
E�cient Computation of Iceberg Cubes with Complex Measures �Jiawei Hany Jian Peiy Guozhu Dongz Ke Wangyy School of Computing Science, Simon Fraser University, B.C., Canada, fhan, peijian, wangkg@cs.sfu.caz Department of Computer Science, Wright State University, Dayton, OH, U.S.A., gdong@cs.wright.eduAbstractIt is often too expensive to compute and materialize acomplete high-dimensional data cube. Computing aniceberg cube, which contains only aggregates above certainthresholds, is an e�ective way to derive nontrivial multi-dimensional aggregations for OLAP and data mining.In this paper, we study e�cient methods for comput-ing iceberg cubes with some popularly used complex mea-sures, such as average, and develop a methodology thatadopts a weaker but anti-monotonic condition for test-ing and pruning search space. In particular, for e�-cient computation of iceberg cubes with the average mea-sure, we propose a top-k average pruning method and ex-tend two previously studied methods, Apriori and BUC, toTop-k Apriori and Top-k BUC. To further improve the per-formance, an interesting hypertree structure, called H-tree,is designed and a new iceberg cubing method, calledTop-k H-Cubing, is developed. Our performance studyshows that Top-k BUC and Top-k H-Cubing are promisingcandidates for scalable computation, and Top-k H-Cubinghas the best performance in many cases.1 IntroductionThe introduction of data cube [8] can be consideredas a landmark in data warehousing because thematerialization of multi-dimensional data in largedata repositories facilitates fast, on-line data analysis.However, as many researchers pointed out (e.g.,[10, 14, 4]), it is prohibitively expensive in bothspace and time to completely materialize a data cubewith high dimensionality. Several methods have been� Work supported in part by the Natural Sciences andEngineering Research Council of Canada (A3723) and theNetworks of Centres of Excellence of Canada (IRIS-3).

proposed to overcome this di�culty, including (1)selective materialization of some cuboids [10], wherea cuboid summarizes only a subset of dimensions, and(2) materialization of only iceberg cubes [4], where aniceberg cube is a subset of a cube containing only thosecells whose measure, such as count, satis�es certainconstraints, such as minimal support threshold.The usefulness of iceberg cubes [4] is obvious. Acube can be viewed as a lattice of cuboids, where thecuboids whose group-bys include more dimensions areat a lower level than those include fewer dimensions,and the one that includes all the dimensions, calledthe base cuboid, is at the bottom. Most of the cellsat the low level cuboids are likely to contain trivialaggregate values and may not pass certain threshold,and therefore, do not need to be computed in aniceberg cube. This not only saves processing timeand disk space but also makes the analysis focusedonly on interesting data, since cells that cannot passthe thresholds are likely to be too trivial to warrantfurther analysis.Previous studies [6, 4] on e�cient computation oficeberg queries or iceberg cubes have been con�nedto iceberg queries/cubes with simple measures, suchas count and sum, by exploring the anti-monotonicproperty1 of such icebergs. For example, if the countof a cell c in a cuboid C is no higher than v,then the count of any of c's descendant cells in thelower level cuboids can never be higher than v, andthus can be pruned by the Apriori-like method [2].Unfortunately, not all the measures have such anti-monotonic property. For example, even if the averagevalue in a cell c of a cuboid C is no higher than v, theaverage value of some of c's descendant cells in thelower level cuboids may still be higher than v.In this paper, we study how to e�ciently computeiceberg cubes with non-antimonotonic measures. Be-fore examining this problem, one may ask, \Is it truly1Anti-monotone, �rst introduced in [12], is di�erent frommonotone in that the latter is about condition satisfaction,whereas the former is about the condition violation. 1

useful to compute iceberg cubes with such measures?"The answer is a resounding yes!, as shown below.Example 1 Suppose a sales database has four di-mensions: time, location, customer, and product, andtwo measures: price and cost (note: pro�t = price �cost). The following queries require the computationof iceberg cubes with such complex measures.Q1: Find groups of sales which contain at least 50 itemsand whose average item price is at least $800,grouped by month, city, and/or customer groups.Q2: Find groups of sales which contain at least 200items and whose total pro�t2 is more than $6000,grouped by month, city, and/or customer groups.Q3: For sales grouped by month, city, and/or customergroups, containing at least 20 items, with anaverage item price of no less than $800, �ndthose customer groups on which one can make atleast 10% more pro�t than the average of all thecustomers. 2Can we �nd some interesting properties and e�ec-tive methods so that computation of such iceberg cubescan still be made e�cient? This paper investigatesthis problem, with the following contributions.1. It develops a mapping which transforms somenon-antimonotonic testing conditions to somewhatweaker but anti-monotonic testing conditions sothat the search space can be pruned e�ectively.For example, test on average can be mapped to ananti-monotonic, top-k average test. Mappings forseveral other measures are worked out as well.2. It extends two previously studied methods, Apriori[2] and BUC [4], to Top-k Apriori and Top-k BUC,for computing iceberg cubes with the averagemeasure.3. To further improve performance for computing ice-berg cubes, a hypertree structure, called H-tree,is designed, and a new iceberg cubing method,called Top-k H-Cubing, is developed. The methodexplores several e�cient processing techniques, in-cluding tree-based data compression, dynamic linkadjustment, and quantitative information merge;these techniques make iceberg cubing highly e�-cient and scalable, outperforms a high performancecubing technique, BUC [4], in most cases, accordingto our performance study.The remaining of the paper is organized as follows.Section 2 introduces the problem of computing ice-berg cubes with the average measure. Section 3 ex-2Pro�t could be negative, and thus it cannot be handled byiceberg cubes with a sum of nonnegative values as in [4].

plores a weaker but anti-monotonic condition, top-k average, for e�ective pruning of search space, andpresents a binning technique to handle top-k average.Section 4 presents two algorithms, Top-k Apriori andTop-k BUC, which extend Apriori and BUC to com-pute average iceberg cubes. A hypertree data struc-ture, H-tree, and a new algorithm, Top-k H-Cubing,for e�cient computation of average iceberg cubes arepresented in section 5. Our performance study is re-ported in section 6. In section 7, we extend our scopeto examine other complex measures and discuss re-lated works. We conclude our study in section 8.2 Iceberg Cubes with the AverageMeasureExample 2 (Iceberg cubes on average) Considera Sales Info table, given in Table 1, which regis-ters sales related to month, day, city, customer group,product, cost, and price.Mon. Day City Cust group Product Cost PriceJan 10 Toronto Edu. HP Printer 500 485Jan 15 Toronto Household Sony TV 800 1200Jan 20 Toronto Edu. Canon Camera 1160 1280Feb 20 Montreal Busi. IBM Laptop 1500 2500Mar. 4 Vancouver Edu. Seagate HD 540 520� �Table 1: A Sales Info table.An iceberg cube, Sales Iceberg, which computesQ1 is presented as follows.CREATE CUBE Sales Iceberg ASSELECT month, city, customer-group, AVG(price),COUNT(�)FROM Sales InfoCUBEBY month, city, customer-groupHAVING AVG(price) >= 800 AND COUNT(�) >= 50Notice that Sales Iceberg di�ers from its corre-sponding whole data cube, Sales Cube, in that theformer is a restriction of the latter: the former ex-cludes all the cells of the latter whose average price isless than $800 or whose count is less than 50. It is alsodi�erent from its corresponding iceberg query, formedby replacing CUBEBY with GROUPBY, in that thelatter contains only the quali�ed cells with the threedimensions grouped together, whereas the former con-tains the quali�ed cells of all the possible group-bys ofthe three dimensions. 2It is easy to verify that it is highly ine�cient andsometimes impossible to �rst materialize the wholedata cube and then select the cells satisfying theHAVING-clause speci�ed in the iceberg cube sincethis may lead to a huge number of cells (but mostcontaining only trivial measures) to be computed 2

when the number of dimensions are not too small. Todevelope an e�cient method for computing icebergcubes, let's �rst de�ne some terms.De�nition 1 In an n-dimension data cube, a cella = (a1; a2; : : : ; an;measures) is called an m-d cell(which is a cell in an m-d cuboid), if and only if thereare exactly m (m � n) values among fa1; a2; : : : ; angwhich are not �. It is called a base cell (whichis a cell in a base cuboid) if m = n. A non-basecell stores aggregate values and thus it is sometimesreferred to as aggregate cell. In an n-dimension datacube, an i-d cell a = (a1; a2; : : : ; an;measuresa) is anancestor of a j-d cell b = (b1; b2; : : : ; bn;measuresb),and b is a descendant of a, if and only if (1) i < j,and (2) for 1 � m � n, am = bm whenever am 6= �. Inparticular, cell a is called a parent of cell b, and b achild of a, if and only if j = i+1 and b is a descendantof a. Given an iceberg cube ICube, the (whole)data cube formed by the same speci�cation of ICubewithout the HAVING clause is called the backgroundcube of ICube, and is denoted as B(ICube). 2Example 3 Consider the Sales Cube of Example 2.(Jan; �; �; 1200;2800) and (�; T oronto; �; 800; 1200) are1-d cells, (Jan; �; Edu:; 600;250) is a 2-d cell, and(Jan; Toronto;Busi:; 1500; 45) is a 3-d cell. A 3-d cellis a base cell, whereas 1-d and 2-d cells are aggregatecells. 1-d cell a = (Jan; �; �; 1200;2800) and 2-d cellb = (Jan; �; Busi:; 1300; 150) are ancestors of 3-d cellc = (Jan; Toronto;Busi:; 1500; 45); c is a descendantof both a and b, b is a parent of c, and c a child of b.B(Sales Iceberg), the background cube of the ice-berg cube, Sales Iceberg, of Example 2 is de�ned as,CREATE CUBE Sales Cube ASSELECT month, city, customer-group, AVG(price),COUNT(�)FROM Sales InfoCUBEBY month, city, customer-group 2De�nition 2 An iceberg cube, ICube, is anti-mono-tonic if and only if for each cell c in B(ICube), if cviolates the constraint speci�ed by ICube's HAVINGclause, so does every descendant of c. 2Example 4 Given the sales table in Example 2,Count Iceberg, shown below, is anti-monotonic.CREATE CUBE Count Iceberg ASSELECT month, city, customer-group, COUNT(�)FROM Sales InfoCUBEBY month, city, customer-groupHAVING COUNT(�) >= 100Indeed, if a cell c in Count Iceberg violates theconstraint speci�ed in the HAVING clause, i.e., its

count is less than 100, then every descendant of c willviolate the constraint since the count of each subcubeof c must be no larger than that of c.Sales Iceberg in Example 2 is, however, not anti-monotonic. For example, even when the average priceof all the items sold in March is less than $800,e.g., (March; �; �; 600;1800), the average price for asubset containing only the sales to business people,e.g., (March; �; Busi:; 1300; 360), may still satisfy theconstraint speci�ed in the HAVING clause. 23 Exploration of Weaker,Anti-monotonic ConditionsAn anti-monotonic iceberg cube can be computede�ciently by exploring the Apriori property [2], asshown in [4]. However, since our iceberg cube involvesthe non-anti-monotonic measure average, it does nothave the Apriori property. \Can we �nd a weaker butanti-monotonic auxiliary condition that may help uscompute iceberg cubes e�ciently?"3.1 Top-k average: An anti-monotoniccondition for testing averageLet us examine the following iceberg cube AvgI, ageneralization of Example 2, de�ned on a relationaltable T with i dimensions and one measure M .CREATE CUBE AvgI ASSELECT A1;A2; : : : ;Am, AVG(M), COUNT(�)FROM TCUBEBY A1;A2; : : : ;AmHAVING AVG(M)>= v AND COUNT(�) >= kDe�nition 3 A cell c is said to have n base cells if itcovers n nonempty descendant base cells. The top-kaverage of c, denoted as avgk(c), is the average valueof the top-k base cells of c (i.e., the �rst k cells whenall the base cells in c are sorted in value-descendingorder) if k � n; or �1 if k > n.3 2Lemma 3.1 (Top-k Apriori) Let c be an m-d cellwhich fails to satisfy avgk(c) � v in cube B(AvgI).If a cell c0 is a descendant of c, then c0 cannot satisfyavgk(c0) � v in cube B(AvgI). 2This lemma stimulates us to explore the utilizationof the auxiliary condition avgk(c) � v as a looserbound for computing iceberg cubes with the HAVINGclause \avg(c) � v AND count(c) � k". Thee�ectiveness of the search space pruning by top-kaverage is demonstrated in our performance study insection 6.3�1 can be implemented as � MAXINT in a computer. 3

3.2 Optimization: A binning technique fortop-k averageThere is one concern of this top-k average-basedpruning: \will this require us to keep track of top kvalues for each cell in an m-dimensional space?" Thisseems to be a nontrivial cost. If k is small, e.g., k = 5,the overhead could be small. However, if k is large,such as 1000, the overhead could be substantial. Thefollowing binning technique can be used to reduce thecost of storage and computation of top-k average.1. Large value collapsing: For any measure value v0which is no less than v (i.e., v0 � v) in avgk(c) � v,where v0 is called a large value, there is no need tostore it explicitly. Instead, it is su�cient to storeonly two measures: (1) count , the number of largevalues, and (2) sum, the sum of all large values.2. Small value binning: If the large values regis-tered can make avgk(c) � v, there is no need tostore small ones (a value v0 is small if v0 < v). Oth-erwise, we can set up a small set of bins and reg-ister two measures, count and sum, for each bin.The large-value group can be considered as a spe-cial bin, bin1. Let the upper value boundary of binibe max(bini) and the lower one be min(bini). Forall 1 � i < j, we have min(bini) > max(binj). Tomake binning more e�ective, we can use denser binsfor the region relatively closer to v, and sparser binsfor the region relatively far away from v.For example, suppose v � 0, one can set up theranges of �ve bins as follows: range(bin[1]) =[v;1), range(bin[2]) = [0:95v; v), range(bin[3]) =[0:85v; 0:95v), range(bin[4]) = [0:70v; 0:85v), andrange(bin[5]) = [0:50v; 0:70v). Notice since wehave count and sum of all the cells, that for theremaining range [�1; 0:50v) can be derived easily.The set of bins for a cell c can be used to judgewhether avgk(c) � v is false as follows. Let m bethe smallest number such that the sum of counts ofthe upper m bins is no less than k, i.e., countm =�mi=1count(bini) � k. We approximate avgk(c) using,avg0k(c) = (�m�1i=1 sum(bini) +max(binm) � nk)=k,where nk = k � �m�1i=1 count(bini).Lemma 3.2 avgk(c) � avg0k(c). Consequently, ifavg0k(c) < v, then no descendant of c can satisfy theHaving-condition in AvgI. 2Notice that binning might lead to a minorly coarsergranularity than registering each of individual kvalues, and hence less sharp pruning, however, witha good binning technique as described above, theblurring e�ect is quite minor. Moreover, the techniqueis safe since it will not lead to missing any answer.

Based on this discussion, we denote three piecesof information sum, count, and top-k bins as quant-info, which often need to be accumulated with eachcell for e�cient computation of average iceberg cubes.4 Extension of Apriori and BUCfor Iceberg Cube with AverageBased on the above discussions, we extend (1) theApriori association mining algorithm [2], and (2)the BUC iceberg cube computation algorithm [4], tocompute iceberg cubes with average.4.1 Top-k AprioriBased on Lemma 3.1, we can work out an Apriori-like[2] iceberg cube computation algorithm, as below.Example 5 (Top-k Apriori) The iceberg cube in Ex-ample 2 can be computed by Top-k Apriori as follows.First, the set of relevant data is obtained byprojecting the database on three relevant attributes,month, city, and customer group, and one measureprice. This forms the base cuboid DB.Scan DB once to accumulate quant-info (i.e.,count, sum, and top-k bin measures) for the 0-d cell c0 of the 0-d cuboid. Output the 0-dcuboid, R0 = fc0 j count(c0) � 50 ^ avg(c0) =sum(c0)=count(c0) � 800g, and keep the 0-d live set,L0 = fc0 j avg050(c0) � 800g.If L0 = ;, the computation terminates. Otherwise,compute 1-d cells as follows. All the 1-d cells are can-didate cells, i.e., forming the candidate set C1, such as(Jan; �; �; : : :), (Feb; �; �; : : :), . . . , (�; T oronto; �; : : :),(�; V ancouver; �; : : :),Then scan DB, accumulate quant-info for each c1in C1, output R1, and keep the live set L1:1. R1 = fc1 j c1 2 C1 ^ count(c1) � 50 ^ avg(c1) =sum(c1)=count(c1) � 800g;2. L1 = fc1 j c1 2 C1 ^ avg050(c1) � 800g.This process continues level-by-level, until the liveset Lk or the candidate set Ck for some k is empty.2Top-k Apriori computes average iceberg cubes byexploring candidate generation and level-wise com-putation. This is more e�cient than �rst comput-ing the whole background cube and then selectingthe cells using constraints. However, it still involvescostly processing: (1) it takes m scans of DB wherem is the maximum number of dimensions containingnonempty candidate set, and (2) it may generate ahuge number of candidate sets. 4

4.2 Top-k BUCAn e�cient iceberg cube computationmethod Bottom-Up Cube (BUC) [4] builds the cube from lower num-ber of dimension combinations to higher ones. It ex-plores the dimension ordering by putting the mostdiscriminating dimensions �rst and then recursivelypartitioning DB according to the ordering. At eachstep of recursive partition, one can push in the icebergconstraint, such as min count, to remove those thatcannot satisfy it. This can be applied to computingiceberg cubes with the average measure. For example,for computing AvgI, one can use avgk(c) � v to testthe partitions generated: any partition that cannotpass the test will not need to be considered further.Example 6 (Top-k BUC) The iceberg cube AvgI ofExample 2 can be computed by Top-k BUC as follows.Star with the base cuboid DB with three dimen-sions month, city, and customer group, and one mea-sure price. Let cardinality(city) > cardinality(month)> cardinality(customer group). The BUC processingtree is shown in Fig. 1, where C is for city, M formonth, G for customer group, and num in \C :num" represents the processing order.
G:8M:6C:2

CM:3

CMG:4

ALL:1

CG:5 MG:7Figure 1: BUC Processing Tree.Following the processing order indicated in Fig. 1,in the �rst scan of DB, we (1) accumulate quant-info for \ALL", and (2) project each tuple to thecorresponding city partition, and (3) accumulatequant-info for each city. At the end of the scan,output \ALL" if it passes the count and avg test, andif \ALL" is not alive, i.e., avg50(ALL) � 800 is false,stop. Otherwise, output city ci if count(ci) � 50 andavg(ci) = sum(ci)=count(ci) � 800, and mark city cilive if avg50(ci) � 800.Then, for each live city ci, scan ci's partitionand project each tuple to its corresponding seconddimension M (month) and for each CM -partition,accumulate quant-info, and so on. This processcontinues until CMG is processed or until there existno live partitions. Then we recurse back and processin the order of CG, M , MG, and �nally G, byscanning the corresponding database or partitions. 2

Top-k BUC partitions a large database into a setof much smaller data sets by projections over thecorresponding dimensions, and localizes the search topartitioned data sets. Without generating candidatesets like Apriori, it may occasionally do some extrawork, e.g., ifMarch cannot pass avg50(March) � 800,there is no need to examine the pair of city ci andMarch by Apriori but BUC still has to examine it(since March is in a di�erent partition). However, thetrade of accuracy of pruning for locality of referencehas been proven highly bene�cial in performance [4].5 Top-k H-Cubing: Top-k CubingUsing a Hyper-Tree StructureBy exploring dimension partition and constraint push,Top-k BUC achieves good performance. Can wefurther improve the performance? In this section weintroduce a hyper-tree structure, called H-tree, andpropose an e�cient algorithm, Top-k H-Cubing, forcomputing average iceberg cubes.5.1 H-tree: A Hyper-Tree StructureExample 7 (H-tree) Given Sales Info in Table 1and Sales Iceberg speci�ed in Example 2, a treestructure HT can be built as follows.1. TreeHT has a root node \null", and dimensions arein cardinality-ascending order, i.e. R : G�M � C.2. A header table is created, in which each entryrecords the quant-info for an attribute-value pair.3. The �rst tuple, t1 = (Edu:; Jan; Toronto; 485), isinserted into HT , with three nodes, Edu:, Janand Toronto inserted in sequence to form the �rstbranch, and quant-info in the leaf (Toronto). Also,price 485 is used to update quant-info forEdu:, Janand Toronto in the header table.4. Similarly, t2 = (Household; Jan; Toronto; 1200),is inserted. Since the two leaf nodes have the samelabel, they are linked by a side-link.5. Since t3 = (Edu:; Jan; Toronto; 1280) has the sameattribute values as t1, t3 shares the path as t1, withquant-info in the leaf and header updated.6. The remaining tuples can be inserted similarly, withthe result tree shown in Fig. 2. The tree so formedis called an H-tree. Its construction requires onlyone scan of the database. 2For lack of space, we omit the rigorous de�niton ofH-tree. H-tree has some interesting properties whichfacilitate computing iceberg cubes.Lemma 5.1 (Properties of H-tree) Given a rela-tion table T and an iceberg cube creation query AvgI 5

...

quant-info

Business ...
Household ...
Education sum: 2285...
attribute value quant-info side-link

...
Montreal ...
Vancouver ...

...
Feb ...
Jan ...
...

Toronto ...

Header Table
ROOT

HouseholdEducation Business

Jan March Jan Feb

Toronto Vancouver Toronto Montreal

sum: 1765
cnt: 2
binsFigure 2: An H-tree.as in section 3.1, the H-tree HT has the followingproperties.1. (Construction cost)The H-tree can be constructedby scanning the database only once.2. (Completeness) The H-tree and its header tableH contain the complete information needed forcomputing iceberg cube AvgI.3. (Compactness) Let there be n tuples in table Tand m attributes involved in AvgI. The number ofnodes in H-tree cannot exceed n�m+ 1. 25.2 Top-k H-Cubing: Computing icebergcubes using H-treeWith the compact H-tree structure, one can exploree�cient iceberg cube computation, as below.Example 8 (Top-k H-Cubing) Using the H-tree HTbuilt in Example 7, AvgI can be computed as follows.Step 1. Compute cells involving dimension C. Thequant-info in the H-tree tells whether a cell in the formof (�; �; c), where c is a city, passes the top-k averageand average tests. For example, the entry Toronto inthe header table contains avgk(price) and avg(price)for (�; �; T oronto). If avg(price) passes the averageprice threshold, output the cell. If avgk(price) passesit, the descendants of the cell (�; �; T oronto) shouldbe examined as shown below.1. The sub-graph of HT containing only the pathsrelated to Toronto, denoted as HTToronto, is anH-tree for sub-cube (�; �; T oronto). HTToronto issu�cient to compute the iceberg sub-cube w.r.t.Toronto.2. The side-link for Toronto in the header table Hlinks all the paths related to Toronto. By traversingit once, we (1) make a copy of quant-info in everyleaf-node labeled Toronto to its parent node in thetree, (2) build a new header table HToronto, whichcollects quant-info for every attribute-value w.r.t.Toronto, and (3) link all the parent nodes of theleaf-nodes labeled Toronto. Fig. 3 is the updatedtree.

Business

Feb

Montreal

Household

ROOT

Jan

Toronto

Education

Jan

Toronto

March

Vancouver

Header Table H

Education
Household
Business
...
Jan
Feb
March
...
Toronto
Vancouver
Montreal
...

Attr-val quant-info side-link
Education
Household
Business
...
Jan
Feb
March
...

Header Table H Toronto

Attr-val quant-info side-linkFigure 3: Updated H-tree for computing descendantsof (�; �; T oronto).3. Based on the header table HToronto, output all thecells of the form (�;m; Toronto) or (g; �; T oronto),which pass the average price test, where m 2M and g 2 G. Also, explore recursively thedescendants of the cells of the form (�;m; Toronto)or (g; �; T oronto) which pass the top-k average test.Similarly, all the cells of the form (�; �; c) as wellas their descendants are explored, where c 2 C. Notethat there is no information con
ict on either quant-info or side-link, since every time we change the scopeof examination, parent nodes copy quant-info fromits child under examination and side-links are rebuiltw.r.t. the nodes currently under examination.Step 2. Compute cells involving dimension M but no C.After examining cells in the form of (�; �; c) (c 2 C)and their descendants, we turn to those in the form of(�;m; �) (m 2M) and their descendants, i.e., (g;m; �)(g 2 G). This can be done in two steps.(1) Roll-up quant-info to dimension M . Every leafnode in H-tree merges its quant-info into that of itsparent node. All nodes labeled by a common month,should be linked by side-links and also linked tothe corresponding row in the header table H. Asan optimization, if the quant-info in a child nodeindicates that avg0k(child) passes the average measurethreshold, the parent node can be marked \top-k OK". Only sum and count are collected for thosemarked top-k OK. No binning is needed, since italways passes top-k average checking. In furtherquant-info rolling up, parents of the nodes markedtop-k OK should be treated similarly.(2) Compute cells involvingM but no C. This is similarto Step 1 demonstrated before.Step 3. For cells involving only G, the last dimensionin our consideration, we consult the header tableH directly for the result. It is easy to verify thatthe above process correctly computes the completeiceberg cube. 2 6

Based on the above example and reasoning, we haveAlgorithm Top-k H-Cubing presented below.Algorithm 1 (Top-k H-Cubing) Compute iceberg cubewith average by top-k H-tree-based cubing.Input: (1) A relational table, T , with attributes A1,. . . , Am, and one measure M ; and (2) an icebergcube creation query AvgI, speci�ed in section 3.1.Output: The computed Iceberg cube, AvgI.Method:1) construct an H-tree HT , let H be the header table;2) let c = (�; : : : ; �| {z }m), call htree cubing(m, H, c);procedure htree cubing(m, H, c);f1) for i = m downto 1 do f2) for each ai 2 Ai if avg0k(M) � v, then f3) let c[i] = ai, if avg(M) � v, output c;4) if i > 1 then f5) create a new header table Hai , only rows forattribute values in A1; : : : ; Ai�1 are needed;6) traverse side links from ai in H do� collect quant-info for header table Hai ;� copy quant-info in child to parent;� link parents of the same label by side-links;7) call htree cubing(i � 1, Hai , c);8) g9) g10) if i > 1 then // roll up quant-info11) traverse side-links from ai 2 Ai in H do� merge quant-info from children to parent;� link parents of the same label by side-links;12) c[i] = �; // re-initialization13)ggRationale. The correctness of the algorithm is basedon that it explores the iceberg cube in a divide-and-conquer style. For each iceberg sub-cube, it formsa virtual H-tree using a header table created andupdated on the
y, with proper side-links and quant-info propagated to proper tree nodes. It exploresfurther the remaining sub-cubes by recursion. 2Let us analyze the e�ciency of Top-k H-Cubing.1. Space cost. As shown in Lemma 5.1, an H-tree isa compact structure. During the computation,Top-k H-Cubing needs to create a stack of up to(m�1) header tables, where m is the number of di-mensions. The maximal size of the ith header tableis O(Pi�1j=1 cardinality(Aj)). Therefore, the totalsize of header tables is O(m2 � cardinality(Am)).

Even if the cube contains 20 dimensions, each with100 distinct values, and each header slot takes 20bytes, the total amount of memory for the headertables will still be less than 202� 100� 20 = 800Kbytes, which can �t in main memory comfortably.2. Database scan and tree traverse. Only one scan ofthe database is needed to construct an H-tree. Theremaining computation is main memory-based treetraversal and updates of side-links and header tableentries in the H-tree.3. Data manipulation. The major data manipula-tions are side-link adjustment and quant-info copy-ing/merging. Comparing with Top-k BUC, whosemajor work is sorting and quant-info collecting,Top-k H-Cubing's work load is lighter.4. Pruning and optimization. Both Top-k BUC andTop-k H-Cubing use the same pruning techniques.However, Top-k H-Cubing can further use a top-k OK marking technique to save quant-info com-putation, which cannot be applied in Top-k BUC.5.3 Reduction of Database ScansEven though H-tree compresses a database, one can-not assume that H-tree can always �t in main mem-ory. To handle large databases, projections and par-tition can be performed �rst. When the H-tree for apartition can �t in memory, we turn to H-tree -basedmining. Here we propose a dual projection method,which requires less memory and disk space but scansDB and each partitioned database only once.Example 9 For computing all cuboids in Fig. 1, adual projection scheme can be adopted as follows.1. In the �rst scan, we project only on the �rstdimension C, as BUC, which forms a set of smallerpartitions, Ci, for each distinct value ci in C.2. When projecting each partition Ci on the seconddimension M , we project each tuple t into twopartitions: a CM partition CiMj for city ci andmonthmj , and anM partitionMj . After this scan,both CM and M projections are generated.3. Similarly, the projection of CM on G will produceboth CMG and CG, and so on.Thus, the processing tree of Fig. 1 is updated to Fig.4, where the number immediately after the partitiondimension shows the order that the projection isgenerated, followed by a number showing the orderthat the projection is processed. 2Dual projection has the following nice properties:(1) to compute an n-dimension data cube, dualprojection scans base cell table DB as well as its 7

M:2:6C:1:2

CM:2:3

CMG:3:4

ALL:0:1

CG:3:5 MG:4:7

G:4:8Figure 4: The Processing Tree in Top-k H-Cubing.partitions only once, while BUC has to scan DB ntimes, and scan a partition on ith dimension (n � i)times; and (2) when scanning DB and projecting onD1, it requires the same amount of main memoryspace and disk space as BUC. When scanningpartition D1 and doing dual projection on D1D2 andD2, the main memory space needed is 2 � S(dim2),and the projected pages generated is about the sumof the size of two partitions D1 and D2, a minimalcost in both cases.Since H-tree may substantially compress a database,in many cases the entire compressed database in theform of H-tree can �t in mainmemory. Then, the dualprojection technique will not be needed. However,when the database is huge, the dual projection tech-nique can be applied until the main memory-basedH-trees can be constructed for the partitions.6 Performance AnalysisIn this section, we report our performance analysis oncomputing icberg cubes AvgI.All experiments were conducted on a PC with anIntel Pentium III 500MHz CPU and 128Mmainmem-ory, running Microsoft Windows/NT. All programswere coded in Microsoft Visual C++ 6.0.As shown in [4], the performance of Apriori forcomputing iceberg cube is far weaker than BUC.This is also con�rmed by our experiments. Thuswe concentrate on the performance comparison ofTop-k BUC and Top-k H-Cubing. Top-k BUC is anextension of BUC, implemented similar to [4]. We onlyimplemented main memory-based BUC (no externalpartitioning). In the experiments reported here,both algorithms have enough main memory to holddata and related structures. Thus we believe thecomparison is fair. The runtime reported hereincludes both I/O time and CPU time.Dataset generatorWe designed a synthetic dataset generator. It takesparameters shown in Table 2, and uses rand(), afunction which generates numbers in range of [0; 1]following the uniform distribution.

Parameter Meaningn Number of tuples in the datasetm Number dimensionscard[i] (1 � i � m) cardinality of the ith dimensionm max, m min range of measure� repeat factorTable 2: Parameters of the data generator.We conducted experiments on various syntheticdatasets generated by the generator. The results aresimilar. Limited by space, except for performancewith respect to the number of tuples, we report hereonly results on one such dataset, D. There are 10dimensions and 100,000 tuples in D. The cardinalityfor every dimension is set to 10. The measure valuesare in range [0; 99]. The repeat factor, � , is 2000.We report results on dataset D since it is typicaland challenging. Performance study in [4] indicatedthat datasets with cardinality 10 are more challengingthan those with cardinality 100 or 1,000.4Computing iceberg cubes with only the COUNTmeasureFor all experiments reported in this subsection, theaverage threshold is set to 0, i.e., every cell passes theaverage checking.Figure 5 shows the scalability of Top-k BUC andTop-k H-Cubing as the count threshold decreases from100 (0:10%) to 8 (0:008%). Both algorithms arescalable, even when the count threshold is prettylow. They have comparable performance for relativelyhigh count threshold. When the count threshold isextremely low, e.g. below 0:02%, Top-k H-Cubing isconsiderably faster than Top-k BUC .Figure 6 helps us get an in-depth understandingof the scalability of the two algorithms. For bothalgorithms, the runtime per cell in result goes downas the count threshold goes down. That explains thescalability of them in most cases. When the countthreshold goes lower than 0:02%, the runtime percell for Top-k BUC reaches the bottom, while that forTop-k H-Cubing keeps on decreasing. This indicatesthat Top-k H-Cubing incurs a low overhead per cellmore consistently than Top-k BUC .Computing iceberg cubes with the AveragemeasureFigure 7 shows the runtime of the two algorithmswith respect to various min avg thresholds. Thecount threshold is set to 10.As can be seen from the �gure, the restriction onaverage helps both algorithms prune search space and4Smaller cardinalities lead to denser data cubes, which resultin much larger number of cells satisfying conditions. 8

Figure 5: Scalability with respectto count threshold (no min avgsetting). Figure 6: Runtime per cell inresult. Figure 7: Scalability with respectto min avg.
Figure 8: Number of all cells,good top-k cells and good cellswith respect to min avg. Figure 9: Scalability with respectto number of bins. Figure 10: Number of good top-k cells with respect to number ofbins.

Figure 11: Size of the H-tree andthe database w.r.t. the number oftuples. Figure 12: Scalability with re-spect to number of tuples.thus save runtime. Top-k H-Cubing is usually muchfaster than Top-k BUC . When the average thresholdapproaches zero, Top-k H-Cubing achieves a speed upfactor of about 2.5. When the average threshold is pretty high (over 80%), i.e., most of cells arepruned, the two algorithms have similar performance.Top-k BUC catches up with Top-k H-Cubing for highaverage threshold for the following reasons: When 9

the average threshold increases, the main cost ofTop-k H-Cubing, tree manipulation, could not bedramatically reduced, whereas the main cost ofTop-k BUC , sorting (indicated mainly by the numberof required sortings), decreases signi�cantly.Figure 8 helps us understand the pruning e�ectof the average threshold. It shows that the gapbetween the number of cells passing the averagethreshold and that of cells passing the top-k averagethreshold is quite small. This indicates that top-kaverage provides a good estimation for average andconsequently a high pruning power.E�ect of the number of binsFigure 9 shows the runtime of the two algorithmswith respect to the number of bins. More binsincur higher cost in binning, but provide more preciseestimation. The �gure indicates that it does not payto use too many bins, as binning cost outweighs thebene�t when the number of bins is larger than 4 or5. Figure 10 shows the number of cells passing top-kaverage checking with respect to the number of bins.At the very beginning, increasing the number of binsbrings down the number of cells passing top-k averagechecking signi�cantly. However, the marginal bene�tbecomes weak as the number of bins goes up.In our experiments, having 5 or fewer bins tends toyield optimal performance.Size of H-tree and scalability with respect todatabase sizeUsing settings identical to that for D, we generatedseveral new datasets with up to 1,000,000 tuples.Figure 11 shows the size of the tree with respect tothe number of tuples in the database. As can be seenfrom the �gure, the size of the tree is always smallerthan the database size and the e�ect of compressionbecomes stronger when the database becomes larger.Figure 12 shows the scalability of both algorithmswith respect to the number of tuples. The �guresshows that both algorithms are scalable with respectto database size.7 DiscussionOur previous sections explored the e�cient compu-tation of iceberg cubes with the average measure.Here we will extend the scope to examine icebergcubes with other complex measures and discuss re-lated works.7.1 Computing iceberg cubes with someother complex measuresThe key of our method to solving average measureproblem is to �nd a function which is weaker but

ensures certain anti-monotonic property. This is alsotrue if we wish to extend our scope to handle othercomplex measures. Below we examine a few typicalcases and provide such transformed functions.1. Compute iceberg cubes whose AVG is no bigger thana value.Our AvgI query is to compute the iceberg cubeswhose average is no less than a value v. Can wecompute icebergs whose AVG is no bigger than v?Similar to �nding avgk(c) � v in AvgI, here wecan �nd a weaker, anti-monotonic auxiliary functionavgk(c) � v, where avgk(c) is the average of thebottom-k base cell values of a cell c, and the bottom-kbase cells are the �rst k cells when all the base cellsin c are sorted in the value-ascending order. Then,the bottom-k average Apriori property holds becauseif the bottom-k average of a cell c is no greater thanv, then the average of any of its descendants (with atleast k nonempty base cells) cannot be greater thanv. Thus, the methods discussed in sections 4 and 5can be easily extended to this case.2. Compute iceberg cubes with the AVG constraint only.The Having-clause in AvgI contains both AVG andCOUNT constraints. What will happen if we haveonly the average constraint, i.e., AVG(price) >= v?This is equivalent to k = 1 and thus the methodsdiscussed before are still applicable. Since k = 1, thetop-k average testing becomes e�ectively the testingof MAX(price) >= v. Notice that a relatively large kwill serve as a good constraint to cut every cell thatcontains too small number of nonempty base cells, orwhose average price cannot pass the threshold. Whenk is reduced down to 1, the power of the constraint isalso reduced to minimum since if the value of a basecell ci is no less than v, all of ci's ancestors cannot bepruned. That is why we start our discussion on moreuseful cases where k > 1. Notice this does not implythe AVG-only cutting is useless since the cutting canstill be e�ective if v is substantially larger than theaverage of all the base cells.3. Compute iceberg cubes whose measure is SUM ofpositive and negative values.Suppose our iceberg cube query is similar to AvgIexcept AVG(price) is replaced with SUM(pro�t), asshown in query Q2 of Example 1. That is, its HAVING-clause becomes HAVING SUM(profit) >= v ANDCOUNT(�) >= k.Notice that SUM(M), when M is either nonnega-tive or negative, such as pro�t, is not anti-monotonic.This is di�erent from the case where M is nonnega-tive, which is anti-monotonic and can be computed bya BUC-like method directly, as shown in [6, 4]. How-ever, when M can also be negative, it is unfortunate 10

that we cannot even use a weaker, auxiliary functionsumk(c) � v, where sumk(c) is the top-k sum of acell c, and the top-k sum is the sum of the �rst k val-ues in c when all the base cell values in c are sortedin value-descending order. This is because even whentop-k sum invalidates sumk(c) � v, adding remainingvalues in a cell may still validate sum(c) � v.However, we can use a simple weaker, antimono-tonic auxiliary function as follows to handle it,� p sum(c) � v, if p count(c) � k, where p sum(c) isthe sum of all the non-negative base cell values incell c, and p count(c) is the number of nonemptynon-negative base cells in cell c, and� sumk(c) � v, otherwise (i.e., p count(c) < k).Then, the methods discussed in sections 4 and 5,can be easily extended to this case, by keeping twoadditional counters, p sum(c) and p count(c), and asmall number of bins for negatives.4. Compute iceberg cubes with measures like max, min,count, and p sum, where p sum means the sum of allnonnegative base cell values in a cube.Since conditions like count(M) � v, max(M) �v, min(M) � v, and p sum(M) � v generateanti-monotonic cubes, we can use either a BUC-like method (such as [4]) or the H-Cubing methodintroduced here to compute it without seeking foran auxiliary function. Notice if the condition ischanged to max(M) � v, we can use a weaker, anti-monotonic auxiliary function min(c) > v since if acell c's minimum base cell value is no greater thanv, one cannot �nd in c or in its descendants whosemaximum base cell value can be less than or equal tov. Similarly, a condition min(M) � v can be testedby an auxiliary, anti-monotonic function, max(c) < v.5. Compute iceberg cubes having conjunctions ofmultiple conditions with di�erent measures.In this case, one can explore combined, strongeranti-monotonic constraints to reduce the portions oficeberg cubes that have to be computed. Since ouriceberg cube computation requires some parameters,such as v and k in the case of HAVING AVG(price) >=v AND COUNT(�) >= k, and those parameters maylikely be available only at \query time", one maywonder how the iceberg cube precomputation mayhelp? Our view is as follows. Since the computation ofa (background) high-dimensional cube is prohibitivelyexpensive, it is more realistic to precompute one ofits corresponding iceberg cubes by setting a set ofreasonably low bound parameters, and consider theaggregated cells below such low bound(s) as trivial.For example, one may precompute an iceberg cubecorresponding to some minimal average price and

minimal count and use the precomputed iceberg cubeto support most of interesting queries.6. Finally, one may ask, \can we e�ciently computeiceberg cubes with any complex measures?"Although we have worked out some methods fore�cient computation of iceberg cubes with severalcomplex measures, this by no means implies thaticeberg cubes with any complex measures can becomputed e�ciently. It seems there is no generalanswer to e�ciently compute iceberg cubes withholistic measures, such as median, mode, and rank.Even for some complex algebraic measures, such asstandard deviation and variance, more research isneeded to �nd easy to compute, not too weak, anti-monotonic functions in order to successfully performe�cient computation of such iceberg cubes.7.2 Related workSince the introduction of the concept of data cubes [8],e�cient computation of data cubes has been a themeof active research, with many interesting approachesproposed, such as [1, 10, 16, 14, 4]. As shown in [14, 4],computation of high dimensional, large data cubesare challenging due to the huge sizes of cuboids thatcould be generated by multi-dimensional group-bys.Thus, computing iceberg cubes rather than completecubes, proposed by [4], motivated by iceberg querycomputation [6], is a promising direction. [4] proposedan e�cient cube computationmethod BUC, which hasbeen shown highly e�cient for computing not onlyiceberg cubes but also complete cubes. However, forcomputing average iceberg cubes, [4] does not suggestan e�ective method. Thus, this study extends thescope of computation to iceberg cubes with complexmeasures, including the ones discussed above.Our proposal of computing iceberg cubes with com-plex measure has also been in
uenced by the previ-ous works on constraint-based mining of associationrules, such as [15, 12, 3, 11, 7, 13]. [12] introducedthe notion of anti-monotonicity and studied methodsfor e�ective push of anti-monotonic constraints intoassociation mining. Unfortunately, the complex mea-sures studied here are not anti-monotonic. A recentstudy by [13] introduced a new class of constrains,called convertible constraints, that includes the con-straint \avg(c) � v" for association mining. However,the method proposed there, i.e., evaluation of aver-age in a value-sorted order, is di�cult to realize ina multi-dimensional data cube space. Therefore, webelieve our top-k average is a novel solution to thisproblem, and its e�ectiveness is demonstrated in ourperformance study.The major algorithm proposed here for e�cientcomputation of iceberg cubes with complex mea- 11

sures is Top-k H-Cubing, which is based on a hyper-tree structure, H-tree. The H-tree structure is in
u-enced by the FP-tree structure, proposed in [9]. How-ever, besides some structure di�erences between thetwo, a crucial di�erence is at the computation pro-cess: FP-growth mines frequent patterns by recur-sively constructing and mining conditional (or pro-jected) databases; whereas Top-k H-Cubing uses oneH-tree structure in the entire computation, whichsaves both space and time. Our experiments showthat due to recursive construction of conditionalFP-trees, the FP-growth method has weaker perfor-mance than both Top-k BUC and Top-k H-Cubing atcomputing iceberg cubes in most cases.The best algorithm that Top-k H-Cubing has beencompeting with is Top-k BUC, a revised BUC [4] forcomputing top-k average. A performance analysishas been reported in section 6. Based on ourview, the major strength of Top-k H-Cubing is at (1)compressed database: H-tree structure, (2) pointeradjustment instead of partitioning and tuple sorting,and (3) the exploration of shared precomputation ofquant info.Finally, we should note that this study did notcompare Top-k H-Cubing with the multiway arrayaggregation method developed by Zhao et al. [16].This is because, as pointed out in [4], the multiwayarray aggregation method cannot take advantageof iceberg cube constraints in computation, and itencounters di�culties for computing iceberg cubeswith high dimensionality. However, when the cubecontains only a small number of dimensions, it couldstill be a rival of Top-k H-Cubing in performanceunless some integrated processing is considered. Morestudy is needed in this direction.8 ConclusionsIn this paper, we have studied issues on e�cient com-putation of iceberg cubes with some popularly en-countered complex measures and proposed some ef-�cient computation methods. It contributes to ice-berg cube computation in two aspects: (1) a method-ology is developed that derives a weaker but anti-monotonic condition for testing and pruning searchspace, especially, it shows that the top-k averagepruning is an e�ective technique for computing aver-age iceberg cubes; and (2) instead of simple extensionof two previously studied methods, Apriori and BUC,to Top-k Apriori and Top-k BUC, an interesting hyper-tree structure, called H-tree, is designed and a newiceberg cubing method, Top-k H-Cubing, is developed.Our performance study shows that Top-k H-Cubing isa promising approach for e�cient computation of ice-berg cubes.

Although interesting progress has been made for ef-�cient computation of iceberg cubes with some com-plex measures, as shown in section 7, e�cient com-putation of iceberg cubes with some other complexmeasures is still an open problem. Moreover, the ap-plication of the H-tree structure and its computationmethod to other OLAP and data mining tasks maydeserve further attention.References[1] S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta,J. F. Naughton, R. Ramakrishnan, and S. Sarawagi.On the computation of multidimensional aggregates.VLDB'96.[2] R. Agrawal and R. Srikant. Fast algorithms formining association rules. VLDB'94.[3] R. J. Bayardo, R. Agrawal, and D. Gunopulos.Constraint-based rule mining on large, dense datasets. ICDE'99.[4] K. Beyer and R. Ramakrishnan. Bottom-up compu-tation of sparse and iceberg cubes. SIGMOD'99.[5] S. Chaudhuri and U. Dayal. An overview of datawarehousing and OLAP technology. ACM SIGMODRecord, 26:65{74, 1997.[6] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Mot-wani, and J. D. Ullman. Computing iceberg queriese�ciently. VLDB'98.[7] G. Grahne, L. Lakshmanan, and X. Wang. E�cientmining of constrained correlated sets. ICDE'00.[8] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman,D. Reichart, M. Venkatrao, F. Pellow, and H. Pira-hesh. Data cube: A relational aggregation operatorgeneralizing group-by, cross-tab and sub-totals. DataMining and Knowledge Discovery, 1:29{54, 1997.[9] J. Han, J. Pei, and Y. Yin. Mining frequent patternswithout candidate generation. SIGMOD'00.[10] V. Harinarayan, A. Rajaraman, and J. D. Ullman.Implementing data cubes e�ciently. SIGMOD'96.[11] L. V. S. Lakshmanan, R. Ng, J. Han, and A. Pang.Optimization of constrained frequent set queries with2-variable constraints. SIGMOD'99.[12] R. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang.Exploratory mining and pruning optimizations ofconstrained associations rules. SIGMOD'98.[13] J. Pei and J. Han. Can we push more constraints intofrequent pattern mining? KDD'00.[14] K. Ross and D. Srivastava. Fast computation ofsparse datacubes. VLDB'97.[15] R. Srikant, Q. Vu, and R. Agrawal. Mining associa-tion rules with item constraints. KDD'97.[16] Y. Zhao, P. M. Deshpande, and J. F. Naughton. Anarray-based algorithm for simultaneous multidimen-sional aggregates. SIGMOD'97. 12

