
\sdm2001"2001/1/30page 1i i ii

i i ii

HierarchicalClassi�cation of Real LifeDocumentsKe Wang�, Senqiang Zhouy, Yu Hez1 IntroductionTwo features have successfully made on-line information comprehensible and ac-cessible to people: hierarchically structured classes where topics are organized intoa hierarchy of increasing speci�city, and multi-classed documents where a docu-ment is classi�ed into all relevant classes. One such information source is Ya-hoo! where a document on Dance, for example, could be reached from bothArts : Performing Arts and Recreation topics in the topic hierarchy. The hi-erarchical feature of classes allows information to be examined and browsed atvarious topic speci�cities, and the multi-class feature allows information to be ac-cessed from all related topics. However, most document classi�cation techniquesassume that there is a 
at class space and each document has one class. The doc-uments classi�ed by such techniques are di�cult to browse and access by people,especially when there are many classes such as in Yahoo!. In this paper, we proposea new technique for automatic classi�cation of documents to address these real liferequirements. This raises several research issues. We use Yahoo! for explanation.1. Misclassi�cation is non-symmetric. Misclassifying an ads on topic Travel intotopic Outdoors is less erroneous than misclassifying it into topic Software.Indeed, the fact that many ads belong to both Travel and Outdoors, but fewbelong to both Travel and Software suggests that Travel is more similarto Outdoor than to Software. This feature becomes more prevailing in ahierarchical class space where some classes are more general than others.�Simon Fraser UniversityySimon Fraser UniversityzNational University of Singapore 1
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2 2. Documents are multi-classed. A document is typically classi�ed into all rel-evant classes. Traditional classi�cation fails to do so because each trainingdocument is allowed to be associated with only one class. One solution tomulti-classi�cation is to build a classi�er for each possible class and classifya new document by going through every classi�er. In a sparsed class spacewhere a document belongs to a small number of classes from a large classspace, this approach will construct too many classi�ers. Further, such an in-dependent classi�cation for each class does not take into account the similarityand hierarchical structure of classes as discussed above.3. The sparse class space. For k classes, a document could be associated poten-tially with any one of the 2k � 1 subsets of classes. Even not so large k willcreate a very sparse class space in multi-class classi�cation. This sparsenessmakes the learning task of automatic classi�cation di�cult because there maynot be enough training documents. However, unlike traditional classi�cation,classes share similarities as discussed above. Exploring such similarities opensup new channels to deal with the sparsity problem of the class space.In summary, classes of documents interact by being a generalization of oneanother and classifying common documents. Traditional classi�cation techniquesfail to recognize such interactions. In this paper, we regard classes as objects whosesimilarity can be measured, and the goal of classi�cation is to determine the set of\relevant" classes under this measure. We consider training documents of the formft1; : : : ; tnjC1; : : : ; Ckg, where t1; : : : ; tn are terms (keywords or phrases) from agiven universe and C1; : : : ; Ck are classes from a given class hierarchy. fC1; : : : ; Ckgis called a classset. Given a collection of training documents, our task is to constructa classi�er, consisting of rules of the form fti1 ; : : : ; tipg ! fCi1 ; : : : ; Ciqg, thatassigns a \good" classset fCi1; : : : ; Ciqg to a given new document. There are twocontributions:1. We de�ne a new notion of similarity between two classsets using the similarityof the documents belonging to these classsets. The intuition is that two class-sets are similar exactly when their classi�ed documents are similar. Indeed,if two classsets classify many documents in common, the chance that theyare similar topics is high, and misclassi�cation from one to the other is lesserroneous. We believe that this notion captures the essence of class similarity.2. We construct a classi�er using the proposed class similarity. A major challengeis the search of classi�cation rules of the form fti1 ; : : : ; tipg ! fCi1; : : : ; Ciqg,where tij are terms and Cij are classes, because there are many terms andclasses. Our approach is to apply the association rule mining [1, 2] to generatesuch rules. We present an algorithm for selecting association rules to constructa classi�er.We evaluate this method using the documents in ACM Digital Library andYahoo!.
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32 Related workWith few exceptions, most classi�cation systems assume that all classes are at a 
atlevel and each document is labeled by one class [5, 6, 9]. Recently, hierarchicallystructured classes were examined in [3, 4, 7] where classes are organized into ahierarchy of increasing speci�city and a document is labeled by one class in thehierarchy. Though a document belonging to a child class is automatically consideredas belonging to a parent class, a document is not allowed to belong to two classesnot on a generalization path in the hierarchy, like Arts : Performing Arts andRecreation in Yahoo!.Related to multi-classi�cation of documents is the problem of transformingsource terms to target terms for a collection of documents [8]. Each training doc-ument is a pair < s; t > where s is a set of source terms and t is a set of targetterms. The goal of the transformation is �nding the transformation matrix fromsource terms to target terms that minimizes the total error for a collection of doc-uments. In our terminology, target terms correspond to classes of a document andthe transformation matrix corresponds to a classi�er. [8] solves this problem asthe Linear Least Squares Fit that performs the transformation using the standardsingular value decomposition. That approach does not address the similarity andhierarchical nature of target terms. Also, the singular value decomposition is com-putationally expensive, in order N2 � k3, where N is the number of terms anddocuments and k is the number of terms. For ACM Digital Library, N and k couldbe tens of thousands or even more.The extended kNN [9] returns the set of classes of the k training documentsnearest to the given document as the relevant classes. We will compare our methodwith kNN. Some classi�ers such as decision tree [5] return a class distribution fora given document, in the form of the probability of each class. However, theseclassi�ers do not consider the similarity of classes and the hierarchical structure ofthe class space.3 A new class similarityWe measure the similarity of two classsets by the similarity of the training doc-uments belonging to them. Let us describe this idea formally. Consider a doc-ument d belonging to k classes C1; : : : ; Ck, or simply belonging to the classsetCS = fC1; : : : ; Ckg. Clearly, d also belongs to the classes that are more \general"than Ci, 1 � i � k. These general classes are the ancestors of Ci in the classhierarchy. Let Anc(CS) denote the set of classes in CS plus their ancestors.De�nition 1. Consider two classsets CS1 and CS2. We say that CS1 is moregeneral than CS2 if Anc(CS1) � Anc(CS2). We say that a document d is coveredby a classset CS if CS is more general than the classset of d. The coverage of CS,denoted by Cover(CS), is the set of all documents covered by CS.For example, if Dance is a parent of Fast Dance, fDanceg is more generalthan fFast Dance;Musicg because Anc(fDanceg) � Anc(fFast Dance;Musicg).
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4The following equivalence holds (we omit the straightforward proof):Lemma 2. Consider a classset CS and a document d with classset CSd. Thefollowing are equivalent: (1) d 2 Cover(CS); (2) CS � Anc(CSd); (3) Anc(CS) �Anc(CSd).Lemma 3. Cover(CS1) \Cover(CS2) = Cover(CS1 [CS2).Proof: Let d 2 Cover(CS1)\Cover(CS2). From Lemma 2, CS1 � Anc(CSd)and CS2 � Anc(CSd), where CSd denotes the classset of d, therefore, CS1[CS2 �Anc(CSd). From Lemma 2, this implies that d 2 Cover(CS1 [ CS2). This showsthat Cover(CS1) \Cover(CS2) � Cover(CS1 [CS2). To show the other contain-ment, let d 2 Cover(CS1 [ CS2). From Lemma 2, CS1 [ CS2 � Anc(CSd), andthus, CSi � Anc(CSd), i = 1; 2. Then, from Lemma 2, d is in Cover(CSi).The dissimilarity of two classsets CS1 and CS2 is de�ned as the normalizeddi�erence of their coverages:E(CS1; CS2) = jCover(CS2) �Cover(CS1)j+ jCover(CS1)� Cover(CS2)jjCover(CS1) [Cover(CS2)j (1)jxj denotes the number of elements in a set x. E(CS1; CS2) is in the range [0,1].The similarity of CS1 and CS2 is de�ned as 1�E(CS1; CS2). From Lemma 3, werewrite de�nition (1) asE(CS1; CS2) = jCover(CS1)j+ jCover(CS2)j � 2jCover(CS1 [CS2)jjCover(CS1)j+ jCover(CS2)j � jCover(CS1 [CS2)j (2)Therefore, to compute E(CS1; CS2), we need only to compute the coverage ofCS1; CS2; CS1 [CS2.We say that a document d matches a rule T ! CS, or vice versa, if d containsall the terms in T . Let Match(T ! CS) denote the set of training documents thatmatch T ! CS. The generalized con�dence of T ! CS is de�ned asConfg(T ! CS) = Match(T ! CS) ��dE(CSd; CS)Match(T ! CS) (3)where d ranges over the elements of Match(T ! CS), and CSd is the classset ofd. Intuitively, Confg(T ! CS) measures the average similarity between CS andthe classsets of the documents that match T ! CS. If E(CS1; CS2) is binary,i.e., 1 or 0, �dE(CSd; CS) degenerates to the number of training documents thatmatch T ! CS but do not belong to CS, and Confg(T ! CS) degenerates to thestandard con�dence [1]. In this sense, Confg(T ! CS) is a generalization of thestandard con�dence in the presence of class similarity.Example 1. Consider the database of 6 documents d1; : : : ; d6 and the class hier-archy in Figure 1. We write BC to mean classset fB;Cg, and similarly for theothers. Cover(B) = fd1; d2; d3; d4; d6g because B is contained in Anc(CSdi) fori = 1; 2; 3; 4; 6 (from Lemma 2). Figure 1(c) lists the coverage of some classsets.For example, E(B;C) is computed as follows:
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5
A

B C

D E(a) Class hierarchyid items classsetd1 k1 Bd2 k1; k2 BCd3 k1; k2 BCd4 k2 CDd5 k3 Cd6 k3 CE(b) Documents CS Cover(CS)B d1; d2; d3; d4; d6BC d2; d3; d4; d6C d2; d3; d4; d5; d6CD d4CE d6(c) CoverageFigure 1. An exampleCover(B) �Cover(C) = fd1; d2; d3; d4; d6g � fd2; d3; d4; d5; d6g = fd1gCover(C) �Cover(B) = fd2; d3; d4; d5; d6g � fd1; d2; d3; d4; d6g = fd5gCover(B) [Cover(C) = fd1; d2; d3; d4; d5; d6gE(B;C) = jfd1gj+ jfd5gjjfd1; d2; d3; d4; d5; d6gj = 26 = 0:33Table 1 shows the dissimilarity between some classsets.Confg(k1 ! B) is computed as follows. k1 is found in d1; d2; d3, 1 with noerror and 2 with error E(B;BC). So we haveConfg(k1 ! B) = 3� 2�E(B;BC)3 = 3� 2� 0:23 = 0:87Similarly, Confg(k2 ! BC) = 3� E(BC;CD)3 = 3� 0:753 = 0:75Confg(k3 ! C) = 2� E(CE;C)2 = 2� 0:82 = 0:6Confg(k2 ! C) = 3� 2�E(BC;C)�E(CD;C)3 = 3� 2� 0:2� 0:83 = 0:6
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6 B BC C CD CEB 0 0.2 0.33 0.8 0.8BC 0.2 0 0.2 0.75 0.75C 0.33 0.2 0 0.8 0.8CD 0.8 0.75 0.8 0 1CE 0.8 0.75 0.8 1 0Table 1. E(CS1; CS2)4 Construction of classi�ersThere are four steps in constructing a classi�er. First, we generate association rulesof the form T ! CS, where T is a set of terms and CS is a classset, that satisfythe user-speci�ed minimum support and minimum con�dence, as in [1, 2]. Second,we rank rules to determine the classi�cation rule of a document. Third, we removethe rules that incorrectly classify many training documents. Fourth, we cut o� theranked list to minimize the overall classi�cation error. Let us explain each step indetails.4.1 Step 1: Find association rulesWe generate all association rules of the form T ! CS that satisfy some user-speci�ed minimum support and minimum con�dence. The algorithm is basicallythat of [2]. There are several di�erences.First, each frequent k-itemset ([2]'s terminology), k > 1, contains at least oneterm and at least one class. Each such frequent itemset TCS represents a ruleT ! CS, where T is a set of terms and CS is a classset. For k > 2, every frequentk-itemset of this form can be constructed using two frequent (k � 1)-itemsets ofthe same form, like in the Apriori [2], adding either one term in T or one class inCS. This restricted form reduces substantially the number of itemsets generated.Second, we use the generalized con�dence of rule T ! CS as in de�ned by Equation3, not the standard con�dence in [2]. E(CS;CSd) in Equation 3 is not available fromfrequent itemsets. We need two database scans to compute generalized con�denceof all rules.1. In the �rst scan, we compute jCover(CS)j forCS, where CS is either a classsetCSd appearing in some training documents, or a classset CSr appearing insome rules found, or CSd [CSr . In particular, for each document d scanned,we increment jCover(CS)j for CS if CS � Anc(CSd), where CSd is theclassset of d. Then, we compute E(CSd; CSr) based on Equation (1) forclassset CSd of training documents d and classset CSr in rules r found.
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72. In the second scan, we compute Confg(T ! CS) for every rule T ! CSgenerated. In particular, for each training document d, we �nd all matchingrules T ! CS, i.e., T � d, increment Match(T ! CS) and add E(CSd; CS)to �dE(CSd; CS). At the end of the scan, Confg(T ! CS) is computed byEquation (3).4.2 Step 2: rank the rulesA document could match more than one rule, one of which is chosen to classify thedocument. We propose the most-con�dent-�rst (MCF) principle to determine theclassi�cation rule of each document: a document is classi�ed by the matching rulethat has the highest generalized con�dence (breaking a tie arbitrarily). If we rankall rules by generalized con�dence, the MCF principle says that the �rst matchingrule in the ranked list is chosen as the classi�cation rule for a document. Thegeneralized con�dence of a rule T ! CS measures the average similarity betweenCS and the classsets of the documents matched by the rule. By choosing thematching rule with highest generalized con�dence, a document is assigned the mostsimilar classset among all the matching rules. Under the MCF principle, among allthe rules T ! CS with the same LHS T , only the rule with the highest generalizedcon�dence will actually classify some documents, therefore, needs to be kept.4.3 Step 3: remove rules of low accuracyLet D be the set of training documents classi�ed by rule T ! CS under the MCFprinciple. If D is non-empty, the accuracy of T ! CS is de�ned asAccu(T ! CS) = jDj �Error(T ! CS)jDj (4)where Error(T ! CS) is the error of T ! CS de�ned asError(T ! CS) = �d2DE(CSd; CS) (5)The accuracy of all rules can be computed by one scan of the documents, given thatall errors E(CSd; CS) were computed in Step 1. We remove all rules with accuracybelow a certain threshold because they contribute negatively to the overall accuracy.Note that Confg(T ! CS) is de�ned with respect to all documents that match therule, whereas Accu(T ! CS) is de�ned with respect to the documents classi�ed bythe rule under the MCF principle.Example 2. Consider the database in Example 1 and the error in Table 1. Letthe minimum support be 2/6. In Step 1, the following rules above the minimumsupport are generated (we do not specify minimum con�dence), ranked by generalizedcon�dence:r1 : k1 ! B (match d1; d2; d3, confg = 0:87)r2 : k2 ! BC (match d2; d3; d4, confg = 0:75)r3 : k3 ! C (match d5; d6, confg = 0:60)r4 : k2 ! C (match d2; d3; d4, confg = 0:60)
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8 let r1; : : : ; rm be the remaining rules after Step 3, sorted by Confg(ri)recompute Error(ri) for 1 � i � m/* compute the cuto� point */PrefixError(ri) = 0foreach i = 1 to m doPrefixError(ri) = PrefixError(ri�1) +Error(ri)let Unclassifed(ri) be the set of training documents not classi�ed by r1; : : : ; rilet DefaultClass(ri) be the classset CS that minimizes�d2Unclassified(ri)E(CS;CSd)DefaultError(ri) = �d2Unclassified(ri)E(DefaultClass(ri); CSd)�nd the smallest k that minimizes PrefixError(rk) +DefaultError(rk)return pre�x r1; : : : ; rk and default class DefaultClass(rk )Table 2. Step 4Confg is computed as in Example 1. In Step 2, we apply the MCF principle todetermine the classi�cation rule for each training document:r1 : k1 ! B (classify d1; d2; d3, Accu = 0:87)r2 : k2 ! BC (classify d4, Accu = 0:25)r3 : k3 ! C (classify d5; d6, Accu = 0:60)r4 : k2 ! C (classify no document )In Step 3, we compute the accuracy of rules. Accu(r1) = Confg(r1) = 0:87. r2classi�es only d4, so Accu(r2) = 1�E(BC;CD)1 = 0:25. r3 classi�es all documents itmatches, so Accu(r3) = Confg(r3) = 0:60. r4 has no turn to classify any document.Suppose that we set the threshold of accuracy at 0.5, r2 is removed, and r4 nowclassi�es d4.4.4 Step 4: cut o� the ranked listFinally, we cut o� the ranked list of remaining rules to minimize the cuto� error. Letr1; : : : ; rm be the ranked list of remaining rules. Suppose that we cut o� the list afterthe �rst i rules, r1; : : : ; ri. The cuto� error is PrefixError(ri)+DefaultError(ri).PrefixError(ri) is the sum of the rule error Error(rj) for all rules rj , 1 � j � i.DefaultError(ri) is the error caused by assigning the default classset to all thetraining documents not classi�ed by any rule rj, 1 � j � i. The default classset ischosen to minimize DefaultError(ri). Table 2 shows Step 4. Since the rule errorError(rj) may have been changed by removing rules in Step 3, In Table 2, we �rstcompute the rule error as in Step 3.Example 3. We continue with Example 2. After removing r2, the error of theremaining rules is computed as follows
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9Error(r1) = E(B;CSd1 ) + E(B;CSd2) +E(B;CSd3 )= E(B;B) +E(B;BC) + E(B;BC) = 0:4Error(r3) = E(C;CSd5) +E(C;CSd6) = E(C;C) + E(C;CE) = 0:8Error(r4) = E(C;CSd4) = E(C;CD) = 0:8In Step 4, we determine the cuto� point of the remaining rules < r1; r3; r4 >.For the shortest pre�x <>, the default classset is BC (of d2), which has the mini-mum error of 1.9. This is shown in the �rst row of Table 3. For pre�x < r1 >, thecuto� error is the sum of Error(r1) and the default error for unclassi�ed documentsd4; d5; d6. The default classset is C (of d5), which gives the minimum default error,E(C;CD) + E(C;CE) = 1:6. Thus, the cuto� error for < r1 > is 0:4 + 1:6 = 2:0,as shown in the second row of Table 3. For pre�x < r1; r3 >, the cuto� error isError(r1) + Error(r3) plus the default error for unclassi�ed d4. In this case thedefault classset is the classset of d4, CD, with the default error of 0. So the cuto�error for < r1; r3 > is 1.2, shown in the third row of Table 3. At this point, since thedefault error is 0, the cuto� error cannot be reduced by considering longer pre�xes.Therefore, < r1; r3 > is the shortest pre�x that has the minimum cuto� error.If we do not remove r2 in Step 3. The error of each rule in < r1; r2; r3; r4 >is Error(r1) = E(B;CSd1 ) + E(B;CSd2) +E(B;CSd3 ) = 0:4Error(r2) = E(BC;CSd4) = E(BC;CD) = 0:75Error(r3) = E(C;CSd5) +E(C;CSd6) = E(C;C) + E(C;CE) = 0:8Error(r4) = 0Table 4 shows the computation of cuto� errors. In this case, the empty pre�x <>with the default classset B gives the minimum cuto� error, 1.9. This is larger thanthat of the classi�er < r1; r3 > found earlier.5 ExperimentsWe evaluate the e�ectiveness of the proposed method using the IBM Patent dataand ACM Digital Library. For comparison, most traditional classi�cation methodsdeal with data in the form of a table or assumes that a document belongs to oneclass. Such methods cannot work on the multi-classed documents here. We compareour method, denoted Coverage, with two methods, Con�dence and kNN. Con�denceis the same as Coverage except that it treats each classset as a new class in a 
atclass space, thus, ignoring the similarity of classset. This method ranks rules by thetraditional con�dence. Comparison with Con�dence will reveal the e�ectiveness ofthe proposed similarity of classsets. kNN is the kNN extended with feature selection,which is highly competitive even compared with sophisiticated methods [9]. Given anew document, kNN uses the classes of the k nearest training documents to predictthe classset of the new document. The distance of these documents is used as aweight for their classes. One parameter of kNN is the feature threshold used by thefeature selection. Another parameter of kNN is the cuto� threshold of class list. ThekNN returns a list of ranked classes (by weight). We select the top classes that are
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10< r1; : : : ; ri > Error(ri) unclassi�ed doc. default classset default error cuto� error<> 0 d1; : : : ; d6 BC 1.9 1.9< r1 > 0.4 d4; d5; d6 C 1.6 2.0< r1; r3 > 0.8 d4 CD 0.0 1.2Table 3. The cuto� error for each pre�x of < r1; r3; r4 >< r1; : : : ; ri > Error(ri) unclassi�ed doc. default classset default error cuto� error<> 0 d1; : : : ; d6 BC 1.9 1.9< r1 > 0.4 d4; d5; d6 C 1.6 2.0< r1; r2 > 0.75 d5; d6 C 0.8 1.95< r1; r2; r3 > 0.8 0 1.95Table 4. The cuto� error for each pre�x of < r1; r2; r3; r4 >within the p weight percentile. These are the classes on the top of the list whosetotal weight is equal to p percentage of the total weight of the whole list. For allmethods, the error on a testing document is measured by Equation (1). All resultsare the average of the 5-fold cross-validation.5.1 The data setsThe IBM Patent data set (http://www.patents.ibm.com/patlist?xcl=0/). Thisdatabase contains patent documents categorized by branches and sub-branches. Weuse branch 451 (Abrading) with 39 sub-branches, and branch 051 (Abrasive toolmaking process, material, or composition) with 14 sub-branches. For each patentdocument, we use terms only in Title, Inventor, Abstract and Current class. Aclass has the form of branch/sub-branch. For example, 451/430 denotes the classcorresponding to branch 451 and sub-branch 430. Most documents are associatedwith one class, and the rest are associated with two or more classes.The ACM data set (http://www.acm.org/dl/toc.html). This data set main-tains a 4-level hierarchical classi�cation of computing related papers. We use level-1and level-2 topics as the class hierarchy and add level-3 and level-4 topics as termsto documents. Each document is associated with the set of level-1 and level-2 topicsof the document. We remove the documents whose classsets appear in less than 15documents.Table 5 shows some statistics of the two data sets after the above processing.The partitioning of training documents and testing documents is determined by the5-fold cross validation.
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11ACM IBM PatentDocuments 15981 4974Classsets 288 191classes 40 21terms 9590 14991level of class hierarchy 3 3average size of documents 10.80 45average size of classsets 1.86 1.55training documents 12784 3979testing documents 3197 995Table 5. The statistics of the processed data sets5.2 The result on IBM Patent data setFigure 2 shows the classi�cation error over the 995 testing documents. For example,the error of 220 means that the average error of classifying each of the 995 testingdocuments is 220/995=0.22, which is the di�erence of the observed classset and thepredicted classset, or the di�erence of the documents belonging to these classsets.On the left side is the error of Coverage and Con�dence. The x-axis denotes the min-imum support for mining association rules. Di�erent �gures correspond to di�erentaccuracy thresholds for selecting rules in Step 3. On the right side is the error ofkNN. The x-axis denotes the parameter k. Di�erent �gures correspond to di�erentfeature thresholds. Di�erent curves correspond to di�erent cuto� thresholds of classlist. Several observations follow.The error. Coverage performs signi�cantly better than Con�dence, i.e., reduc-ing the error up to 67%. Two factors contribute to this di�erence. First, Coveragesearches for all rules determining a subset of the classset in a training document,but Con�dence does not because it treats each classset in the training documentsas a new class. As a result, Con�dence generates few rules that satisfy the givenminimum support, which can be seen from Figure 3, and classi�cation often is doneby the default rule. Another reason is that Con�dence ignores the similarity ofclasses, thus, makes no attempt to assign a document to a more similar class in thecase of misclassi�cation. The experiment also shows that the error of Coverage issensitive to the minimum support, but not to the accuracy threshold. Using a smallminimum support, Coverage is about 10% to 30% better than the best kNN result.The size of classi�er. On the left side of Figure 3 is the size of the classi�ersconstructed by Coverage and Con�dence. For both methods, the minimum supportand the accuracy threshold a�ects the size. The experiment suggests that minimumsupport of 1% and accuracy threshold of 2% give a classi�er that is both accurateand small.The execution time. As shown on the right side of Figure 3, Coverage takeslonger time than Con�dence due to computing the similarity between classsets. Theexperiments shows that the minimum support of 1% is good for both accuracy and
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12speed.5.3 The result on the ACM data setThe error on the ACM data set is shown in Figure 4. The error is measured over3197 testing documents. The comparison is consistent with that using the IBMPatent data. The best accuracy of Coverage is typically 30% to 50% higher than ofthat of kNN.6 ConclusionIn real life, the class space of documents is a speci�c-to-general hierarchy and adocument may belong to more than one class in the hierarchy. In this paper, anautomatic classi�cation of documents with this feature was proposed. In this set-ting, classes are no longer independent of each other in that they classify somedocuments in common, and those that classify more documents in common shouldbe considered as more similar to each other than those that classify few documentsin common. A notion of similarity of classsets based on the similarity of the doc-uments classi�ed by classsets was proposed to capture this reality. An algorithmfor constructing a classi�er based on this notion of class similarity was presented.Experiments on real life datasets show that the proposed method achieves muchhigher accuracy than traditional classi�ers.
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