 0.0266 | 4 Boy, | 0.2717 | 2
5t 1 Bs 0.0349 | 2 By 0.4107 | 2
0 Bos 0.0388 | 2 Bio 0.4503 | 2
0 01020304 0506070809 1 Bs 0.0403 | 2 By 0.4589 | 2
Support range Bis | 0.0487 | 3 B, 0.4949 | 2

By 0.0733 | 4

Figure 11: The bins for the census dataset

where V; is a bin variable and & < K for the maximal itemset size K specified by the user.
Each specification is defined by a pair of v and K values. The lower bound of minimum support is
0.0000158, corresponding to the support requirement of at least 2 transactions. Since the occurrence
of bins is symmetric, Strategy 2 and Strategy 3 do not impose a bias on the ordering of nodes, so
are not considered here. We report only “static 1” as the “dynamic 1”7 did not make a tangible
difference. “average” refers to the average of 10 random orders for Adaptive Apriori.

We varied v and K to simulate different support requirements. In general, as v decreases and
K increases, the lowest minimum support in a specification decreases. The bottom of Figure 12
shows the lowest minimum support for each (v, K) pair. In Figure 12, on the left are the measures
for v = 5, and on the right are the measures for v = 20. In Figure 12(4a,4b), the y-value for
Max_Miner is the number of maximal frequent itemsets. As before, the dead point is represented by
the right-most point on a curve. All algorithms were terminated after K iterations for the given K.
For a small K, Max_Miner worked very well. But as K increased, it lost to Adaptive Apriori because
most lookahead tests failed. In general, Apriori and Max_Miner reached the dead point earlier than
“static 1”7 and “average”. “static 17 and “average” performed better at v = 20 than at v = 5. This
is because minimum supports are well spread at v = 20, as shown in the table in Figure 12.

To get an insight into how Pminsup is actually distributed in the schema enumeration tree,
we plotted Pminsup vs nodes numbered in the breath-first ordering for the dead point of “static
17 at the settings (y = 20, K = 7) and (y = 5, K = 5). See Figure 13 and Figure 14. Though the
two cases have the same lowest minimum support, 0.0000158, for the case of (y =20, K = 7), the
minimum supports are well spread and Adaptive Apriori was able to exploit a higher Pminsup for
99% of the nodes expanded! For the case of (v = 5, K = 5), the minimum supports tended to be
crowded towards 0.0000158, and only 88% (still a lot) of the nodes expanded have Pminsup higher
than 0.0000158.

In summary, these experiments strongly supported our claim that if itemsets are of varied
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v |[K=1]K=2 |K=3 K=4 |K=5 K=6 K=1
5 ] 0.0038 | 0.00016 | 0.0000158 | 0.0000158 | 0.0000158 | 0.0000158 | 0.0000158
20 | 0.0038 | 0.00064 | 0.00022 | 0.0000804 | 0.0000320 | 0.0000158 | 0.0000158

Figure 12: The dead points for the census dataset (the left for v = 5 and the right for v = 20)
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1 : : : : :
O . 9 — H
0.8 | |
o7 | |
=3 0.6 |-
= 0.5 | |
&= o.a | }
O - 3 — ‘
o.2 | |
o é A i A ] il .“ il |“ il \|\ \‘l .I“\.‘J nll

(@) 5000 10000 15000 20000 25000
Node No.

Figure 14: v =5 and K = 5: Pminsup > 0.0000158 for 88.1% of nodes

supports, pushing support constraints is an effective strategy to deal with the bottleneck of itemset
generation. Often, the difference is not an order of magnitude, but the feasibility of solving a

problem using given resources.

8 Conclusion

One contribution of this work is introducing the notion of support constraints into frequent itemset
mining. We motivated the need for support constraints and discussed the representation and
specification of support constraints. Another contribution is the framework for pushing support
constraints into the Apriori itemset generation. The challenge is that the classic Apriori is lost in
the presence of a non-uniform minimum support. Instead of using the lowest minimum support
specified, our approach is to use the best “run time” minimum support pushed for each itemset that
preserves the Apriori itemset generation. We call this strategy Adaptive Apriori. A major advantage
of preserving the Apriori itemset generation is that nearly all improvements of Apriori over the last
several years are immediately applicable to Adaptive Apriori. Unlike earlier constraint pushings,
Adaptive Apriori does not rely on a uniform support requirement. A key issue for Adaptive Apriori
is to order items so that the “run time” pushed minimum support is maximized. We proposed

several strategies for this and studied their effectiveness. Experiments showed that pushing support

26



constraints is highly effective in dealing with the bottleneck of itemset generation. The effectiveness

is not in an order of magnitude, but the feasibility of problem solving using given resources. As a

future work, we like to study how the mining framework for non-uniform minimum support can be

extended beyond the Apriori itemset generation. For example, [10] finds frequent itemsets without

generating candidates like in Apriori. It is interesting to see how our approach can be extended in

this direction.
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