
Incremental Discovery of Sequential Patterns

Ke Wang
Jye Tan

Department of Information Systems and Computer Science

National University of Singapore

wangk�iscs�nus�sg� tanjye�iscs�nus�sg

Abstract

In this paper� incremental discovery of sequential patterns
from a large sequence database is studied� A sequential
pattern has the form �� �� where � and � are subsequences
in the database� which says that events � will be followed
by events � with some minimum support and con�dence�
We consider the scenario that sequential patterns have
previously been discovered and materialized and an update
is subsequently made to the database� Rediscovering all
patterns by scanning the whole database is not acceptable in
a dynamic and large database environment� We propose an
incremental discovery algorithm that produces the updated
patterns by scanning only the a�ected part of the database
and data structures� In addition� the algorithm handles the
dynamism of the minimum support and con�dence without
recomputation� allowing the user to tune these parameters
and focus on most interesting patterns at little overhead�
Experiments and comparisons were conducted to test the
e�ectiveness of the proposed algorithm�

� Introduction

In the daily and scienti�c life� sequential data are
available and used everywhere� Examples are weather
data� satellite data streams� stock prices� experiment
runs� DNA sequences� histories of medical records� etc�
Reoccurrences of activities and phenomena are captured
in the form of repeated patterns in sequential data�
Discovering interesting patterns can bene�t the user
or scientist by predicting coming activities� interpreting
certain phenomena� extracting outstanding similarities
and di�erences for close attention�
Discovering patterns in sequence data has been

an area of active research in AI �see� for example�
�MD�	
�� where the database is static and usually small�
This topic was recently considered from the database
perspective where the data is stored on the secondary
storage� e�g�� �AS�	� MTV�	� W
��
� To our knowledge�
the following incremental discovery of patterns from
a sequential database has not been addressed� which
is important for large and dynamic databases where
rediscovering all patterns from scratch is too expensive�
Assume that patterns have previously been discovered
and materialized and an update is now made to the

database� We like the patterns to be updated by
examining only the a�ected part of the database and
data structures� In addition� two practical requirements
have to be addressed� The user may like to zoom
in the detail of patterns for explanation of patterns�
therefore� all positions in which patterns occur need
to be maintained� The user may also like to �ne�
tune the minimum support and con�dence a few times
in search for interesting patterns� It is important to
re�ect the new support and con�dence without much
recomputation�

Three models of incremental discovery of sequential
patterns are considered in this paper� �a� The database
is a single but long sequence and a pattern is a
subsequence whose number of occurrences exceeds some
threshold� An update is either insertion or deletion of
a subsequence at either end of the sequence� �b� The
database is a collection of sequences and a pattern is
a subsequence whose total number of occurrences in
all sequences exceeds some threshold� An update is
insertion or deletion of a whole sequence� �c� This is the
same as �b�� except that only the number of sequences in
which a pattern occurs is counted� We will present our
solutions to these models of the incremental discovery
problem�

We use an index structure that is a modi�cation of
the compact su�x tree �su�x tree for short� �We��
�
The su�x tree has previously been used to search for
subsequences similar to a given subsequence� especially
in the area of string matching and text editing� New
issues have to be addressed in applying the su�x tree to
incremental discovery of sequential patterns� First� we
have to �gure out what patterns to try� which is di�erent
from search for subsequences matching a given pattern�
Second� updating the highly structured su�x tree in
response to the change of sequences requires insightful
analysis of the su�x tree� Third� the statistical
information about patterns have to be maintained and
updated e�ciently� Fourth� to allow the user to focus
on the most interesting patterns� the �exibility of
tuning the minimum support and con�dence of patterns
without additional work is required� In the rest of

�

the paper� we will adopt an informal description of
our approach� mostly by examples� to allow better
understanding of the essence�

� Su�x Trees and Sequential Patterns

A sequence S is a list of records ordered by position
number starting with � and delimited by the special
symbol � that occurs only at the right end of the list�
For clarity� records are represented by integers� In
real applications� a record is a description of events of
interest� For example� record �sunny� low� dry� denotes
a sunny� dry� and cold day� Additional information
may be associated with a record and can be retrieved
by the position number of the record� For example�
the above record may be associated with the detailed
weather description of the day�

��� Su�x Trees

The su�x tree for a sequence S was �rst introduced
in �We��
 primarily for string matching� For more
applications of su�x trees� the reader can refer to the
book �S��
� Since no su�x of S is a pre�x of a di�erent
su�x of S due to �� S can be mapped to a su�x tree T
whose paths are the su�xes of S� and whose terminal
nodes correspond uniquely to positions within S� The
su�x tree T for S satis�es the following properties�

T� An arc of T may represent any nonempty subse�
quence of S�

T� Each nonterminal node of T � except the root� must
have at least two o�spring arcs�

T� The subsequences represented by sibling arcs of T
must begin with di�erent records�

T is a multiwayPatrica tree and thus contains at most n
nonterminal nodes �Mc��� S��
� where n is the number
of records in S� A linear time �in the number of node
access� and space construction of the su�x tree for a
sequence were presented in �Mc��� We��
� The following
example illustrates the idea�

Example ��� Consider the sequence S � ���	�������
where each single digital denotes a record� Su�xes of
S are inserted into the su�x tree T one at a time�
starting from the longest su�x� as shown in Figure ��
�a� shows the su�x tree after the �rst four su�xes are
inserted� Since none of these su�xes share a pre�x� they
all go to di	erent branches� A box represents a terminal
node and contains the starting position of the su�x
represented by the terminal node� �b� shows the su�x
tree after the su�x ������ is inserted� ������ shares
the pre�x �� with ��	������� so the arc for ��	������
is split into two� one for �� and one for 	������� �c�
is the tree after su�x ����� is inserted� in which the
old arc for �	������ is split into one arc for � and one

23 23 3

(a)

(b)
(c)

(d)

123523423$

23523423$ 3523423$

123523423$ 523423$

3523423$

523423$
423$

123523423$ 523423$

523423$ 423$
523423$

423$

23 3
123523423$ 523423$

523423$ 423$
523423$

423$

423$

23 3
123523423$ 523423$

523423$ 423$
523423$

423$

423$

$
$

(e)

A

A

B

A

B
C

A

B C

A

B C

523423$

1 2 3 4

1

2

3 4

5

1

2 5

4

36

1

2 5 6 3

4

7

1

2 5 6
3

4

7

8
9

$10

Figure �� Construction of su�x trees

for 	������� At the moment� let us ignore the dashed
line� �d� is the tree after su�x ���� is inserted� In �e��
su�xes ���� ��� and � are inserted� The tree in �e�
is the su�x tree for S� The number in a terminal node
denotes the starting position of the subsequence from the
root to the terminal node�

�In the implementation� the subsequence associated
with an arc can be represented by the pair of starting
position and ending position of the subsequence�� A
straightforward way of inserting a su�x into the su�x
tree is entering the tree from the root and searching
along a path until the next record in the path and
the next record in the su�x disagree� Unfortunately�
this construction requires O�n�� in time� A linear
time construction� �rst proposed in �We��
 and later
modi�ed in �Mc��
� is to start the search at the lowest
possible level� by maintaining auxiliary links called
su�x links between nonterminal nodes of the tree� For
two nonterminal nodes u and v� a su�x link from u to v
is created if the paths from the root to u and v have the
form x� and �� respectively� where x is a single record
and � is a subsequence� Let sufi denote the su�x of S
beginning at position i� with suf� being the longest�
and let Ti denote the su�x tree after suf�� � � � � sufi
are inserted� Note that sufi � xsufi���where x is the
record at position i� � and � represent any subsequences
in S� Below is an informal description of the linear time

�

construction in �Mc��
�
Initial construction� The su�x tree for S is

constructed in the order T�� T�� � � �� Initially� T� contains
only the root and its su�x link points to the root
itself� Suppose that Ti was constructed� On the path
for sufi� let ui be the lowest nonterminal node with
a su�x link and correspond to path x�� where x is a
subsequence of at most one record� and let vi be the
lowest nonterminal node and correspond to path x���
Suppose that every nonterminal node in Ti� except vi�
has a su�x link� This property initially holds for T�
and will be inductively established for Ti��� To insert
sufi��� we follow the short�cut provided by the su�x
link of ui� From the de�nition� the node pointed by the
su�x link corresponds to the path �� which is a pre�x
of sufi��� Starting at this node �rather than starting
from the root� we move down the tree along a sequence
of arcs that spells out �� If � does not end exactly at
a node� the last arc in the sequence will be split and a
new node d is inserted at the end of �� Make the su�x
link of vi point to d� Then the algorithm continues
search from d deeper into the tree� The algorithm �falls
out of the tree� when the longest repeating pre�x of
sufi�� �in S� is consumed in the search� If this pre�x
does not end exactly at a node� the arc containing its
end is split and a new nonterminal node is inserted�
Finally� a new terminal node is inserted for the rest of
sufi��� This new tree is Ti�� with sufi�� inserted� At
most one nonterminal node and one terminal node are
actually created during the transformation from Ti to
Ti�� �Mc��
�
For example� for su�x trees in Figure ��a and b��

all su�x links of nonterminal nodes point to the root
�thus� no short�cuts provided�� In Figure ��c�� after the
su�x ����� is inserted� the su�x link drawn by the
dashed line is created� In Figure ��e�� after su�x ���
is inserted� the dashed su�x line provides a short�cut
into a position to insert su�x ��� For longer sequences�
the short�cut provided by su�x links will avoid long
traversing from the root�

��� Sequential Patterns

The support of a subsequence � with respect to S is
the number of positions in S at which � occurs� For
subsequence ��� �� � denotes the �sequential� pattern
that � is followed by �� The support of pattern � � �
is the support of ��� The con�dence of pattern �� �
is the ratio of the support of �� over the support of ��
Given a minimum support s and a minimum con�dence
c� the problem of discovering sequential patterns is to
�nd all patterns �� � that have a support no less than
s and a con�dence no less than c�
Consider the su�x tree T of sequence S� Any

nonempty subsequence � in S can be spelled out by
following a unique path from the root of T � The
extended locus of �� denoted locus���� is the �rst

node in T encountered after � is spelled out� Let
v�support denote the number of terminal nodes in the
subtree rooted at a nonterminal node v� For the
initial su�x tree T � v�support can be obtained by a
postorder traverse of T � With respect to the user�
speci�ed minimum support s and minimum con�dence
c� �� � is a pattern if

locus�����support � s

and

locus�����support�locus����support � c�

Hence� the portion of T above all nonterminal nodes
v such that v�support � s is all we need to pro�
duce all patterns� We call this portion the pattern
tree �with respect to the speci�ed minimum support
s�� In the pattern tree� for each path starting at the
root that spells out subsequence ��� where � and �
are nonempty� � � � is a pattern if and only if
locus�����support�locus����support � c� For this rea�
son� we use the pattern tree to represent patterns� Since
the whole su�x tree is maintained over time� discover�
ing sequential patterns with respect to any minimum
support without further computation is possible� This
is highly desirable because in most cases the user tends
to try a few minimum supports before being satis�ed
with the result�

� A Single Sequence

In this section� the database consists of a single and long
sequence S� We assume that the su�x tree T for S is
materialized� Therefore� pattern trees with respect to
any minimum support and con�dence are available for
retrieval� We consider how to update T when sequence
S � ��� is updated to ����
The update strategy� The following strategy was

suggested in �Mc��
 to update the su�x tree T for S�
Let �� be the longest su�x of � which occurs in at least
two di�erent places in ���� With respect to the update
��� � ���� we de�ne as ��splitters those subsequences
�or their paths� of the form 	�� where 	 is a nonempty
su�x of ���� Equivalently� ��splitters are paths in T
which properly contain the su�x �� but whose terminal
arcs do not properly contain ��� because a ��splitter
does not go to a terminal arc before running out of
its su�x of �� �if any�� Two cases of a ��splitter will
be considered� In the �rst case� some characters of �
are shared by another path� thus� the path of the ��
splitter is a�ected by the update� In the second case�
the terminal arc of a ��splitter contains exactly ��� and
replacing � by � may cause the terminal arc to be split
and merged with its sibling arcs to maintain T�� ��
splitters are the only paths whose structures might be
a�ected by the change from � to �� All other paths in
T re�ect the change either because they are too short

�

3
123523423$

423$

423$

$

A

C

1

6

7

9

$10

23$

8

3

123523423$

423$

423$

$

A

C

1

6

7

9

$10

23$

(a)

(b)

6

4
5

3

2 8

83423$

783423$

6783423$

6783423$$

6783423$

Figure �� Replacing 	� by ���

to contain any character of �� or because they are so
long that � is buried in a terminal arc and the change
from � to � cannot a�ect the structure of the path� The
strategy of replacing � with � is to delete all ��splitters
from T and insert into T all ��splitters of the form
��
where
 is a nonempty su�x of ���� Let us illustrate
these concepts by an example�

Example ��� Suppose we replace � � 	� with � �
��� in the sequence S � ���	������� given the su�x
tree in Figure ��e� for S� We have � � ��� and
� � ������ The longest repeating su�x of � is
�� � ��� and so ��� � ��	�� There are four
�
splitters� ��� 	��� �	��� ��	��� starting at positions
��
����� respectively� The terminal arcs for these
positions do not properly contain ��� therefore� the
paths for these �
splitters are a	ected by the update
and should be deleted� Deleting a path corresponds to
deleting the terminal arc� After the terminal arc for
position � is deleted� node B has only one o	spring arc
left� which violates T�� In this case the two arcs on the
path are merged into one arc� The tree after deleting all
�
splitters is shown in Figure ��a��
Then we insert �
splitters into the tree in Figure ��a��

Since ��� � ������ there are �ve �
splitters� ��� ����
����� ������ ������� The insertion starts with the
longest �
splitters� i�e�� ������� as if suf� has just been
inserted in the construction algorithm� The tree after
inserting these �
splitters is given in Figure ��b��

However� some important problems remain to be
solved before applying this strategy to our incremental
discovery problem� We have to e�ciently maintain the
position information of records� which is di�cult for

general updates� Therefore� we consider only updates
that are made to either end of S� as usually the case
for sequential data where old records are deleted at the
left end and new records are added at the right end�
Also� we have to solve the problem that the starting
and ending positions associated with an arc may not
exist due to deletion of subsequences� Finally� after each
insertion or deletion we have to update v�support for
a�ected nodes v� An e�cient counting method should
access only a�ected nodes once� All these issues are
left unaddressed in �Mc��
 but are important for the
discovery problem�

��� Insertion

Insertion at the right end� In this case� the general
update ��� � ��� becomes ��� ���� with � � � and
� � �� ��splitters are of form 	�� where 	 is a nonempty
su�x of ��� The algorithm maintains two pointers that
point to the terminal nodes for the longest and shortest
su�xes of S� Thus� we can �nd the shortest ��splitter
��� directly� where �i is the su�x of � that has length
i� To delete all ��splitters e�ciently� we modify the
construction algorithm to chain up all terminal nodes
of T in the ascending position order� This can be easily
done because su�xes are inserted into T in the same
order� With this modi�cation� we delete all ��splitters
by following the terminal chain towards lower positions
�i�e�� longer ��splitters� until a path that is not a ��
splitter is encountered� Note that a path is a ��splitter
if and only if its terminal arc does not properly contain
��� which can be easily tested by reading the starting
position of the terminal arc� Note that deleting a path
can be done by accessing only a �xed number of nodes�
The detail can be found in �Mc��
� Next� we insert all
��splitters
�� where
 is a nonempty su�x of ���� as in
the construction of Section �� Since terminal arcs store
only the starting position of the rest of the su�xes� there
is no need to insert � into terminal arcs of the tree�
The frontal set update� The insertion and deletion of

splitters may change the support v�support associated
with nonterminal nodes v� Refreshing the support by
the postorder traversing of T will access all nodes in the
tree and defeat the purpose of incremental discovery�
We propose a counting method to update the support
by accessing only a�ected nodes� Let v�� � � � � vk be the
terminal nodes of the paths newly inserted� The support
of all nonterminal nodes on these paths are a�ected�
Initially� let F contain all nodes v�� � � � � vk and each
vi is associated with an increment �i that is set to
� at the beginning� In each iteration� we traverse up
one arc from the deepest nodes vi in F and increase
the support of the nodes ui reached from vi by the
amount of �i� Then we update F by replacing vi with
ui� If ui� � � � � � uik are identical �that is� vi� � � � � � vik are
siblings�� the sum �i��� � ���ik will be associated with
this node� This process terminates when the support of

�

the root is updated� In this counting algorithm� each
node on the inserted paths is accessed only once�
Insertion at the left end� This is the case that

the general update ��� � ��� becomes � � ��� by
letting � � � � �� There is no ��splitter and so
deletion of ��splitters is omitted� We apply the normal
construction algorithm to insert all ��splitters of the
form
�� where
 is a nonempty su�x of �� Upon
completion of the insertion� we apply the above frontal
set update algorithm to update the support of nodes�
Unlike insertion at the right end� the insertion of � at the
left end will increase the position counts of all records
in S by the length of �� To keep track of this change� an
o�set Count is maintained that will be increased by the
length of � whenever � is inserted at the left end� The
correct position of a record in S is its original position
plus the o�set Count�

��� Deletion

Deletion at the right end� The general update
��� � ��� specializes to ��� � ��� by letting � � �
and � � �� ��splitters are 	�� where 	 is a nonempty
su�x of ���� We delete all ��splitters and insert all
��splitters
�� where
 is a nonempty su�x of ���
Finally� we apply the frontal set update algorithm to
update the support of a�ected nonterminal nodes� For
deletion� in the frontal set update algorithm we also
check if the remaining arcs on a deleted path refer to
deleted positions and change such references to existing
positions� See more details and an example below�
Deletion at the left end� The general update

��� � ��� specializes to �� � �� by letting � � � � ��
We delete all ��splitters 	�� where 	 is a nonempty su�x
of �� There is no ��splitter to insert because � � � � ��
The frontal set update algorithm is applied to update
the support of a�ected nonterminal nodes� The deletion
of � at the left end will decrease the position counts of
all records in S by the length of �� so we decrease Count
by the length of ��
In the implementation� we store the starting and

ending positions �fr� to� of the left�most occurrence of
the subsequence on an arc� If records addressed by these
positions are deleted� �fr� to� will have to be changed to
another occurrence of the same subsequence� In the
following example� �fr� to� is changed according to the
next left�most existing occurrence of a subsequence�

Example ��� Suppose that we delete the three left

most records ��� in the sequence S � ��	�����������
whose su�x tree is given in Figure ��a�� This is done
by deleting the paths corresponding to leaves marked ��
�� and �� Before the deletion� the pairs ������ ������
and ����
� along the path ending at the leaf containing
position � refer to the left
most occurrences of these
subsequences� Since the �rst three records are deleted�
these pairs no longer point to the intended records�

5 10 2

14

12 8 11 1 4 9

13

73

6

(5,6)

(14,14) (1,1) (3,14)

(7,14)

(14,14)
(5,6)(7,14)

(2,2)
(3,14)

(12,14)
(7,14)

(14,14)
(10,14) (13,14)

(3,14) (7,14)
(12,14)

A

B

C

5 10

14

12 8 11 4 9

13

7

6

(5,6)

(14,14)

(7,14)

(14,14)
(5,6)(7,14)(12,14)

(7,14)

(14,14)
(10,14) (13,14)

(7,14)
(12,14)

A

B

C

(9,9)

(4,4)

(a)

(b)

� � � � � � 	
 � �� �� �� �� ��

� � � � � � � � � � � � � �

Figure �� Update of �fr� to� for deletion

The same problem occurs for the paths corresponding
to leaves marked � and �� All these pairs are replaced
by some surviving occurrences of the same subsequence�
For example� the smallest surviving fr under node C is
�� and we can use ����� to replace the non
existing �����
on the arc �B�C�� Under node B the smallest surviving
fr is � and so we can replace the non
existing ����� with
�
�
� on the arc �A�B�� Figure ��b� is the tree after the
deletion�

The update of �fr� to� pairs can be done in the same
scan as the update of support for a�ected nodes in
the frontal set update algorithm� In particular� at a
nonterminal node v with parent u� the smallest existing
�i�e�� excluding deleted paths� fr under v is used to
compute the to reference for the arc �u� v�� that is�
fr � �� Note that the actual starting and ending
positions �fr� to� on an arc are computed by �fr �
Count� to � Count�� where Count is the accumulated
o�set of positions due to insertion and deletion at either
ends�

��� Time complexity

The time complexity is measured by the number of node
access� The time complexity of an update consists of

�

�a� the complexity of deleting all ��splitters� �b� the
complexity of inserting all ��splitters� �c� the complexity
of updating support and �fr� to� pairs on a�ected paths�
For each insertion or deletion of a subsequence discussed
above� the number of paths inserted or deleted is
bounded by the length of ��splitters ��� plus the length
of ��splitters ���� Deletion of a ��splitter is done by
at most one terminal node access and two nonterminal
node accesses� From �Mc��
� the average number of
nonterminal node access to insert a path is no more
than �� and the number of terminal node access is ��
Thus� deletion and insertion of splitters can be done in
a time linear in the length of ��� and ���� The number
of node access for updating support and �fr� to� pairs
incurred by the frontal set update algorithm is equal to
the number of distinct nodes on the paths corresponding
to the initial frontal set F � If some of these paths
merge� each node on the merged part only needs to be
accessed once� All three components of complexity are
contributed only by the a�ected portion of the tree� For
large sequences and small updates� which is our basic
assumption for the problem of incremental discovery�
only a small portion of the tree will be a�ected and
therefore the cost of update is low�

� Support by Occurrences

We now consider the incremental discovery problem
where the database consists of multiple sequences and
the support of a subsequence � is de�ned as the sum
of the support of � in all sequences� Therefore� a
sequence containing many occurrences of a subsequence
will support the subsequence more strongly than a
sequence containing few occurrences of the subsequence�
Consider a sequence database D � fS�� � � � � Skg of k
sequences� An update is either insertion of a new
sequence or deletion of an old sequence� We reduce
the incremental discovery problem to that for a single
sequence database by replacing D with sequence S �
S��� � � �Sk�k� where �i is a unique symbol that occurs
no elsewhere in S� Since all patterns must be repeating
subsequences� no pattern of S will contain �i� To locate
all paths of a sequence� a B��tree on pairs �id� head� is
maintained with id being the search key� where id is a
sequence identi�er and head points to the �rst terminal
node of the sequence id� Then all paths of sequence id
are found by entering the terminal node chain pointed
by head and moving to higher positions of the chain
until a terminal arc delimited by a di�erent delimiter �i
is encountered� See Figure ��
A new sequence is inserted by inserting all its su�xes

into the su�x tree for S with all new terminal nodes
chained up� Then entry �id� head� is inserted into
the B��tree� where id is the identi�er of the inserted
sequence and head is the address of the head of the
new terminal chain� To delete an existing sequence

1

2

n1
1

2

n2

.....

B+−tree on sequence ids

head

terminal chain for S1

terminal chain for S2

suffix tree for S

nk

Figure �� Locating all su�xes of a sequence

with identi�er id� the head of the terminal chain of
the sequence is found by searching the B��tree using
id� Once the head is found� the deletion in the su�x
tree proceeds exactly as the deletion of a subsequence
at the left end of a sequence in Section �� except
that the subsequence is the whole sequence identi�ed
by id� By joining all sequences in D into a single
sequence S� common pre�xes of su�xes from di�erent
sequences can share the same path in the su�x tree
for S �thus saving storage� and we can �nd out the
support of a subsequence by following only one path for
the subsequence �thus saving time��

However� since insertion and deletion is performed for
a whole sequence and since positions within sequences
are maintained independently� the problem of altering
positions and �fr� to� pairs in Section � does not exist
any more� Also� unlike in Section � where an insertion or
deletion of a subsequence requires deleting a�ected old
splitters followed by inserting new splitters in general�
insertion or deletion of a whole sequence needs only to
insert new su�xes or deleting old su�xes� but not both�
The update of support remains the same as in Section
�� With these minor changes� the algorithms in Section
� also provide a solution to the incremental discovery
problem in question�

� Support by Sequences

This model is the same as the model in Section �� except
that the support of a subsequence � is de�ned as the
number of sequences in which � occurs� As in Section ��
the sequence database D � fS�� � � � � Skg can be replaced
by a single sequence S � S��� � � �Sk�k� However�
the algorithm of counting the support of nonterminal

�

nodes needs to be modi�ed� For a nonterminal node
v� v�support is now equal to the number of distinct
sequence ids appearing in the subtree rooted at v� Since
only one sequence is inserted or deleted each time� the
frontal set update algorithm is modi�ed such that if ui
is reached from children vi� � � � � � viq � q � �� ui�support
is always increased by � for insertion� or decreased by
one for deletion�

� Experiments

In one experiment� we designed a set of weather pat�
terns to generate a sequence of synthetic weather data�
and then we applied the su�x tree algorithm to the
data to construct the pattern tree� All original patterns
were discovered� though some additional patterns were
also found� Most of these additional patterns have the
form � � � where � is a pre�x of � for an original
pattern � � �� This veri�ed the correctness of the
su�x tree based discovery method� In another exper�
iment� we compared the proposed incremental discov�
ery algorithms with their nonincremental counterparts
in terms of both the elapsed time and the number of
node accesses� The database size ranges from 	�k to
����k at the interval of 	�k� For each size� we per�
formed the same set of �� updates of length ranging
from �� to 	�� records� and we averaged the cost col�
lected� As expected� we found that the incremental dis�
covery algorithms for the three models have similar per�
formance and substantially outperform their nonincre�
mental counterparts� The detailed experimental results
will be reported in the full paper�
Acknowledgements� We would like to thank the

referees for valuable comments and suggestions�

References

�AS�	
 R� Agrawal and R� Srikant� Mining sequential
patterns� In Proceedings of the IEEE Data

Engineering� ����� pages ��
�

�Mc��
 E�M� McCreight� A space�economical su�x tree
construction algorithm� JACM� Vol� ��� No� ��
April
���� page �������

�MD�	
 T�G� Dietterich and R�S� Michalski� Discovering
patterns in sequences of events� Arti	cial

Intelligence� Vol� ��� page
�������
��	

�MTV�	
 H� Mannila� H� Toivonen� A�I� Verkamo� Discov�
ering frequent episodes in sequences� In Proceed

ings of KDD ����� page �
���
	

�S��
 G�A� Stephen� String searching algorithms� In

Lectures notes Series on Computing� Vol� ��

����� World Scienti�c

�W���
 J�T� L� Wang� G�W� Chirn� T�G� Marr� B�
Shapiro� D� Shasha� and K� Zhang� Combina�
torial pattern discovery for scienti�c data� some
preliminary results� In Proceedings of ACM SIG

MOD ����� page

	�
�	

�We��
 P� Weiner� Linear pattern matching algorithms�
In Proceedings of Conf� Record� the IEEE ��th

Annual Symposium on Switching and Automata

Theory� ����� page
�

�

