Incremental Discovery of Sequential Patterns

Ke Wang
Jye Tan

Department of Information Systems and Computer Science

National University of Singapore

wangk@iscs.nus.sg, tanjye@iscs.nus.sg

Abstract

In this paper, incremental discovery of sequential patterns
from a large sequence database is studied. A sequential
pattern has the form o« — 3, where « and 3 are subsequences
in the database, which says that events o will be followed
by events 3 with some minimum support and confidence.
We consider the scenario that sequential patterns have
previously been discovered and materialized and an update
is subsequently made to the database. Rediscovering all
patterns by scanning the whole database is not acceptable in
a dynamic and large database environment. We propose an
incremental discovery algorithm that produces the updated
patterns by scanning only the affected part of the database
and data structures. In addition, the algorithm handles the
dynamism of the minimum support and confidence without
recomputation, allowing the user to tune these parameters
and focus on most interesting patterns at little overhead.
Experiments and comparisons were conducted to test the
effectiveness of the proposed algorithm.

1 Introduction

In the daily and scientific life, sequential data are
available and used everywhere. Examples are weather
data, satellite data streams, stock prices, experiment
runs, DNA sequences, histories of medical records, etc.
Reoccurrences of activities and phenomena are captured
in the form of repeated patterns in sequential data.
Discovering interesting patterns can benefit the user
or scientist by predicting coming activities, interpreting
certain phenomena, extracting outstanding similarities
and differences for close attention.

Discovering patterns in sequence data has been
an area of active research in AT (see, for example,
[MD85]), where the database is static and usually small.
This topic was recently considered from the database
perspective where the data is stored on the secondary
storage, e.g., [AS95, MTV95, W*94]. To our knowledge,
the following incremental discovery of patterns from
a sequential database has not been addressed, which
is important for large and dynamic databases where
rediscovering all patterns from scratch is too expensive.
Assume that patterns have previously been discovered
and materialized and an update is now made to the

database. We like the patterns to be updated by
examining only the affected part of the database and
data structures. In addition, two practical requirements
have to be addressed. The user may like to zoom
in the detail of patterns for explanation of patterns,
therefore, all positions in which patterns occur need
to be maintained. The user may also like to fine-
tune the minimum support and confidence a few times
in search for interesting patterns. It is important to
reflect the new support and confidence without much
recomputation.

Three models of incremental discovery of sequential
patterns are considered in this paper. (a) The database
is a single but long sequence and a pattern is a
subsequence whose number of occurrences exceeds some
threshold. An update is either insertion or deletion of
a subsequence at either end of the sequence. (b) The
database is a collection of sequences and a pattern is
a subsequence whose total number of occurrences in
all sequences exceeds some threshold. An update is
insertion or deletion of a whole sequence. (c) This is the
same as (b), except that only the number of sequences in
which a pattern occurs is counted. We will present our
solutions to these models of the incremental discovery
problem.

We use an index structure that is a modification of
the compact suffiz tree (suffix tree for short) [WeT3].
The suffix tree has previously been used to search for
subsequences similar to a given subsequence, especially
in the area of string matching and text editing. New
issues have to be addressed in applying the suffix tree to
incremental discovery of sequential patterns. First, we
have to figure out what patterns to try, which is different
from search for subsequences matching a given pattern.
Second, updating the highly structured suffix tree in
response to the change of sequences requires insightful
analysis of the suffix tree. Third, the statistical
information about patterns have to be maintained and
updated efficiently. Fourth, to allow the user to focus
on the most interesting patterns, the flexibility of
tuning the minimum support and confidence of patterns
without additional work is required. In the rest of

the paper, we will adopt an informal description of
our approach, mostly by examples, to allow better
understanding of the essence.

2 Suffix Trees and Sequential Patterns

A sequence S is a list of records ordered by position
number starting with 1 and delimited by the special
symbol $ that occurs only at the right end of the list.
For clarity, records are represented by integers. In
real applications, a record is a description of events of
interest. For example, record (sunny,low,dry) denotes
a sunny, dry, and cold day. Additional information
may be associated with a record and can be retrieved
by the position number of the record. For example,
the above record may be associated with the detailed
weather description of the day.

2.1 Suffix Trees

The suffix tree for a sequence S was first introduced
in [We73] primarily for string matching. For more
applications of suffix trees, the reader can refer to the
book [S94]. Since no suffix of S is a prefix of a different
suffix of S due to $, S can be mapped to a suffix tree T
whose paths are the suffixes of S, and whose terminal
nodes correspond uniquely to positions within S. The
suffix tree T" for S satisfies the following properties.

T1 An arc of T" may represent any nonempty subse-
quence of 5.

T2 Each nonterminal node of T', except the root, must
have at least two offspring arcs.

T3 The subsequences represented by sibling arcs of T'
must begin with different records.

T'1s a multiway Patrica tree and thus contains at most n
nonterminal nodes [Mc76, S94], where n is the number
of records in S. A linear time (in the number of node
access) and space construction of the suffix tree for a
sequence were presented in [Mc76, We73]. The following
example illustrates the 1dea.

Example 2.1 Consider the sequence S = 1235234238,
where each single digital denotes a record. Suffizes of
S are inserted into the suffiz tree T one at a time,
starting from the longest suffiz, as shown in Figure 1.
(a) shows the suffix tree after the first four suffives are
wnserted. Since none of these suffizes share a prefiz, they
all go to different branches. A box represents a terminal
node and contains the starting position of the suffix
represented by the terminal node. (b) shows the suffir
tree after the suffiv 23423$% is inserted. 23423% shares
the prefir 23 with 23523423%, so the arc for 23523423%
is split into two, one for 23 and one for 523423%. (c)
is the tree after suffiv 3423$ is inserted, in which the
old arc for 35234238 is split into one arc for 3 and one

523423%
123523423%

235294233 3523423%

(@)

523423%

423%
(b)

A 423% A 423%

123523423% 23
B ~_ _
5234239 423%

[«

@ ©

Figure 1: Construction of suffix trees

for 523423%. At the moment, let us ignore the dashed
line. (d) is the tree after suffiz 423% is inserted. In (e),
suffizes 23%, 3%, and $ are inserted. The tree in (e)
15 the suffiz tree for S. The number in a terminal node
denotes the starting posttion of the subsequence from the
root to the terminal node.

(In the implementation, the subsequence associated
with an arc can be represented by the pair of starting
position and ending position of the subsequence.) A
straightforward way of inserting a suffix into the suffix
tree is entering the tree from the root and searching
along a path until the next record in the path and
the next record in the suffix disagree. Unfortunately,
this construction requires O(n?) in time. A linear
time construction, first proposed in [We73] and later
modified in [Mc76], is to start the search at the lowest
possible level, by maintaining auxiliary links called
suffir links between nonterminal nodes of the tree. For
two nonterminal nodes u and v, a suffix link from u to v
is created if the paths from the root to u and v have the
form za and «, respectively, where z is a single record
and « is a subsequence. Let suf; denote the suffix of S
beginning at position ¢, with suf; being the longest,
and let 7; denote the suffix tree after sufi,...,suf;
are inserted. Note that suf; = zsuf;;1,where z is the
record at position 7. a and [represent any subsequences
in S. Below is an informal description of the linear time

construction in [Mc76].

Initial construction. The suffix tree for S is
constructed in the order 71,75, Initially, Ty contains
only the root and its suffix link points to the root
itself. Suppose that T; was constructed. On the path
for suf;, let u; be the lowest nonterminal node with
a suffix link and correspond to path x«, where z is a
subsequence of at most one record, and let v; be the
lowest nonterminal node and correspond to path zaf.
Suppose that every nonterminal node in T;, except v,
has a suffix link. This property initially holds for Tj
and will be inductively established for T;yi. To insert
sufit1, we follow the short-cut provided by the suffix
link of u;. From the definition, the node pointed by the
suffix link corresponds to the path «, which is a prefix
of sufiy1. Starting at this node (rather than starting
from the root) we move down the tree along a sequence
of arcs that spells out 3. If 5 does not end exactly at
a node, the last arc in the sequence will be split and a
new node d is inserted at the end of 3. Make the suffix
link of v; point to d. Then the algorithm continues
search from d deeper into the tree. The algorithm “falls
out of the tree” when the longest repeating prefix of
sufiy1 (in S) is consumed in the search. If this prefix
does not end exactly at a node, the arc containing its
end 1s split and a new nonterminal node is inserted.
Finally, a new terminal node is inserted for the rest of
sufit1. This new tree is Tj11 with suf;1q inserted. At
most one nonterminal node and one terminal node are
actually created during the transformation from 7; to
Tit1 [McT6].

For example, for suffix trees in Figure 1(a and b),
all suffix links of nonterminal nodes point to the root
(thus, no short-cuts provided). In Figure 1(c), after the
suffix 3423$ is inserted, the suffix link drawn by the
dashed line is created. In Figure 1(e), after suffix 23$
is inserted, the dashed suffix line provides a short-cut
into a position to insert suffix 3$. For longer sequences,
the short-cut provided by suffix links will avoid long
traversing from the root.

2.2 Sequential Patterns

The support of a subsequence a with respect to S is
the number of positions in S at which « occurs. For
subsequence a3, o« — § denotes the (sequential) pattern
that « is followed by 3. The support of pattern o — 3
is the support of af3. The confidence of pattern o —
is the ratio of the support of af over the support of «.
Given a minimum support s and a minimum confidence
¢, the problem of discovering sequential patterns is to
find all patterns & — 3 that have a support no less than
s and a confidence no less than c.

Consider the suffix tree 7' of sequence S. Any
nonempty subsequence a in S can be spelled out by
following a unique path from the root of 7. The
extended locus of «, denoted locus(w), is the first

node in T encountered after a is spelled out. Let
v.support denote the number of terminal nodes in the
subtree rooted at a nonterminal node v. For the
initial suffix tree T, v.support can be obtained by a
postorder traverse of 7. With respect to the user-
specified minimum support s and minimum confidence
¢, o — §1s a pattern if

locus(af).support > s
and
locus(af).support [locus(«).support > c.

Hence, the portion of 7' above all nonterminal nodes
v such that v.support > s is all we need to pro-
duce all patterns. We call this portion the pattern
tree (with respect to the specified minimum support
s). In the pattern tree, for each path starting at the
root that spells out subsequence af, where a and 3
are nonempty, « — § i1s a pattern if and only if
locus(aB).support [locus(«).support > c. For this rea-
son, we use the pattern tree to represent patterns. Since
the whole suffix tree is maintained over time, discover-
ing sequential patterns with respect to any minimum
support without further computation is possible. This
is highly desirable because in most cases the user tends
to try a few minimum supports before being satisfied
with the result.

3 A Single Sequence

In this section, the database consists of a single and long
sequence S. We assume that the suffix tree T for S is
materialized. Therefore, pattern trees with respect to
any minimum support and confidence are available for
retrieval. We consider how to update T when sequence
S = afy is updated to ad~y.

The update strategy. The following strategy was
suggested in [Mc76] to update the suffix tree T for S.
Let a™ be the longest suffix of o which occurs in at least
two different places in aFy. With respect to the update
afy — ady, we define as (3-splitters those subsequences
(or their paths) of the form ey, where € is a nonempty
suffix of a*3. Equivalently, B-splitters are paths in T’
which properly contain the suffix +, but whose terminal
arcs do not properly contain (v, because a F-splitter
does not go to a terminal arc before running out of
its suffix of a* (if any). Two cases of a S-splitter will
be considered. In the first case, some characters of 3
are shared by another path, thus, the path of the (-
splitter is affected by the update. In the second case,
the terminal arc of a g-splitter contains exactly 87, and
replacing by § may cause the terminal arc to be split
and merged with its sibling arcs to maintain T3. S-
splitters are the only paths whose structures might be
affected by the change from 3 to 4. All other paths in
T reflect the change either because they are too short

A
@ s _~
123523423%
23%

423%

A

[s
123523423%
23%
. 83423% e~
(2]
[:] $ 4238 6783423%
6783423% o] [s]

(b)

783423%

Figure 2: Replacing 52 by 678

to contain any character of 3, or because they are so
long that 3 is buried in a terminal arc and the change
from G to § cannot affect the structure of the path. The
strategy of replacing 3 with § is to delete all F-splitters
from T and insert into 7" all d-splitters of the form w,
where w is a nonempty suffix of a*J. Let us illustrate
these concepts by an example.

Example 3.1 Suppose we replace 8 = 52 with § =
678 in the sequence S = 1235234238, given the suffix
tree in Figure 1{e) for S. We have o = 123 and
~ = 3423%. The longest repeating suffix of a is
af = 23, and so o*f = 2352. There are four
G-splitters: 2v,52v,352~,2352y, starting at positions
5,4,3,2, respectively. The terminal arcs for these
positions do not properly contain By, therefore, the
paths for these [(-splitters are affected by the update
and should be deleted. Deleting a path corresponds to
deleting the terminal arc. After the terminal arc for
position 2 is deleted, node B has only one offspring arc
left, which violates T2. In this case the two arcs on the
path are merged into one arc. The tree after deleting all
B3-splitters is shown in Figure 2(a).

Then we insert §-splitters into the tree in Figure 2(a).
Since «*d = 23678, there are five §-splitters: 8, 78%,
678, 3678~, 23678~. The insertion starts with the
longest §-splitters, i.e., 23678, as if suf; has just been
mserted wn the construction algorithm. The tree after
inserting these 0-splitters is given in Figure 2(b).

However, some important problems remain to be
solved before applying this strategy to our incremental
discovery problem. We have to efficiently maintain the
position information of records, which is difficult for

general updates. Therefore, we consider only updates
that are made to either end of S, as usually the case
for sequential data where old records are deleted at the
left end and new records are added at the right end.
Also, we have to solve the problem that the starting
and ending positions associated with an arc may not
exist due to deletion of subsequences. Finally, after each
insertion or deletion we have to update v.support for
affected nodes v. An efficient counting method should
access only affected nodes once. All these issues are
left unaddressed in [Mc76] but are important for the
discovery problem.

3.1 Insertion

Insertion at the right end. In this case, the general
update a3y — ady becomes a$ — «d$, with 8 = §f and
~ = $. B-splitters are of form €$, where ¢ is a nonempty
suffix of a*. The algorithm maintains two pointers that
point to the terminal nodes for the longest and shortest
suffixes of S. Thus, we can find the shortest F-splitter
a'$ directly, where o is the suffix of o that has length
1. To delete all B-splitters efficiently, we modify the
construction algorithm to chain up all terminal nodes
of T" in the ascending position order. This can be easily
done because suffixes are inserted into 7" in the same
order. With this modification, we delete all G-splitters
by following the terminal chain towards lower positions
(i.e., longer S-splitters) until a path that is not a -
splitter is encountered. Note that a path is a G-splitter
if and only if its terminal arc does not properly contain
G7, which can be easily tested by reading the starting
position of the terminal arc. Note that deleting a path
can be done by accessing only a fixed number of nodes.
The detail can be found in [Mc76]. Next, we insert all
d-splitters w$, where w is a nonempty suffix of a*J, as in
the construction of Section 2. Since terminal arcs store
only the starting position of the rest of the suffixes, there
is no need to insert J into terminal arcs of the tree.
The frontal set update. The insertion and deletion of
splitters may change the support v.support associated
with nonterminal nodes v. Refreshing the support by
the postorder traversing of T will access all nodes in the
tree and defeat the purpose of incremental discovery.
We propose a counting method to update the support
by accessing only affected nodes. Let vy, ..., vg be the
terminal nodes of the paths newly inserted. The support
of all nonterminal nodes on these paths are affected.
Initially, let F' contain all nodes vy,...,v; and each
v; 1s assoclated with an increment A; that 1s set to
1 at the beginning. In each iteration, we traverse up
one arc from the deepest nodes v; in F' and increase
the support of the nodes u; reached from wv; by the
amount of A;. Then we update F' by replacing v; with
wi. If wg,, ..., u;, are identical (that is, v;,, ..., v;, are
siblings), the sum A;, +...+A;, will be associated with
this node. This process terminates when the support of

the root is updated. In this counting algorithm, each
node on the inserted paths is accessed only once.

Insertion at the left end. This is the case that
the general update afy — advy becomes v — v, by
letting @« = 8 = ®. There is no B-splitter and so
deletion of F-splitters is omitted. We apply the normal
construction algorithm to insert all §-splitters of the
form wwy, where w is a nonempty suffix of §. Upon
completion of the insertion, we apply the above frontal
set update algorithm to update the support of nodes.
Unlike insertion at the right end, the insertion of § at the
left end will increase the position counts of all records
in S by the length of §. To keep track of this change, an
offset C'ount 1s maintained that will be increased by the
length of & whenever ¢ is inserted at the left end. The
correct position of a record in S is its original position
plus the offset Count.

3.2 Deletion

Deletion at the right end. The general update
afy — ad~y specializes to a3$ — a$, by letting v = $
and § = . [S-splitters are ¢$, where ¢ is a nonempty
suffix of a*3. We delete all g-splitters and insert all
d-splitters w$, where w is a nonempty suffix of a*.
Finally, we apply the frontal set update algorithm to
update the support of affected nonterminal nodes. For
deletion, in the frontal set update algorithm we also
check if the remaining arcs on a deleted path refer to
deleted positions and change such references to existing
positions. See more details and an example below.

Deletion at the left end. The general update
oy — ady specializes to 8y — ~, by letting o = § = .
We delete all g-splitters ey, where € is a nonempty suffix
of 3. There is no §-splitter to insert because o = § = 0.
The frontal set update algorithm is applied to update
the support of affected nonterminal nodes. The deletion
of § at the left end will decrease the position counts of
all records in .S by the length of 3, so we decrease C'ount
by the length of 3.

In the implementation, we store the starting and
ending positions (fr,to) of the left-most occurrence of
the subsequence on an arc. If records addressed by these
positions are deleted, (fr,to) will have to be changed to
another occurrence of the same subsequence. In the
following example, (fr,to) is changed according to the
next left-most existing occurrence of a subsequence.

Example 3.2 Suppose that we delete the three left-
most records 335 in the sequence S = 3353432334333%
whose suffiz tree is given in Figure 3(a). This is done
by deleting the paths corresponding to leaves marked 1,
2, and 3. Before the deletion, the pairs (1,1), (2,2),
and (3,14) along the path ending at the leaf containing
position 1 refer to the left-most occurrences of these
subsequences. Since the first three records are deleted,
these pairs no longer point to the intended records.

Figure 3: Update of (fr,to) for deletion

The same problem occurs for the paths corresponding
to leaves marked 2 and 3. All these pairs are replaced
by some surviving occurrences of the same subsequence.
For example, the smallest surviving fr under node C' is
10 and we can use (9,9) to replace the non-existing (2,2)
on the arc (B,C). Under node B the smallest surviving
fris 5 and so we can replace the non-existing (1,1) with
(4,4) on the arc (A,B). Figure 3(b) is the tree after the

deletion.

The update of (fr,to) pairs can be done in the same
scan as the update of support for affected nodes in
the frontal set update algorithm. In particular, at a
nonterminal node v with parent u, the smallest existing
(i.e., excluding deleted paths) fr under v is used to
compute the to reference for the arc (w,v), that is,
fr 4+ 1. Note that the actual starting and ending
positions (fr,to) on an arc are computed by (fr +
Count,to + Count), where Count is the accumulated
offset of positions due to insertion and deletion at either
ends.

3.3 Time complexity

The time complexity 1s measured by the number of node
access. The time complexity of an update consists of

(a) the complexity of deleting all S-splitters, (b) the
complexity of inserting all d-splitters, (c) the complexity
of updating support and (fr, to) pairs on affected paths.
For each insertion or deletion of a subsequence discussed
above, the number of paths inserted or deleted is
bounded by the length of F-splitters a* 3 plus the length
of J-splitters a*d. Deletion of a B-splitter is done by
at most one terminal node access and two nonterminal
From [Mc76], the average number of
nonterminal node access to insert a path is no more
than 2, and the number of terminal node access is 1.
Thus, deletion and insertion of splitters can be done in
a time linear in the length of «* 5 and a*§. The number
of node access for updating support and (fr,to) pairs
incurred by the frontal set update algorithm is equal to
the number of distinct nodes on the paths corresponding
to the initial frontal set F'. If some of these paths
merge, each node on the merged part only needs to be
accessed once. All three components of complexity are
contributed only by the affected portion of the tree. For
large sequences and small updates, which is our basic
assumption for the problem of incremental discovery,
only a small portion of the tree will be affected and
therefore the cost of update is low.

node accesses.

4 Support by Occurrences

We now consider the incremental discovery problem
where the database consists of multiple sequences and
the support of a subsequence « is defined as the sum
of the support of o in all sequences. Therefore, a
sequence containing many occurrences of a subsequence
will support the subsequence more strongly than a
sequence containing few occurrences of the subsequence.
Consider a sequence database D = {Si,..., Sk} of k
sequences. An update is either insertion of a new
sequence or deletion of an old sequence. We reduce
the incremental discovery problem to that for a single
sequence database by replacing D with sequence S =
S19%1...5k$,, where $; is a unique symbol that occurs
no elsewhere in S. Since all patterns must be repeating
subsequences, no pattern of S will contain $;. To locate
all paths of a sequence, a B*-tree on pairs (id, head) is
maintained with id being the search key, where id is a
sequence identifier and head points to the first terminal
node of the sequence id. Then all paths of sequence id
are found by entering the terminal node chain pointed
by head and moving to higher positions of the chain
until a terminal arc delimited by a different delimiter $;
is encountered. See Figure 4.

A new sequence is inserted by inserting all its suffixes
into the suffix tree for S with all new terminal nodes
chained up. Then entry (id, head) is inserted into
the B+-tree, where id is the identifier of the inserted
sequence and head is the address of the head of the
new terminal chain. To delete an existing sequence

suffix tree for S

/{
\ termma\ chain for S2

head

terminal chain for Sl

B+-tree on sequence ids

Figure 4: Locating all suffixes of a sequence

with identifier ¢d, the head of the terminal chain of
the sequence is found by searching the B-+-tree using
td. Once the head is found, the deletion in the suffix
tree proceeds exactly as the deletion of a subsequence
at the left end of a sequence in Section 3, except
that the subsequence 1s the whole sequence identified
by id. By joining all sequences in D into a single
sequence S, common prefixes of suffixes from different
sequences can share the same path in the suffix tree
for S (thus saving storage) and we can find out the
support of a subsequence by following only one path for
the subsequence (thus saving time).

However, since insertion and deletion is performed for
a whole sequence and since positions within sequences
are maintained independently, the problem of altering
positions and (fr,to) pairs in Section 3 does not exist
any more. Also, unlike in Section 3 where an insertion or
deletion of a subsequence requires deleting affected old
splitters followed by inserting new splitters in general,
insertion or deletion of a whole sequence needs only to
insert new suffixes or deleting old suffixes, but not both.
The update of support remains the same as in Section
3. With these minor changes, the algorithms in Section
3 also provide a solution to the incremental discovery
problem in question.

5 Support by Sequences

This model is the same as the model in Section 4, except
that the support of a subsequence « is defined as the
number of sequences in which a occurs. As in Section 4,
the sequence database D = {5y, ..., Sk} can be replaced
by a single sequence S = S51$1...5:%;. However,
the algorithm of counting the support of nonterminal

nodes needs to be modified. For a nonterminal node
v, v.support is now equal to the number of distinct
sequence 1ds appearing in the subtree rooted at v. Since
only one sequence is inserted or deleted each time, the
frontal set update algorithm is modified such that if wu;
is reached from children vy, ,...,vi,, ¢ > 1, u;.support
i1s always increased by 1 for insertion, or decreased by
one for deletion.

6 Experiments

In one experiment, we designed a set of weather pat-
terns to generate a sequence of synthetic weather data,
and then we applied the suffix tree algorithm to the
data to construct the pattern tree. All original patterns
were discovered, though some additional patterns were
also found. Most of these additional patterns have the
form o — § where § is a prefix of 5 for an original
pattern @« — 3. This verified the correctness of the
suffix tree based discovery method. In another exper-
iment, we compared the proposed incremental discov-
ery algorithms with their nonincremental counterparts
in terms of both the elapsed time and the number of
node accesses. The database size ranges from 50k to
1000k at the interval of 50k. For each size, we per-
formed the same set of 10 updates of length ranging
from 10 to 500 records, and we averaged the cost col-
lected. As expected, we found that the incremental dis-
covery algorithms for the three models have similar per-
formance and substantially outperform their nonincre-
mental counterparts. The detailed experimental results
will be reported in the full paper.
Acknowledgements. We would like to thank the
referees for valuable comments and suggestions.

References

[AS95] R. Agrawal and R. Srikant. Mining sequential
patterns. In Proceedings of the IFEE Data

Engineering, 1995, pages 3-14

[Mc76] E.M. McCreight. A space-economical suffix tree
construction algorithm. JACM, Vol. 23, No. 2,

April 1976, page 262-272
T.G. Dietterich and R.S. Michalski. Discovering

patterns in sequences of events. Artificial
Intelligence, Vol. 25, page 187-232, 1985

H. Mannila, H. Toivonen, A.l. Verkamo. Discov-
ering frequent episodes in sequences. In Proceed-
ings of KDD 1995, page 210-215

[S94] G.A. Stephen. String searching algorithms. In
Lectures notes Series on Computing, Vol. 3,
1994, World Scientific

J.T. L. Wang, G.W. Chirn, T.G. Marr, B.
Shapiro, D. Shasha, and K. Zhang. Combina-
torial pattern discovery for scientific data: some
preliminary results. In Proceedings of ACM SIG-
MOD 1994, page 115-125

[MDs5]

[MTV95]

[W*94]

[WeT73]

P. Weiner. Linear pattern matching algorithms.
In Proceedings of Conf. Record, the IEFEE 1/th
Annual Symposium on Switching and Automata
Theory, 1973, page 1-11

