Efficient Computation of Iceberg Cubes with Complex Measures

Jiawei Han' Jian Peif

Guozhu Dong?

*

Ke Wang!

t School of Computing Science, Simon Fraser University, B.C., Canada, {han, peijian, wangk }@cs.sfu.ca

{ Department of Computer Science, Wright State University, Dayton, OH, U.S.A., gdong@cs.wright.edu

Abstract

It is often too expensive to compute and materialize a
complete high-dimensional data cube. Computing an
iceberg cube, which contains only aggregates above certain
thresholds, 1s an effective way to derive nontrivial multi-
dimensional aggregations for OLAP and data mining.

In this paper, we study efficient methods for comput-
ing iceberg cubes with some popularly used complex mea-
sures, such as average, and develop a methodology that
adopts a weaker but anti-monotonic condition for test-
ing and pruning search space. In particular, for effi-
cient computation of iceberg cubes with the average mea-
sure, we propose a top-k average pruning method and ex-
tend two previously studied methods, Apriori and BUC, to
Top-k Apriori and Top-k BUC. To further improve the per-
formance, an interesting hypertree structure, called H-tree,
is designed and a new iceberg cubing method, called
Top-k H-Cubing, is developed. Our performance study
shows that Top-k BUC and Top-k H-Cubing are promising
candidates for scalable computation, and Top-k H-Cubing
has the best performance in many cases.

1 Introduction

The introduction of data cube [8] can be considered
as a landmark in data warehousing because the
materialization of multi-dimensional data in large
data repositories facilitates fast, on-line data analysis.
However, as many researchers pointed out (e.g.,
[10, 14, 4]), it is prohibitively expensive in both
space and time to completely materialize a data cube
with high dimensionality. Several methods have been
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proposed to overcome this difficulty, including (1)
selective materialization of some cuboids [10], where
a cuboid summarizes only a subset of dimensions, and
(2) materialization of only iceberg cubes [4], where an
1ceberg cube 1s a subset of a cube containing only those
cells whose measure, such as count, satisfies certain
constraints, such as menimal support threshold.

The usefulness of iceberg cubes [4] is obvious. A
cube can be viewed as a lattice of cuboids, where the
cuboids whose group-bys include more dimensions are
at a lower level than those include fewer dimensions,
and the one that includes all the dimensions, called
the base cuboid, is at the bottom. Most of the cells
at the low level cuboids are likely to contain trivial
aggregate values and may not pass certain threshold,
and therefore, do not need to be computed in an
iceberg cube. This not only saves processing time
and disk space but also makes the analysis focused
only on interesting data, since cells that cannot pass
the thresholds are likely to be too trivial to warrant
further analysis.

Previous studies [6, 4] on efficient computation of
iceberg queries or iceberg cubes have been confined
to iceberg queries/cubes with simple measures; such
as count and sum, by exploring the anti-monotonic
property! of such icebergs. For example, if the count
of a cell ¢ in a cuboid C' is no higher than v,
then the count of any of ¢’s descendant cells in the
lower level cuboids can never be higher than v, and
thus can be pruned by the Apriori-like method [2].
Unfortunately, not all the measures have such anti-
monotonic property. For example, even if the average
value in a cell ¢ of a cuboid C'is no higher than v, the
average value of some of ¢’s descendant cells in the
lower level cuboids may still be higher than v.

In this paper, we study how to efficiently compute
iceberg cubes with non-antimonotonic measures. Be-
fore examining this problem, one may ask, “Is it truly

L Anti-monotone, first introduced in [12], is different from
monotone in that the latter is about condition satisfaction,
whereas the former is about the condition violation.



useful to compute iceberg cubes with such measures?’
The answer is a resounding yes!, as shown below.

Example 1 Suppose a sales database has four di-
mensions: time, location, customer, and product, and
two measures: price and cost (note: profit = price —
cost). The following queries require the computation
of iceberg cubes with such compler measures.

@1: Find groups of sales which contain at least 50 items
and whose average item price is at least $800,
grouped by month, city, and/or customer groups.

@>: Find groups of sales which contain at least 200
items and whose total profit’ is more than $6000,

grouped by month, city, and/or customer groups.

Q)3: For sales grouped by month, city, and/or customer
groups, containing at least 20 items, with an
average item price of no less than $800, find
those customer groups on which one can make at
least 10% more profit than the average of all the

customers. (]

Can we find some interesting properties and effec-
tive methods so that computation of such iceberg cubes
can still be made efficient? This paper investigates
this problem, with the following contributions.

1. It develops a mapping which transforms some
non-antimonotonic testing conditions to somewhat
weaker but anti-monotonic testing conditions so
that the search space can be pruned effectively.
For example, test on average can be mapped to an
anti-monotonic, top-k average test. Mappings for
several other measures are worked out as well.

2. It extends two previously studied methods, Apriori
[2] and BUC[4], to Top-k Apriori and Top-k BUC,
for computing iceberg cubes with the average
measure.

3. To further improve performance for computing ice-
berg cubes, a hypertree structure, called H-tree,
is designed, and a new iceberg cubing method,
called Top-k H-Cubing, is developed. The method
explores several efficient processing techniques, in-
cluding tree-based data compression, dynamic link
adjustment, and quantitative information merge;
these techniques make iceberg cubing highly effi-
cient and scalable, outperforms a high performance
cubing technique, BUC [4], in most cases, according
to our performance study.

The remaining of the paper is organized as follows.
Section 2 introduces the problem of computing ice-
berg cubes with the average measure. Section 3 ex-

2 Profit could be negative, and thus it cannot be handled by
iceberg cubes with a sum of nonnegative values as in [4].

plores a weaker but anti-monotonic condition, top-
k average, for effective pruning of search space, and
presents a binning technique to handle top-k average.
Section 4 presents two algorithms, Top-k Apriori and
Top-k BUC, which extend Apriori and BUC to com-
pute average iceberg cubes. A hypertree data struc-
ture, H-tree, and a new algorithm, Top-k H-Cubing,
for efficient computation of average iceberg cubes are
presented in section 5. Our performance study is re-
ported in section 6. In section 7, we extend our scope
to examine other complex measures and discuss re-
lated works. We conclude our study in section 8.

2 Iceberg Cubes with the Average
Measure

Example 2 (Iceberg cubes on average) Consider
a Sales_Info table, given in Table 1, which regis-
ters sales related to month, day, city, customer group,
product, cost, and price.

[ Mon. | Day | City [ Cust_group Product Cost Price
Jan 10 Toronto Edu. HP Printer 500 485
Jan 15 Toronto Household Sony TV 800 1200
Jan 20 Toronto Edu. Canon Camera 1160 1280
Feb 20 Montreal Busi. TBM Laptop 1500 2500
Mar. 4 Vancouver Edu. Seagate HD 540 520

Table 1: A Sales_Info table.
An iceberg cube, Sales_Iceberg, which computes

()1 1is presented as follows.

CREATE CUBE Sales_Iceberg AS

SELECT month, city, customer-group, AVG(price),
COUNT (%)

FROM Sales_Info

CUBEBY month, city, customer-group

HAVING AVG(price) >= 800 AND COUNT(*) >= 50

Notice that Sales_Iceberg differs from its corre-
sponding whole data cube, Sales_C'ube, in that the
former is a restriction of the latter: the former ex-
cludes all the cells of the latter whose average price is
less than $800 or whose count is less than 50. It is also
different from its corresponding iceberg query, formed
by replacing CUBEBY with GROUPBY, in that the
latter contains only the qualified cells with the three
dimensions grouped together, whereas the former con-
tains the qualified cells of all the possible group-bys of
the three dimensions. ad

It is easy to verify that it is highly inefficient and
sometimes impossible to first materialize the whole
data cube and then select the cells satisfying the
HAVING-clause specified in the iceberg cube since
this may lead to a huge number of cells (but most
containing only trivial measures) to be computed




when the number of dimensions are not too small. To
develope an efficient method for computing iceberg
cubes, let’s first define some terms.

Definition 1 In an n-dimension data cube, a cell
a = (a1,as,...,a,, measures) is called an m-d cell
(which is a cell in an m-d cuboid), if and only if there
are exactly m (m < n) values among {ay, as,...,an}
which are not . Tt is called a base cell (which
is a cell in a base cuboid) if m = n. A non-base
cell stores aggregate values and thus it 1s sometimes
referred to as aggregate cell. In an n-dimension data
cube, an i-d cell a = (a1, aq, ..., an, measures,) is an
ancestor of a j-d cell b = (b1, ba, ... by, measuresy),
and b is a descendant of a, if and only if (1) i < j,
and (2) for 1 <m < n, ap, = by, whenever a,, # *. In
particular, cell a is called a parent of cell b, and b a
child of @, if and only if j = i+1 and b is a descendant
of a. Given an iceberg cube ICube, the (whole)
data cube formed by the same specification of ICube
without the HAVING clause is called the background
cube of ICube, and is denoted as B(ICube). a

Example 3 Consider the Sales_Cube of Example 2.
(Jan, x,*,1200,2800) and (*, T'oronto, *, 800, 1200) are
1-d cells, (Jan,*, Edu.,600,250) is a 2-d cell, and
(Jan, Toronto, Busi., 1500,45) is a 3-d cell. A 3-d cell
is a base cell, whereas 1-d and 2-d cells are aggregate
cells. 1-d cell a = (Jan, x,*,1200,2800) and 2-d cell
b= (Jan,*, Busi., 1300, 150) are ancestors of 3-d cell
¢ = (Jan, Toronto, Busi., 1500,45); ¢ is a descendant
of both a and b, b is a parent of ¢, and ¢ a child of b.
B(Sales_Iceberg), the background cube of the ice-
berg cube, Sales_Iceberg, of Example 2 1s defined as,

CREATE CUBE Sales_Cube AS

SELECT month, city, customer-group, AVG(price),
COUNT (%)

FROM Sales_Info

CUBEBY month, city, customer-group a

Definition 2 Aniceberg cube, ICube, is anti-mono-
tonic if and only if for each cell ¢ in B(ICube), if ¢
violates the constraint specified by ICube’s HAVING
clause, so does every descendant of c. a

Example 4 Given the sales table in Example 2,
Count_Ilceberg, shown below, is anti-monotonic.

CREATE CUBE Count_Iceberg AS

SELECT month, city, customer-group, COUNT (%)
FROM Sales_Info

CUBEBY month, city, customer-group

HAVING COUNT (%) >= 100

Indeed, if a cell ¢ in Count_Iceberg violates the
constraint specified in the HAVING clause, i.e., its

count is less than 100, then every descendant of ¢ will
violate the constraint since the count of each subcube
of ¢ must be no larger than that of ¢.

Sales_Iceberg in Example 2 is;, however, not anti-
monotonic. For example, even when the average price
of all the items sold in March is less than $800,
e.g., (March,*,,600,1800), the average price for a
subset containing only the sales to business people,
e.g., (March,*, Busi., 1300, 360), may still satisfy the
constraint specified in the HAVING clause. a

3 Exploration of Weaker,
Anti-monotonic Conditions

An anti-monotonic iceberg cube can be computed
efficiently by exploring the Apriori property [2], as
shown in [4]. However, since our iceberg cube involves
the non-anti-monotonic measure average, it does not
have the Apriori property. “Can we find a weaker but
anti-monotonic auxiliary condition that may help us
compute iceberg cubes efficiently?’

3.1 Top-k average: An anti-monotonic
condition for testing average

Let us examine the following iceberg cube Awgl, a
generalization of Example 2, defined on a relational
table 7" with ¢ dimensions and one measure M.

CREATE CUBE Avgl AS
SELECT Ay, As, ..., Am, AVG(M), COUNT ()
FROM T

CUBEBY A1, A2, ..., Am

HAVING AVG(M) >= v AND COUNT(+) >= k

Definition 3 A cell ¢ is said to have n base cells if it
covers n nonempty descendant base cells. The top-k
average of ¢, denoted as avg” (), is the average value
of the top-k base cells of ¢ (i.e., the first k cells when
all the base cells in ¢ are sorted in value-descending
order) if k < n; or —oo if k >n.3 O

Lemma 3.1 (Top-k Apriori) Let ¢ be an m-d cell
which fails to satisfy avg®(c) > v in cube B(Avgl).
If a cell ¢' is a descendant of c, then ¢’ cannot satisfy
avg® (¢') > v in cube B(Avgl). O

This lemma stimulates us to explore the utilization
of the auxiliary condition avg®(¢) > v as a looser
bound for computing iceberg cubes with the HAVING
clause “avg(c) > v AND count(c) > k7. The
effectiveness of the search space pruning by top-k
average 1s demonstrated in our performance study in
section 6.

3_o0 can be implemented as — MAXINT in a computer.



3.2 Optimization: A binning technique for
top-k average

There is one concern of this top-k average-based
pruning: “well this require us to keep track of top k
values for each cell in an m-dimensional space?” This
seems to be a nontrivial cost. If k£ is small, e.g., k =5,
the overhead could be small. However, if k 1s large,
such as 1000, the overhead could be substantial. The
following binning technique can be used to reduce the
cost of storage and computation of top-k average.

1. Large value collapsing: For any measure value v’
which is no less than v (i.e., v/ > v) in avg®(c) > v,
where v/ is called a large value, there is no need to
store 1t explicitly. Instead, 1t 1s sufficient to store
only two measures: (1) count, the number of large
values, and (2) sum, the sum of all large values.

2. Small value binning: If the large values regis-
tered can make avg®(¢) > v, there is no need to
store small ones (a value ¢’ is small if v/ < v). Oth-
erwise, we can set up a small set of bins and reg-
ister two measures, count and sum, for each bin.
The large-value group can be considered as a spe-
cial bin, biny. Let the upper value boundary of bin;
be max(bin;) and the lower one be min(bin;). For
all 1 < i< j, we have min(bin;) > maz(bin;). To
make binning more effective, we can use denser bins
for the region relatively closer to v, and sparser bins
for the region relatively far away from v.

For example, suppose v > 0, one can set up the
ranges of five bins as follows: range(bin[l]) =
[v,00), range(bin[2]) = [0.95v,v), range(bin[3]) =
[0.85v,0.95v), range(bin[4]) = [0.70v,0.85v), and
range(bin[5]) = [0.50v,0.70v). Notice since we
have count and sum of all the cells, that for the
remaining range [—oo, 0.50v) can be derived easily.

The set of bins for a cell ¢ can be used to judge
whether avg®(c) > v is false as follows. Let m be
the smallest number such that the sum of counts of
the upper m bins 1s no less than k, i.e., count,, =
Y7 count(bin;) > k. We approximate avg®(c) using,

avg™ () = (Egnz_llsum(bini) + max(bing) x ng)/k,
where ny = k — E;n:_llcount(bini).

Lemma 3.2 avg®(c) < avg’*(c). Consequently, if
avg™ (c) < v, then no descendant of ¢ can satisfy the
Having-condition in Avgl. ad

Notice that binning might lead to a minorly coarser
granularity than registering each of individual %
values, and hence less sharp pruning, however, with
a good binning technique as described above, the
blurring effect is quite minor. Moreover, the technique
is safe since it will not lead to missing any answer.

Based on this discussion, we denote three pieces
of information sum, count, and top-k bins as quant-
info, which often need to be accumulated with each
cell for efficient computation of average iceberg cubes.

4 Extension of Apriori and BUC
for Iceberg Cube with Average

Based on the above discussions, we extend (1) the
Apriori association mining algorithm [2], and (2)
the BUC iceberg cube computation algorithm [4], to
compute iceberg cubes with average.

4.1 Top-k Apriori

Based on Lemma 3.1, we can work out an Apriori-like
[2] iceberg cube computation algorithm, as below.

Example 5 (Top-k Apriori) The iceberg cube in Ex-
ample 2 can be computed by Top-k Apriori as follows.

First, the set of relevant data is obtained by
projecting the database on three relevant attributes,
month, city, and customer_group, and one measure
price. This forms the base cuboid DB.

Scan DB once to accumulate quant-info (i.e.,
count, sum, and top-k bin measures) for the 0-
d cell ¢y of the 0-d cuboid. Output the 0-d
cuboid, Ry = {eg | count(co) > 50 A avg(co) =
sum(cg)/count(cg) > 800}, and keep the 0-d live set,
Lo = {co | avg’(co) > 800}.

If Ly = 0, the computation terminates. Otherwise,
compute 1-d cells as follows. All the 1-d cells are can-
didate cells, i.e., forming the candidate set (', such as
(Jan,x, %, ...), (Feb,x,*,...), ..., (x, Toronto, x, ...},
(*, Vancouver, *,...), ....

Then scan DB, accumulate quant-info for each ¢
in C', output Ry, and keep the live set Lq:

1. Ri={c1 | 1 € C1 A count(er) > 50 A avg(er) =
sum(cy)/count(eq) > 800},

2. L1 ={c1 |1 €C1 A avg®%(ey) > 800}.

This process continues level-by-level, until the live
set Ly or the candidate set Cy for some k is empty.
O

Top-k Apriori computes average iceberg cubes by
exploring candidate generation and level-wise com-
putation. This is more efficient than first comput-
ing the whole background cube and then selecting
the cells using constraints. However, it still involves
costly processing: (1) it takes m scans of DB where
m 18 the maximum number of dimensions containing
nonempty candidate set, and (2) it may generate a
huge number of candidate sets.



4.2 Top-k BUC

An efficient iceberg cube computation method Bottom-
Up Cube (BUC) [4] builds the cube from lower num-
ber of dimension combinations to higher ones. It ex-
plores the dimension ordering by putting the most
discriminating dimensions first and then recursively
partitioning DB according to the ordering. At each
step of recursive partition, one can push in the iceberg
constraint, such as min count, to remove those that
cannot satisfy it. This can be applied to computing
iceberg cubes with the average measure. For example,
for computing Avgl, one can use avg®(c) > v to test
the partitions generated: any partition that cannot
pass the test will not need to be considered further.

Example 6 (Top-k BUC) The iceberg cube Auvgl of
Example 2 can be computed by Top-k BUC as follows.

Star with the base cuboid DB with three dimen-
sions month, city, and customer_group, and one mea-
sure price. Let cardinality(city) > cardinality(month)
> cardinality(customer_group). The BUC processing
tree is shown in Fig. 1, where (' is for city, M for
month, G for customer_group, and num in “C' :
num” represents the processing order.

CMG:4

—

N i
N

ALL:1

Figure 1: BUC Processing Tree.

Following the processing order indicated in Fig. 1,
in the first scan of DB, we (1) accumulate quant-
info for “ALL”, and (2) project each tuple to the
corresponding city partition, and (3) accumulate
quant-info for each city. At the end of the scan,
output “ALL” if it passes the count and avg test, and
if “ALL” is not alive, i.e., avg®®(ALL) > 800 is false,
stop. Otherwise, output city ¢; if count(e;) > 50 and
avg(c;) = sum(c;)/count(c;) > 800, and mark city ¢;
live if avg®®(e;) > 800.

Then, for each live city ¢;, scan ¢;’s partition
and project each tuple to its corresponding second
dimension M (month) and for each CM-partition,
accumulate quant-info, and so on. This process
continues until C'M G 1s processed or until there exist
no live partitions. Then we recurse back and process
in the order of CG, M, MG, and finally G, by

scanning the corresponding database or partitions. O

Top-k BUC partitions a large database into a set
of much smaller data sets by projections over the
corresponding dimensions, and localizes the search to
partitioned data sets. Without generating candidate
sets like Apriori, it may occasionally do some extra
work, e.g., if March cannot pass avg®’(March) > 800,
there 1s no need to examine the pair of city ¢; and
March by Apriori but BUC still has to examine it
(since March is in a different partition). However, the
trade of accuracy of pruning for locality of reference
has been proven highly beneficial in performance [4].

5 Top-k H-Cubing: Top-k£ Cubing
Using a Hyper-Tree Structure

By exploring dimension partition and constraint push,
Top-k BUC achieves good performance. Can we
further tmprove the performance? In this section we
introduce a hyper-tree structure, called H-tree, and
propose an efficient algorithm, Top-k H-Cubing, for
computing average iceberg cubes.

5.1 H-tree: A Hyper-Tree Structure

Example 7 (H-tree) Given Sales_Info in Table 1
and Sales_Iceberg specified in Example 2, a tree
structure HT can be built as follows.

1. Tree HT has aroot node “null”, and dimensions are
in cardinality-ascending order, i.e. R: G — M — C.

[\]

A header table 1s created, in which each entry
records the quant-info for an attribute-value pair.

The first tuple, t; = (Edu., Jan, Toronto,485), is
inserted into HT', with three nodes, Edu., Jan
and Toronto inserted in sequence to form the first
branch, and quant-info in the leaf (T'oronto). Also,
price 485 is used to update quant-info for E'du., Jan
and Toronto in the header table.

4. Similarly, t2 = (Household, Jan, Toronto, 1200),
is inserted. Since the two leaf nodes have the same
label, they are linked by a side-link.

5. Since t3 = (Edu., Jan, Toronto, 1280) has the same
attribute values as #1, t3 shares the path as t1, with
quant-info in the leaf and header updated.

wo

6. The remaining tuples can be inserted similarly, with
the result tree shown in Fig. 2. The tree so formed
is called an H-tree. Its construction requires only
one scan of the database. ad

For lack of space, we omit the rigorous definiton of
H-tree. H-tree has some interesting properties which
facilitate computing iceberg cubes.

Lemma 5.1 (Properties of H-tree) Given a rela-
tion table T' and an iceberg cube creation query Avgl
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Figure 2: An H-tree.

as wn section 3.1, the H-tree HT has the following
properties.

1. (Construction cost) The H-tree can be constructed

by scanning the database only once.

2. (Completeness) The H-tree and its header table
H contain the complete information needed for
computing iceberg cube Avgl.

3. (Compactness) Let there be n tuples in table T
and m attributes involved tn Avgl. The number of
nodes in H-tree cannot exceed n x m + 1. ad

5.2 Top-k H-Cubing: Computing iceberg
cubes using H-tree

With the compact H-tree structure, one can explore
efficient iceberg cube computation, as below.

Example 8 (Top-k H-Cubing) Using the H-tree HT
built in Example 7, Avgl can be computed as follows.

Step 1. Compute cells involving dimension C'. The
quant-info in the H-tree tells whether a cell in the form
of (*, %, c), where ¢ is a city, passes the top-k average
and average tests. For example, the entry Toronto in
the header table contains avg” (price) and avg(price)
for (*,#, Toronto). If avg(price) passes the average
price threshold, output the cell. If avg® (price) passes
it, the descendants of the cell (x,*, Toronto) should
be examined as shown below.

1. The sub-graph of HT containing only the paths
related to Toronto, denoted as HTroronto, 18 an
H-tree for sub-cube (x,*, Toronto). HTroronto 18
sufficient to compute the iceberg sub-cube w.r.t.
Toronto.

2. The side-link for Toronto in the header table H
links all the paths related to Toronto. By traversing
it once, we (1) make a copy of quant-info in every
leaf-node labeled Toronto to its parent node in the
tree, (2) build a new header table Hroponto, which
collects quant-info for every attribute-value w.r.t.
Toronto, and (3) link all the parent nodes of the
leaf-nodes labeled Toronto. Fig. 3 is the updated
tree.

Header TableH 1400

Header TebleH Attr-val_jguent-info_kidelink b

Business

Educati
Attr-val_quant-info_{side-link veaion

Montreal

Household

Education Busness

Household
Business

Feb
March

Toronto R et T -7
Vancouver|
Montreal

Figure 3: Updated H-tree for computing descendants
of (*, x, Toronto).

3. Based on the header table Hroponto, output all the
cells of the form (x, m, Toronto) or (g, *, Toronto),
which pass the average price test, where m &
M and ¢ € (. Also, explore recursively the
descendants of the cells of the form (x, m, Toronto)
or (g, *, Toronto) which pass the top-k average test.

Similarly, all the cells of the form (x,#,¢) as well
as their descendants are explored, where ¢ € C'. Note
that there 1s no information conflict on either quant-
info or side-link, since every time we change the scope
of examination, parent nodes copy quant-info from
its child under examination and side-links are rebuilt
w.r.t. the nodes currently under examination.

Step 2. Compute cells involving dimension M but no C'.
After examining cells in the form of (,%,¢) (¢ € C)
and their descendants, we turn to those in the form of
(%,m, x) (m € M) and their descendants, i.e., (g, m, *)
(g € G). This can be done in two steps.

(1) Roll-up quant-info to dimension M. FEvery leaf
node in H-tree merges its quant-info into that of its
parent node. All nodes labeled by a common month,
should be linked by side-links and also linked to
the corresponding row in the header table H. As
an optimization, if the quant-info in a child node
indicates that avg'® (child) passes the average measure
threshold, the parent node can be marked “top-
k_OK”. Only sum and count are collected for those
marked top-k_OK. No binning is needed, since it
always passes top-k average checking. In further
quant-info rolling up, parents of the nodes marked
top-k_OK should be treated similarly.

(2) Compute cells involving M but no C'. This is similar
to Step 1 demonstrated before.

Step 3. For cells involving only G, the last dimension
in our consideration, we consult the header table
H directly for the result. It is easy to verify that
the above process correctly computes the complete
iceberg cube. ad



Based on the above example and reasoning, we have
Algorithm Top-% H-Cubing presented below.

Algorithm 1 (Top-k H-Cubing) Compute iceberg cube

with average by top-k H-tree-based cubing.

Input: (1) A relational table, 7', with attributes Aj,
..y Am, and one measure M; and (2) an iceberg
cube creation query Awvgl, specified in section 3.1.

Output: The computed Iceberg cube, Avgl.
Method:

1) construct an H-tree HT', let H be the header table;

2)let ¢ = (%,...,%), call htree_cubing(m, H, ¢);
——

m

procedure htree_cubing(m, H, ¢);

{

1) for i = m downto 1 do {

2) for each a; € A; if avg’® (M) > v, then {

3)  let ¢[i] = ay, if avg(M) > v, output ¢;

4)  ifi > 1 then {

5) create a new header table H,,, only rows for

attribute values in Ay, ..., A;_1 are needed;
6) traverse side links from a; in H do
o collect quant-info for header table H,;
o copy quant-info in child to parent;
o link parents of the same label by side-links;
7) call htree_cubing(i — 1, Hy,, ¢);
8 1}
9 }
10) if ¢ > 1 then // roll up quant-info
11) traverse side-links from a; € A; in H do
o merge quant-info from children to parent;
o link parents of the same label by side-links;
12) ¢[i] = #; // re-initialization
13))
}

Rationale. The correctness of the algorithm is based
on that it explores the iceberg cube in a divide-and-
conquer style. For each iceberg sub-cube, it forms
a virtual H-tree using a header table created and
updated on the fly, with proper side-links and quant-
info propagated to proper tree nodes. It explores
further the remaining sub-cubes by recursion. ad

Let us analyze the efficiency of Top-k H-Cubing.

1. Space cost. As shown in Lemma 5.1, an H-tree is
a compact structure. During the computation,
Top-k H-Cubing needs to create a stack of up to
(m—1) header tables, where m is the number of di-
mensions. The maximal size of the it" header table
is O(Z;;ll cardinality(A;)). Therefore, the total
size of header tables is O(m? x cardinality(Ay,)).

3. Data manipulation.

4. Pruning and optimization.

Even if the cube contains 20 dimensions, each with
100 distinct values, and each header slot takes 20
bytes, the total amount of memory for the header
tables will still be less than 207 x 100 x 20 = 800K

bytes, which can fit in main memory comfortably.

2. Database scan and tree traverse. Only one scan of

the database is needed to construct an H-tree. The
remaining computation is main memory-based tree
traversal and updates of side-links and header table
entries in the H-tree.

The major data manipula-
tions are side-link adjustment and quant-info copy-
ing/merging. Comparing with Top-k BUC, whose
major work is sorting and quant-info collecting,
Top-k H-Cubing’s work load is lighter.

Both Top-k BUC and
Top-k H-Cubing use the same pruning techniques.
However, Top-k H-Cubing can further use a top-
k_OK marking technique to save quant-info com-
putation, which cannot be applied in Top-k BUC.

5.3 Reduction of Database Scans

Even though H-tree compresses a database, one can-
not assume that H-tree can always fit in main mem-
ory. To handle large databases, projections and par-
tition can be performed first. When the H-tree for a
partition can fit in memory, we turn to H-tree -based
mining. Here we propose a dual projection method,
which requires less memory and disk space but scans
DB and each partitioned database only once.

Example 9 For computing all cuboids in Fig. 1, a
dual projection scheme can be adopted as follows.

1. In the first scan, we project only on the first
dimension C', as BUC, which forms a set of smaller
partitions, C, for each distinct value ¢; in C'.

2. When projecting each partition C; on the second

dimension M, we project each tuple ¢ into two
partitions: a C'M partition C;M; for city ¢; and
month m;, and an M partition M;. After this scan,
both C'M and M projections are generated.

3. Similarly, the projection of C'M on G will produce
both CMG and C'GG, and so on.

Thus, the processing tree of Fig. 1 is updated to Fig.
4, where the number immediately after the partition
dimension shows the order that the projection is
generated, followed by a number showing the order
that the projection is processed. a

Dual projection has the following nice properties:
(1) to compute an n-dimension data cube, dual
projection scans base cell table DB as well as its
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Figure 4: The Processing Tree in Top-k H-Cubing.

partitions only once, while BUC has to scan DB n
times, and scan a partition on i*® dimension (n — i)
times; and (2) when scanning DB and projecting on
Dy, 1t requires the same amount of main memory
space and disk space as BUC. When scanning
partition Dy and doing dual projection on D Dy and
D5, the main memory space needed is 2 x S(dima),
and the projected pages generated is about the sum
of the size of two partitions DD and D-, a minimal
cost in both cases.

Since H-tree may substantially compress a database,
in many cases the entire compressed database in the
form of H-tree can fit in main memory. Then, the dual
projection technique will not be needed. However,
when the database is huge, the dual projection tech-
nique can be applied until the main memory-based
H-trees can be constructed for the partitions.

6 Performance Analysis

In this section, we report our performance analysis on
computing icberg cubes Avgl.

All experiments were conducted on a PC with an
Intel Pentium IIT 500MHz CPU and 128M main mem-
ory, running Microsoft Windows/NT. All programs
were coded in Microsoft Visual C++ 6.0.

As shown in [4], the performance of Apriori for
computing iceberg cube is far weaker than BUC.
This is also confirmed by our experiments. Thus
we concentrate on the performance comparison of
Top-k BUC and Top-k H-Cubing. Top-k BUCis an
extension of BUC, implemented similar to [4]. We only
implemented main memory-based BUC (no external
partitioning). In the experiments reported here,
both algorithms have enough main memory to hold
data and related structures. Thus we believe the
comparison is fair.  The runtime reported here
includes both T/O time and CPU time.

Dataset generator

We designed a synthetic dataset generator. It takes
parameters shown in Table 2, and uses rand(), a
function which generates numbers in range of [0, 1]
following the uniform distribution.

| Parameter | Meaning |
n Number of tuples in the dataset
m Number dimensions

card[i] (1 <7< m)
M_max, mMm_min range of measure
T repeat factor

cardinality of the ¢*"* dimension

Table 2: Parameters of the data generator.

We conducted experiments on various synthetic
datasets generated by the generator. The results are
similar. Limited by space, except for performance
with respect to the number of tuples, we report here
only results on one such dataset, D. There are 10
dimensions and 100,000 tuples in D. The cardinality
for every dimension is set to 10. The measure values
are in range [0, 99]. The repeat factor, 7, is 2000.

We report results on dataset D since 1t is typical
and challenging. Performance study in [4] indicated
that datasets with cardinality 10 are more challenging
than those with cardinality 100 or 1,000.*

Computing iceberg cubes with only the COUNT
measure

For all experiments reported in this subsection, the
average threshold is set to 0, 1.e., every cell passes the
average checking.

Figure 5 shows the scalability of Top-k BUC and
Top-k H-Cubing as the count threshold decreases from
100 (0.10%) to 8 (0.008%). Both algorithms are
scalable, even when the count threshold is pretty
low. They have comparable performance for relatively
high count threshold. When the count threshold is
extremely low, e.g. below 0.02%, Top-k H-Cubing is
considerably faster than Top-k BUC .

Figure 6 helps us get an in-depth understanding
of the scalability of the two algorithms. For both
algorithms, the runtime per cell in result goes down
as the count threshold goes down. That explains the
scalability of them in most cases. When the count
threshold goes lower than 0.02%, the runtime per
cell for Top-k BUC reaches the bottom, while that for
Top-k H-Cubing keeps on decreasing. This indicates
that Top-k H-Cubing incurs a low overhead per cell
more consistently than Top-k BUC .

Computing iceberg cubes with the Average
measure

Figure 7 shows the runtime of the two algorithms
with respect to various min_avg thresholds. The
count threshold is set to 10.

As can be seen from the figure, the restriction on
average helps both algorithms prune search space and

4Smaller cardinalities lead to denser data cubes, which result
in much larger number of cells satisfying conditions.
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thus save runtime. Top-k H-Cubing is usually much
faster than Top-k BUC . When the average threshold
approaches zero, Top-k H-Cubing achieves a speed up
factor of about 2.5. When the average threshold
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is pretty high (over 80%), i.e., most of cells are
pruned, the two algorithms have similar performance.
Top-k BUC catches up with Top-k H-Cubing for high

average threshold for the following reasons: When



the average threshold increases, the main cost of
Top-k H-Cubing, tree manipulation, could not be
dramatically reduced, whereas the main cost of
Top-k BUC, sorting (indicated mainly by the number
of required sortings), decreases significantly.

Figure 8 helps us understand the pruning effect
of the average threshold. It shows that the gap
between the number of cells passing the average
threshold and that of cells passing the top-k average
threshold is quite small. This indicates that top-k
average provides a good estimation for average and
consequently a high pruning power.

Effect of the number of bins

Figure 9 shows the runtime of the two algorithms
with respect to the number of bins. More bins
incur higher cost in binning, but provide more precise
estimation. The figure indicates that it does not pay
to use too many bins, as binning cost outweighs the
benefit when the number of bins is larger than 4 or
5. Figure 10 shows the number of cells passing top-k
average checking with respect to the number of bins.
At the very beginning, increasing the number of bins
brings down the number of cells passing top-k average
checking significantly. However, the marginal benefit
becomes weak as the number of bins goes up.

In our experiments, having 5 or fewer bins tends to
yield optimal performance.

Size of H-tree and scalability with respect to
database size

Using settings identical to that for D, we generated
several new datasets with up to 1,000,000 tuples.
Figure 11 shows the size of the tree with respect to
the number of tuples in the database. As can be seen
from the figure, the size of the tree 1s always smaller
than the database size and the effect of compression
becomes stronger when the database becomes larger.

Figure 12 shows the scalability of both algorithms
with respect to the number of tuples. The figures
shows that both algorithms are scalable with respect
to database size.

7 Discussion

Our previous sections explored the efficient compu-
tation of iceberg cubes with the average measure.
Here we will extend the scope to examine iceberg
cubes with other complex measures and discuss re-
lated works.

7.1 Computing iceberg cubes with some
other complex measures

The key of our method to solving average measure
problem is to find a function which is weaker but

ensures certain anti-monotonic property. This is also
true if we wish to extend our scope to handle other
complex measures. Below we examine a few typical
cases and provide such transformed functions.

1. Compute iceberg cubes whose AVG is no bigger than
a value.

Our Awvgl query is to compute the iceberg cubes
whose average is no less than a value v. Can we
compute icebergs whose AVG is no bigger than v7
Similar to finding avg®(c) > v in Awvgl, here we
can find a weaker, anti-monotonic auxiliary function
avgr(¢) < w, where avgy(c) is the average of the
bottom-k base cell values of a cell ¢, and the bottom-%
base cells are the first k cells when all the base cells
in ¢ are sorted in the wvalue-ascending order. Then,
the bottom-k average Apriori property holds because
if the bottom-k average of a cell ¢ is no greater than
v, then the average of any of its descendants (with at
least k nonempty base cells) cannot be greater than
v. Thus, the methods discussed in sections 4 and 5
can be easily extended to this case.

2. Compute iceberg cubes with the AVG constraint only.

The Having-clause in Avgl contains both AVG and
COUNT constraints.  What will happen if we have
only the average constraint, i.e., AVG(price) >= v?
This i1s equivalent to & = 1 and thus the methods
discussed before are still applicable. Since k = 1, the
top-k average testing becomes effectively the testing
of MAX(price) >= v. Notice that a relatively large k
will serve as a good constraint to cut every cell that
contains too small number of nonempty base cells, or
whose average price cannot pass the threshold. When
k is reduced down to 1, the power of the constraint is
also reduced to minimum since if the value of a base
cell ¢; 18 no less than v, all of ¢;’s ancestors cannot be
pruned. That is why we start our discussion on more
useful cases where k > 1. Notice this does not imply
the AVG-only cutting is useless since the cutting can
still be effective if v is substantially larger than the
average of all the base cells.

3. Compute iceberg cubes whose measure is SUM of
positive and negative values.

Suppose our iceberg cube query is similar to Avgl
except AVG(price) is replaced with SUM(profit), as
shown in query Q- of Example 1. That is, its HAVING-
clause becomes HAVING SUM(profit) >= v AND
COUNT (%) >= k.

Notice that SUM(M), when M is either nonnega-
tive or negative, such as profit, 1s not anti-monotonic.
This is different from the case where M is nonnega-
tive, which 1s anti-monotonic and can be computed by
a BUC-like method directly, as shown in [6, 4]. How-
ever, when M can also be negative, 1t is unfortunate



that we cannot even use a weaker, auxiliary function
sumf(c) > v, where sum”(c) is the top-k sum of a
cell ¢, and the top-k sum is the sum of the first k val-
ues in ¢ when all the base cell values in ¢ are sorted
in value-descending order. This is because even when
top-k sum invalidates sum* (¢) > v, adding remaining
values in a cell may still validate sum(c) > v.

However, we can use a simple weaker, antimono-
tonic auxiliary function as follows to handle it,

o p_sum(c) > v, if p_count(c) > k, where p_sum(c) is
the sum of all the non-negative base cell values in
cell ¢, and p_count(c) is the number of nonempty
non-negative base cells in cell ¢, and

o sum”(c) > v, otherwise (i.e., p_count(c) < k).

Then, the methods discussed in sections 4 and b,
can be easily extended to this case, by keeping two
additional counters, p_sum(c) and p_count(c), and a
small number of bins for negatives.

4. Compute iceberg cubes with measures like maz, min,
count, and p_sum, where p_sum means the sum of all
nonnegative base cell values in a cube.

Since conditions like count(M) > v, max(M) >
v, min(M) < v, and p_sum(M) > v generate
anti-monotonic cubes, we can use either a BUC-
like method (such as [4]) or the H-Cubing method
introduced here to compute it without seeking for
an auxiliary function. Notice if the condition is
changed to maz(M) < v, we can use a weaker, anti-
monotonic auxiliary function min(e) > v since if a
cell ¢’s minimum base cell value is no greater than
v, one cannot find in ¢ or in i1ts descendants whose
maximum base cell value can be less than or equal to
v. Similarly, a condition min(M) > v can be tested
by an auxiliary, anti-monotonic function, maz(c) < v.

5. Compute iceberg cubes having conjunctions of
multiple conditions with different measures.

In this case, one can explore combined, stronger
anti-monotonic constraints to reduce the portions of
iceberg cubes that have to be computed. Since our
iceberg cube computation requires some parameters,
such as v and k in the case of HAVING AVG(price) >=
v AND COUNT () >= k, and those parameters may
likely be available only at “query time”, one may
wonder how the iceberg cube precomputation may
help? Our view is as follows. Since the computation of
a (background) high-dimensional cube is prohibitively
expensive, it is more realistic to precompute one of
its corresponding iceberg cubes by setting a set of
reasonably low bound parameters, and consider the
aggregated cells below such low bound(s) as trivial.
For example, one may precompute an iceberg cube
corresponding to some minimal average price and

minimal count and use the precomputed iceberg cube
to support most of interesting queries.

6. Finally, one may ask, “can we efficiently compute
iceberg cubes with any complex measures?”

Although we have worked out some methods for
efficient computation of iceberg cubes with several
complex measures, this by no means implies that
iceberg cubes with any complex measures can be
computed efficiently. It seems there is no general
answer to efficiently compute iceberg cubes with
holistic measures, such as median, mode, and rank.
Even for some complex algebraic measures, such as
standard_deviation and wariance, more research is
needed to find easy to compute, not too weak, anti-
monotonic functions in order to successfully perform
efficient computation of such iceberg cubes.

7.2 Related work

Since the introduction of the concept of data cubes [8],
efficient computation of data cubes has been a theme
of active research, with many interesting approaches
proposed, such as [1, 10, 16, 14, 4]. As shown in [14, 4],
computation of high dimensional, large data cubes
are challenging due to the huge sizes of cuboids that
could be generated by multi-dimensional group-bys.
Thus, computing iceberg cubes rather than complete
cubes, proposed by [4], motivated by iceberg query
computation [6], is a promising direction. [4] proposed
an efficient cube computation method BUC, which has
been shown highly efficient for computing not only
iceberg cubes but also complete cubes. However, for
computing average iceberg cubes, [4] does not suggest
an effective method. Thus, this study extends the
scope of computation to iceberg cubes with complex
measures, including the ones discussed above.

Our proposal of computing iceberg cubes with com-
plex measure has also been influenced by the previ-
ous works on constraint-based mining of association
rules, such as [15, 12, 3, 11, 7, 13]. [12] introduced
the notion of anti-monotonicity and studied methods
for effective push of anti-monotonic constraints into
association mining. Unfortunately, the complex mea-
sures studied here are not anti-monotonic. A recent
study by [13] introduced a new class of constrains,
called convertible constraints, that includes the con-
straint “avg(c) > v” for association mining. However,
the method proposed there, i.e., evaluation of aver-
age in a value-sorted order, is difficult to realize in
a multi-dimensional data cube space. Therefore, we
believe our top-k average is a novel solution to this
problem, and its effectiveness 1s demonstrated in our
performance study.

The major algorithm proposed here for efficient
computation of iceberg cubes with complex mea-



sures is Top-k H-Cubing, which is based on a hyper-
tree structure, H-tree. The H-tree structure is influ-
enced by the FP-tree structure, proposed in [9]. How-
ever, besides some structure differences between the
two, a crucial difference is at the computation pro-
cess: FP-growth mines frequent patterns by recur-
sively constructing and mining conditional (or pro-
jected) databases; whereas Top-k H-Cubing uses one
H-tree structure in the entire computation, which
saves both space and time. Our experiments show
that due to recursive construction of conditional
FP-trees, the FP-growth method has weaker perfor-
mance than both Top-k BUC and Top-k H-Cubing at

computing iceberg cubes in most cases.

The best algorithm that Top-k& H-Cubing has been
competing with is Top-k BUC, a revised BUC [4] for
computing top-k average. A performance analysis
has been reported in section 6. Based on our
view, the major strength of Top-k H-Cubing is at (1)
compressed database: H-tree structure, (2) pointer
adjustment instead of partitioning and tuple sorting,
and (3) the exploration of shared precomputation of
quant_info.

Finally, we should note that this study did not
compare Top-k H-Cubing with the multiway array
aggregation method developed by Zhao et al. [16].
This is because, as pointed out in [4], the multiway
array aggregation method cannot take advantage
of iceberg cube constraints in computation, and it
encounters difficulties for computing iceberg cubes
with high dimensionality. However, when the cube
contains only a small number of dimensions, it could
still be a rival of Top-k H-Cubing in performance
unless some integrated processing is considered. More
study is needed in this direction.

8 Conclusions

In this paper, we have studied issues on efficient com-
putation of iceberg cubes with some popularly en-
countered complex measures and proposed some ef-
ficient computation methods. It contributes to ice-
berg cube computation in two aspects: (1) a method-
ology 1s developed that derives a weaker but anti-
monotonic condition for testing and pruning search
space, especially, it shows that the top-k average
pruning is an effective technique for computing aver-
age iceberg cubes; and (2) instead of simple extension
of two previously studied methods, Apriori and BUC,
to Top-k Apriori and Top-k BUC, an interesting hyper-
tree structure, called H-tree, is designed and a new
iceberg cubing method, Top-k H-Cubing, is developed.
Our performance study shows that Top-k H-Cubing is
a promising approach for efficient computation of ice-
berg cubes.

Although interesting progress has been made for ef-
ficient computation of iceberg cubes with some com-
plex measures, as shown in section 7, efficient com-
putation of iceberg cubes with some other complex
measures is still an open problem. Moreover, the ap-
plication of the H-tree structure and its computation
method to other OLAP and data mining tasks may
deserve further attention.
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