Mining Nested Association Patterns

Ke Wang
Huiqing Liu

Department of Information Systems and Computer Science

National University of Singapore

wangk@iscs.nus.sg, liuhuiqi@iscs.nus.sg

Abstract

We introduce the framework of mining association patterns
Two means to nest data items,
The term
“collection” refers to a piece of data obtained by such

from nested databases.
namely, set and sequence, are considered.

nestings. A natural binary relation defines the generalization
hierarchy among all collections. A transaction database
is a set of given collections, called transactions. The
problem of mining nested association patterns is to find all
collections that are generalization of some minimum fraction
of transactions, called nested association patterns. We sketch
out the working idea of an algorithm for mining nested
association patterns.

1 Introduction

The problem of mining association rules 1s to find all
itemsets that are contained in some minimum fraction
of transactions. Such itemsets are called association
patterns. Following the work in [AIS93], several
generalizations of association rules were considered.
Multiple-level association rules [HF95, SA95] deal with
items that are related by a concept hierarchy. Sequential
patterns [AS95] allows a sequence of subtractions within
a transaction ordered by the purchase time. Recently,
[FMMO96, SA96] have considered both quantitative and
categorical data. While these works have substantially
generalized the application domain of association rules,
the data type allowed is still very simple, i.e., sets
of atomic items. In many applications, items have
descriptions and it is often the association between
descriptions of items, rather than items themselves, that
is interesting to the user. In addition, a description
itself may be described by detailed descriptions which
may be further described by other descriptions, and so
on. Descriptions may or may not be ordered. In such
cases, the context in which descriptions appear, 1.e.,
the nesting relationship of descriptions, constitute the
features of significance and should be captured in the
patterns. The next example (also a running example)
illustrates this point.

Example 1.1 Consider a database of task definitions
(or bills of materials, production schedules, libraries of

programs, ete.). Fach task is defined either by a set
of subtasks {a, ..., ag}, in which the execution order of
subtasks does not matter, or by a sequence of subtasks <
ai,...,ax >, in which the sequence defines the execution
order of subtasks. A subtask can be either atomic or
recursively defined by other subtasks. Suppose that there
are five tasks tq, ..., ts in the database whose definitions
are gwen by f function:

f(tl) = {2’6}7 f(tZ) = {1’b’6}7 f(tS) = {2’6}7
f(t4) = {1’b’d}7 f(tS) = {Q’b}7

where a, b, c,d, e are subtasks defined as

f(a) =< 1a1>7 f(b) = {1a2}7 f(C) =< 1aaa2aaa1>7
F(d) =1{1,2,3,b}, f(e) =< ¢,2 >

and 1,2,3 are atomic subtasks. We find the following
subtask patterns in at least 60%, or three, tasks in the
database {ti,...,l5}: subtask pattern {2} appears in
tasks t1,13,15, pattern {b} appears in tasks 2,14,15, and
pattern {<< 1,1 >,2 >} appears inly,1s,t3, where pair
{...} means “appearing as a subset” and pair < ... >
means “appearing as a subsequence”. For erample,
the last pattern says that for at least three tasks n
{t1,...,t5}, there is a subtask in which subtask 2 follows
some subtask that executes subtask 1 sequentially twice.

This example shows that association patterns aug-
mented with nesting relationships can capture intertask
dependencies and composition, which are essential for
job scheduling, trigger systems, transaction and work-
flow processing, resource management, and consistency
enforcement. In a broad range of applications, data
are not necessarily represented in a flat form, nor do
assoclation patterns always occur in the form of com-
mon itemsets. Applications running on object-oriented
databases are such examples, where an object is repre-
sented by a hierarchy of objects through type aggrega-
tion [GDV88]. Other examples are “bulk” data types
(see [R92, SZLVI3]) where data are typically divided
into ordered or unordered groups, and members within
a group may be further divided recursively. The interest

of “bulk” data types arises from applications that store
nested relations, time-series data, meteorological and
astronomical data streams, textual information, tree-
structure file system, HTML document hierarchies on
Web, DNA sequences, drug and chemical structures,
and voices/sound/images/ video, etc. For instance, an
HTML document tree is usually ordered and can easily
go to b or more levels of nesting. While there have been
many proposals on query languages and access support,
few frameworks and algorithms exist for discovering in-
teresting patterns from such semantically rich data.

In the rest of the paper, we introduce a framework
of mining association patterns from nested data and
discuss issues related to a mining algorithm, with an
example included. It is not the objective of this short
paper to present a formal mining algorithm.

2 The Problem

Definition 2.1 (The transaction database) A trans-
action database is a quadruple (T, N, D, f), where T
and N are sets of terminal values and non-terminal
T and N are disjoint. D 1is
a non-empty subset of N whose elements are called
transactions. For each A in N, f(A) is either a set
{A1,... Ay} or a sequence < A1,..., A, >, where A;
are values in TU(N—D) and p > 0. For all transactions

t in D, f(t) has the same type, i.e., sel or sequence.
This type 1s called the transaction type.

values, respectively.

A; are called children of A. The descendant relation-
ship is defined in a natural way. We assume that no
value is a descendant of itself A transaction database
defines the universe of collections which forms the gen-
eralization space of transactions.

Definition 2.2 (Collections) Fvery value in T'U N
15 a collection of itself. Assume that x,,...,xp, are
collections of values Aq,...,A, in TU (N — D). If

FA) ={4:, .. A} {&i,, ..., 25, } is a collection of A,
where 1 < i; <pand k> 0. If f(A) =< Ay,..., 4 >,
< Ziyy ..., i, > 15 acollection of A, wherei; < ... <y
and k > 0.

Definition 2.3 (Full collections) FEvery value in T'U
N s the full collection of itself. Assume that x1,...,x,
are full collections of Ar,..., A, in TU (N — D). If
FA) ={A, ... A}, {x1,...,zp} is the full collection
of A, If f(A) =< Ay, . A, >, < &1,...,2p > is the
full collection of A.

That is, collections are obtained by partially expand-
ing values A in N according to mapping f(A), where
“partially” means that some members in f(A), but not
all, may be dropped during expanding. Full collections
are collections obtained by dropping no members. The
following “weaker than” relationship defines a general-
ization hierarchy among collections, whose purpose is

to compare the generalization power of patterns in the
discovery process.

Definition 2.4 (Weaker than) (a) Every value in
T UN s weaker than itself. (b) {x1,...,2p} is weaker
than {z,..., 2} If every z; is a subset of some x’; ;
< &1,...,&p > is weaker than < #f, .. .,xﬁl > of every
x; 18 a subsequence of some x}l such that j1 < ... < jp.
(c) {z1,...,2p} or < z1,...,2p > is weaker than non-
terminal value A if it is weaker than some collection of
A. Two collections are equivalent if they are weaker

than each other.

Intuitively, being weaker than ' means that =
contains no more information than z’ or that z is as
general as z’.

Example 2.1 Consider the transaction database (T, N,
D, f) in Ezample 1.1, where T = {1,2,3}, D =
{t1,...,t5}, N=DU{a,b,e,d, e}, and f is as follows:

f(tl) = {2’6}7 f(tZ) = {1’b’6}7 f(tS) = {2’6}7
f(t4) = {1’b’d}7 f(tS) = {Q’b}7

f(a) =< 1’1>7 f(b) = {1a2}7 f(C) =< 1aaa2aaa1>7
f(d)={1,2,3,b}, fle) =<¢,2>.

< 1,1 > 1s weaker than < 1, < 1,1 >2, < 1,1 >1 >,
<< 1,1 >,2 > is weaker than << 1,< 1,1 > 2,<
L1>1> 2> << 1,1>,2> is weaker than e. This
implies that {<< 1,1 >,2 >} is weaker than t5 and that
{<< 1,1 >,2>} is weaker than ts.

Definition 2.5 (Nested association patterns) Assume
that (T, N, D, f) is a transaction database. Consider a
collection x. The support of x is the number of trans-
actions t in D such that ¢ 1s weaker than t. For a user-
specified minimum support minisup, x is frequent if the
support of x 1s not less than minisup. x is maximally
frequent if x is frequent and is not weaker than other
frequent collections. x is a nested association pattern
or sumply pattern if x s mazimally frequent. Given a
transaction database (T, N, D, f), the problem of min-
ing nested patterns is to find all patterns with respect to
MINISUP.

Testing whether a collection is maximally frequent
requires to examine other collections, therefore, is
difficult. We consider a necessary condition of being
maximally frequent. This condition can be used to
prune some non-maximally frequent collections.

Definition 2.6 (Non-redundant collections) (a) Ev-
ery value in T U N is non-redundant. (b} A collection
< x1,...,2, > 18 non-redundant if and only if every x;
is non-redundant. (c) A collection {x1,..., xx} is non-
redundant if and only if every x; is non-redundant and
no x; is weaker than x; for ¢ £ j.

For example, {{a,b}} and {<< 1 >,2 >} are non-
redundant, but {{a},{a,b}} and {<<1>,2 > <2 >}
are redundant.

Theorem 2.1 FEvery maximally frequent collection is
non-redundant, but not the converse.

In fact, if a frequent collection z is redundant, it must
be equivalent to some non-redundant collection (which
is also frequent), and by the above definition z is not
maximally frequent. {{1}} is non-redundant, but is not
maximally frequent because it i1s weaker than frequent
non-redundant collection {b}. In Example 2.2 below,
{{1}} is non-redundant, but is not maximally frequent
because 1t is weaker than frequent non-redundant
collection {b}.

Example 2.2 Consider the transaction database (T, N,
D, f) in Example 2.1. Collection {2} is supported by
transactions tq,1s,15, {b} is supported by transactions
to,ta,l5, and {<< 1,1 >,2 >} is supported by trans-
actions ts and ts3. It can be verified that {<< 1,1 >
,2 >} is also supported by t1. Therefore, if minisup is
60%, {2},{b},{<< 1,1 >,2 >} are frequent. Clearly,
{2}, {6}, {<< 1,1 >,2 >} are non-redundant. Finally,
{2}, {b}, {<< 1,1 >,2 >} are mazimally frequent be-
cause each is not weaker than a frequent non-redundant
collection other than itself. All other frequent non-
redundant collections are weaker than some of these col-
lections. For example, {<< 1 >,2 >} is weaker than
{<< 1,1 >,2 >}, {{1,2}} is weaker than {b}, etc.
Therefore, {2},{b},{<< 1,1 >,2 >} are all and only
patterns.

3 The Issues

We examine issues related to mining nested association
patterns.

3.1 Representing the transaction database

First, we need to represent the transaction database
(T, N, D, f). The straightforward method is to store the
full collection for each transaction in D, in which the full
collection of a non-terminal value A will be repeatedly
stored in every transaction having A as a descendant.
This will considerably increase the database size and
cause some update anomalies when the nesting function
f(A) is updated. More seriously, since non-terminal
values are replaced by their full collections, no patterns
containing non-terminal values will be discovered.

One assumption made in most data mining problems
1s that the number of distinct values is small compared
to the number of tuples in the database. In our
mining problem, we assume that the number of values
in TU(N — D) (i.e., non-transaction values) is smaller
than the number of transactions in D (i.e., the database
size). We will store the definition f(A) for values

A € TU(N — D) in the memory and store the definition
f(t) for transactions ¢ € D on the disk. The mapping
f(A) for values A € N — D are represented by a directed
acyclic graph G defined as follows.

1. For each value A € T U (N — D), we create k + 1
nodes A%, A', ... A¥ in G, called copies of A, where
k is the maximal number of occurrences of A in a
single sequence f(B) for B € N — D. If f(A) is a
sequence, nodes A® are marked by box O. Intuitively,
A" represents A in a set and A?, i > 1, represents
the ith occurrence of A in a sequence. For each value
Ain N — D, if f(A) =< Bi,..., B, >, there is an
arc from every copy of A to the jth copy of B; if B;
appears as the jth occurrence of itself.

2. For each value Ain N — D, if f(A) = {B1,..., Bn},
there is an arc from every copy of A to BY, ..., BY.
Note that ¢ does not contain mappings f(¢) for
transactions f; 1t contains only the definition for
values in N — D. (is stored in the memory.

Figure 1: Graph G

Figure 1 shows the graph G for values in N — D for
the transaction database in Example 2.1.

3.2 Representing collections

Second, we need to represent collections that may
contain both sets and sequences. A k-collection refers to
a collection in which there are & occurrences of values
in TU (N — D). Each value occurrence in a k-collection
can be represented by a path in graph G, called a G-
path. The algorithm makes multiple passes over the
transaction file D, computing frequent non-redundant
k-collections for increasing k. In the first pass, we
find all frequent non-redundant 1-collections, denoted
Py, each being represented by a G-path. In the kth
pass, k > 1, we compute all frequent non-redundant
k-collections, denoted Fj, from Fjy_;.

Each k-collection can be represented by a sequence
p1...pr, where p; 18 the G-path for the ith value
occurrence in the collection, from left to right. A nesting

tree of k leaves can be “assembled” by the k (G-paths
P1,--.,pr 10 a natural way, that i1s, by treating G-
paths p; as paths of the tree ordered as in py...pk.
We represent a k-collection interchangeably by either a
sequence of k G-paths or the corresponding nesting tree.

Figure 2: Nesting structures of transactions

Example 3.1 Continue with the task database (T, N, D, f)

in Example 2.1. Assume that minisup is 60%, i.e., a
frequent collection must be supported by at least three
transactions. The graph G is as in Figure 1. For conve-
nience, the nesting structures of transactions t1,...,ts
are displayed in Figure 2. Fy 1s produced in Table 1. In
particular, there are 14 G-paths representing 6 frequent
1-collections (in the third column). The second column
gives the supporting transactions of these G-paths.

3.3 Constructing collections

We need a rule to construct larger frequent collections
from smaller ones. Relational join does not work here
because objects are not simple tuples, but complex
collections. =~ However, the idea of constructing a
larger frequent collections from two smaller frequent
collections still applies. The following theorem forms
the basis of computing Fy from Fj_1.

Theorem 3.1 Let p; be a G-path. BEvery frequent and
non-redundant k-collection p1 ...px_1pg 15 constructed
by two frequent and non-redundant (k — 1)-collections
P1..Pk_2Pk_1 and pi...px_opr Such that piy_q is not
a prefix of pr and vice versa.

In Theorem 3.1, we say that pj;...pg_opr—1 18
extended by p1 ... pg_api. The construction in Theorem
3.1 gives a superset of Fjy, called k-candidates. The
actual frequent k-collections in Fj, are found by counting
the support of k-candidates during a pass over the
transaction file D. It does not work to simply treat
G-paths as items and find nested patterns as mining
large itemsets in [ATS93, AS94] because the connectivity
among G-paths and the nesting hierarchy of the data are
important.

Example 3.2 Continue with Example 3.1. Table 2
shows Fs and Fs. In computing Fy, 11 ll-paths
representing frequent and non-redundant 2-collections
are generated, as shown in Table 2(a). p7,ps,po, P14
are not extended for reasons to be given wn Frample 3.3
shortly. It can be verified that all other 2-collections
not shown in Table 2(a) are either redundant or not
frequent. For example, p1ip12 = {{2},< 2 >} and
p11ip1s = {{2}, << 1 >>} are not frequent because they
are only supported by ts. In computing Fs, 3 frequent
and non-redundant 3-collections are generated, shown in
Table 2(b). All other 3-collections not shown are either
redundant or not frequent. In computing Fy, peprpio
and pgprps produces pgprpiaps, representing redundant
collection {<< 1,1 >,2 > < 2 >}. Thus, Fy is emply
and no larger frequent collections will be generated.

3.4 Pruning strategies

In mining nested association patterns, the search space
is much larger than the case of flat transactions in
[ATS93, AS94] due to the large number of ways of
nesting values. A effective pruning is crucial to
the performance of the algorithm. However, the
pruning of non-maximally frequent collections is much
less straightforward than that in mining association
rules from flat transactions. As we shall see later,
in general, a non-maximally frequent collection can
be used to produce a maximally frequent collection,
therefore, pruning all non-maximally collections after
each iteration could affect the completeness of the
answer. We will discuss two pruning strategies that
effectively cut down the search space and ensure the
completeness of the answer.

It is possible that nesting trees produced by different
pairs of (k—1)-collections in Theorem 3.1 are isomorphic
in the sense that they differ only in superscripts ¢ in
nodes of form A?. We can show that only one of such
nesting trees, called a natural nesting tree, needs to
be considered. Intuitively, a nesting tree is natural if
superscript ¢ for a node of the form A’ corresponds
to the order of the occurrence of A under its parent
node. Extending a non-natural nesting tree py...pr—1
always produces a non-natural nesting tree py . ..pr_1px
because the prefix p;...pg_1 is non-natural. Thus, our
strategy is

Strategy I. Do not extend a non-natural
nesting tree in Theorem 3.1.

Example 3.3 In Table 1, p7,ps,po and p14 are non-
natural and will not be extended in later passes accord-
wng to Strategy I. In Table 2, psp1a 1s non-natural. In-
terestingly, pspia extends pspiz into natural pspispisg.
Therefore, a non-natural nesting tree may be useful to
ertend a natural nesting tree into a natural one.

G-paths supporting transactions | collections non-natural
p1:(2°) t1, 3,15 2]

P2 (b%) ts,ta, b Iy

ps (87,19 ty, s 111y

pa: (87,2 ty, 14, ts 121

ps : (c”,21) ty,1s,13 {< 2>}

po i (c”at, 1Y) | ti,lats {(<<1>>]

pr (%, a' 1%) |ty ta, 3 {<<1>>} | yes
ps (", a”, 1Y) [ti,ta,t3 {<<1>>} | yes
po : (c",a”,1%) | t1,ta,13 {<<1>>} | yes
p1o : (d°,1°) t2,t4,15 {1}

p11: (d°,27) to, 14,15 1217

P12 : (60,21) t1,%2,13 {< 2 >}

pis (e, 1N [ti,a s {<<1>>}

pia: (%, ¢ 1%) [ti,ta,ts {<<1>>} | yes

Table 1: Computing Fy

The second strategy is to prune non-maximally fre-
quent collections that will not be used in a later itera-
tion. Unlike the non-redundancy, however, k-collection
p1...pr being maximally frequent implies that (k — 1)-
collections piy ...pi—1piy1 ...ps are not maximally fre-
quent because pi1...pi—1Pit1...pr are weaker than
p1...pk. Therefore, non-maximally frequent collections
are needed to construct maximally frequent collections
and cannot be pruned until all frequent non-redundant
collections are constructed. However, there 1s a special
case where pruning non-maximally frequent collections
in F; does not affect computing F} for j > i: if extending
[by I’ generates a frequent non-redundant collection, [
1s not maximally frequent anymore because it is weaker
than the newly constructed collection, and [will not be
used 1n a later pass because it contains too few values.
This gives

Strategy II. If extending ! by !’ generates a
frequent non-redundant collection, prune /.

Example 3.4 We prune all non-mazimally frequent
collections i Fy U Fs U F5. By Strategy 11, there is
no need to constder collections in Fy, that were extended
into some collections in F;, where j > k. After the
pruning, only three collections remain, namely, {2},
{b}, and {<< 1,1 > 2 >}, which are the patterns
returned.

4 Related Work

Since [AIS93], several generalization of association rules
have been proposed. Quantitative association [SA96,
FMM96] considers real values and is quite different
from our work. Sequential patterns [AS95] are special
nested association patterns where a transaction f(t) is

a sequence < t1,...,¢, > of times and mappings f(¢;)
give itemsets purchased at time ¢;. The computation
of support in the case of a nesting hierarchy is very
different from that in the case of an ¢sa-hierarchy for
multi-level association rules [HF95, SA95]. For example,
a transaction supports value StandardEngine defined
by f(StandardEngine) = {1000cc, FourCylinder} if
it contains value StandardEngine, implying that the
engine is both 1000¢cc and FourCylinder. On the other
hand, a transaction supports value Milk having children
LowFat and HighFat in an isa-hierarchy if it contains
either LowFat or HighFat, not necessarily both.
In addition, a nesting hierarchy generalizes data by
subsetting and subsequencing while preserving nesting
relationships, whereas an isa-hierarchy generalizes data
by substituting low level concepts with high level ones.
As a result, nested association patterns contain nesting
relationships, whereas multi-level association patterns
are flat sets of concepts (or items). Nevertheless,
one deals with data enrichment by an inheritance
hierarchy and the other deals with data enrichment by
an aggregation hierarchy.

5 Conclusion

As the amount of data available on-line grows rapidly,
we found that more and more data are organized
into a hierarchy without a fixed schema. Mining
interesting association that appears deep down in the
hierarchy and preserves the hierarchical abstraction is a
powerful tool for analyzing data dealt with by many
modern applications, such as job scheduling, trigger
systems, consistency enforcement in transaction and
workflow environments, resource management, exploit
of repository technology [BD94] and reuse engineering,
and analysis of complex objects such as Web documents

sequences of G-paths | supporting transactions | collections non-natural
P3p4 la, 14,15 L2t

P3pi11 to, 14,15 i {23}

Papio to, 14,15 2}, {1}}

PspPis t1,t0,13 {(<2>,<<1>>}
PsPi4 t1,t0,13 {< 2>, << 1>>} | yes
PeP7 t1,82,13 {<< 1, 1 >>}

PePi2 t1,t0,13 {<<1>>,<2>}

PePs t1,t0,13 {<<1>,2>}

P1opi1 to,14,15 {{1,2}}

P13P14 t1,t0,13 {<< 1,1 >>}

P13p12 t1,t0,13 {<<1>,2>}

(a) I

sequences of GG-paths | supporting transactions | collections non-natural
PsP13P14 t1,82,13 {<2 >, << 1,1>>}

PsP7P12 t1,t9,13 {<<1,1>> <2>}

PeP7DPs5 t1,82,13 {<< 1,1>,2 >}

P13P14aP12 t1,1a,13 {<<1,1> 2>}

(b) F3

Table 2: Fy and F3

or parts in CAM/CAD. The approach of flattening
the database and applying conventional mining tools
does not work because the database size may increase
considerably, update becomes very difficult, and the
ordering of values at different levels is lost. Mining
nested association patterns requires a new approach.
This paper presented initial steps of such approachs.

References

[ATS93] R. Agrawal, T. Imielinski, A. Swami. Mining
association rules between sets of items in large

databases. In SIGMOD 1993, pages 207-216

[AS94] R. Agrawal and R. Srikant. Fast algorithms for
mining association rules. In VLDB 1994, pages

487-499

[AS95] R. Agrawal and R. Srikant. Mining sequential

patterns. In ICDE 1995, pages 3-14

[BD94] P.A. Bernstein and U. Dayal, “An overview of

repository technology”, VLDB 94, 705-713
T. Fukuda, Y. Morimoto, S. Morishita. Data

mining using two-dimensional optimized associ-

[FMMO96]

ation rules: scheme, algorithms, and visualiza-
tion. In SIGMOD 1996, pages 13-23

M.J. Garey, D.J. DeWitt, S.I.. Vandengerg. A
data model and query language for EXODUS.
In ACM SIGMOD 1988

[GDVsS]

[HF95]

[R92]
[SA95]

[SA96]

[SZLV93]

J. Han and Y. Fu. Discovery of multiple-level
association rules from large databases. In VLDB
1995, pages 420-431

J. Richardson. Supporting lists in a data model.
In VLDB 1992, pages 127-138

R. Srikant and R. Agrawal. Mining generalized
association rules. In VLDB 1995, pages 407-419

R. Srikant and R. Agrawal. Mining quantitative
association rules in large relational tables. SIG-
MOD 1996, pages 1-12

B. Subramanian, S.B. Zdonik, T. W. Leung, and
S. L. Vandenberg. Ordered types in the AQUA
data model. In Proceedings of 4th International
Workshop on Database Programming Languages,
1993, pages 115-135

