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Abstract — Temporal data are time-critical in that the 
snapshot at each timestamp must be made available to 
researchers in a timely fashion. However, due to the limited 
data, each snapshot likely has a skewed distribution on 
sensitive values, which renders classical anonymization 
methods not possible. In this work, we propose the “reposition 
model” to allow a record to be published within a close 
proximity of original timestamp. We show that reposition over 
a small proximity of timestamp is sufficient for reducing the 
skewness of a snapshot, therefore, minimizing the impact on 
window queries. We formalize the optimal reposition problem 
and present a linear-time solution. The contribution of this  
work is that it enables classical methods on temporal data. 

I. INTRODUCTION 
Imagine that a publisher wants to publish some 

microdata table D that contains quasi-identifier attributes 
QI={Age, Sex} and the sensitive attribute (SA) Disease. 
Suppose that a data recipient Alice, called the adversary 
below, wants to infer Bob’s disease, knowing that Bob is a 
26-year-old male and has a record in D. Alice identifies the 
records in D that match Bob’s age and sex, and finds that 
90% of matching records have a common disease, from 
there, concludes that Bob has that disease with a high 
probability. To eliminate such “homogeneity attacks”, the l-
diversity principle [7] requires that all records sharing the 
same values on QI must contain at least l “well-represented” 
SA values. One instantiation of this principle used in [9] is 
that the maximum relative frequency of a SA value in an A-
group is ≤ 1/l. In this work, l-diversity refers to this 
instantiation although other instantiations exist [7].  

While most previous works dealt with transforming the 
original D into D’ to satisfy l-diversity, few has examined 
the case that such transformation does not exist. In fact, a l-
diversity transformation exists only if the maximum relative 
frequency of any SA value in the microdata D is ≤ 1/l. This 
condition is called eligibility in [9] and l-eligibility in this 
paper. If D has a skewed frequency distribution on SA, l-
eligibility will not be satisfied for a given l and no l-diverse 
transformation exists. As an example, suppose that H1N1 
has the relative frequency of 50%, SARS has the relative 
frequency of 10%, and each of the remaining 10 diseases 
has the relative frequency 4% in D. For any l>2, l-eligibility 
condition is not satisfied, thus, no l-diversity transformation 
is possible.  

A. Motivations 
In this paper, we consider temporal data of the form 

D[1], D[2], …, where each D[i] is the snapshot containing 
the records collected at the time instance i. Examples of 
temporal data include sensor data, Internet traffic, financial 
tickers, web logs, fraudulent credit card transaction 
detection, network intrusion detection, financial record 
auditing, and telephone call records, inpatient discharge 
data, criminal reports, and population based disease 
monitoring data. Temporal data possesses the following 
time critical characteristics: 

Timeliness: Each snapshot D[i] is collected and 
published at a fine resolution of time i. Thus, each D[i] has a 
small size, compared to data collected over a long period of 
time. For example, in tracking SARS cases, D[i] is collected 
and published daily because weekly or monthly collection 
does not provide detailed and timely information for SARS 
pattern analysis. Window queries: Temporal data is 
typically used to answer window queries for temporal 
pattern analysis [4]. A window query has the form Q∧[a,b], 
where Q is a usual query predicate and [a,b] is an ad hoc 
time interval.  Q∧[a,b] retrieves all records in ∪a≤i≤bD[i] that 
satisfy Q.  

These characteristics lead to the following dilemma on 
privacy preservation for data publishing. On one hand, 
publishing each D[i] separately implies that the adversary 
could launch an attack on each D[i] based on the knowledge 
about timestamp i. To prevent such attacks, each D[i] must 
satisfy l-diversity. On the other hand, following the law of 
large numbers, a small D[i] tends to have a skewed 
distribution on SA, even though their union ∪iD[i] has a 
balanced distribution. In this paper, “temporal skewness” 
refers to such skewness of each D[i] due to small data size. 
This property implies that each D[i] often does not satisfy l-
eligibility, thus, has no l-diverse transformation for a desired 
privacy level l. Our study on real life data sets confirmed 
these findings [13]. 

One solution is to generalize the time i as one additional 
attribute of the usual QI, essentially merging consecutive 
snapshots D[i] within a time interval. However, such 
generalized data does not meet the above requirements on 
timeliness and window queries because the fine resolution 
on time is lost. Another solution is to suppress some records 
in D[i] for high-frequency SA values until a desired l-
eligibility is satisfied. This approach will suppress many 
records since small D[i] is naturally skewed on SA.  
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Several recent works considered data stream publishing 
and incremental publishing/re-publication, but none of them 
addressed the above requirements. [6] considers 
anonymizing data streams through random perturbation and 
their method applies to numeric data. [3][5] adopts k-
anonymity to data streams whereas we consider l-diversity 
in order to prevent homogeneity attacks. [1][2][8][11] are 
concerned with correlation attacks arising from publishing a 
record in multiple timestamps. All these works require l-
eligibility and limit queries to a single snapshot at a time. To 
our knowledge, [14] is the only work dealing with skewed 
distribution of SA, but it does not consider temporal data. 
The t-closeness principle [15] measures privacy threat by 
the distribution distance on SA between an anonymity group 
and the original data. Under this principle, even if all 
records in the original data are associated with the same 
disease, there is no privacy threat because there is no 
distribution distance. The l-diversity principle considers this 
case a privacy breach. 

B. Contributions 
Our contributions are as follows.  
Temporal skewness We identify temporal skewness as 

a major challenge to privacy preservation in publishing 
temporal data for temporal analysis. Specifically, temporal 
skewness renders the traditional l-diversity transformation 
of D[i] non-existing for a desired privacy level l because the 
usually assumed l-eligibility is not satisfied.  

Reposition model We propose a reposition model as a 
way to restore l-eligibility D[i] so that existing solutions can 
be applied to D[i]. Our observation is that neighbouring 
snapshots D[i] and D[i+Δ] (with a small Δ) often have 
“complementary” distribution on SA values because 
temporal skewness is due to the small size of each snapshot, 
not the inherently unbalanced distribution of SA. By 
repositioning some records across nearby D[i] and D[i+Δ] 
that have “complementary” SA values, it is often possible to 
restore l-eligibility of D[i] and D[i+Δ]. 

Optimal reposition solution We formalize the optimal 
reposition problem with respect to a cost metric and a 
reposition window size, and we present a linear-time 
solution to this problem. Our evaluation on real life data sets 
shows that often a small reposition distance Δ and a small 
amount of record suppression is all that is required to obtain 
an optimal solution. This finding leads to two important 
results: (1) repositioned data retains high utility for window 
queries; (2) the optimal solution obtained for a given 
reposition window size is likely an optimal solution when 
the reposition window size is infinite.  

The novelty of this work is enabling existing solutions 
by restoring l-eligibility on D[i]. For example, by restoring 
l-eligibility of D[i], the bucketization scheme[9] and the 
optimal generalization/suppression scheme [12] can be 
applied to D[i]; the continuous publication and republication 
[1][2][8][11] can be applied to deal with temporal 
correlation of SA values. Note that these previous works 

cannot be directly applied to D[i] because they require l-
eligibility on D[i], which is violated. Our work enables 
these existing solutions by first restoring l-eligibility on D[i]. 

The rest of the paper is organized as follows. Section II 
defines our privacy model and cost metric. Section III 
formulates the reposition problem.  Section IV presents a 
relay model for reposition. Section V presents a linear-time 
optimal solution. Due to space limit, experimental 
evaluations are omitted, which can be found in [13]. Section 
VI concludes the paper. 

II. PRIVACY AND REPOSITION MODELS 
This section defines our privacy notion and reposition 

model. A temporal data D is a sequence D[1], D[2], …., 
where D[i] is the snapshot at timestamp i and each record in 
D[i] corresponds to an individual. As in [2][8], each 
individual has at most one record in the same D[i]. For a 
record r in D[i], r.TS denotes the timestamp of r, that is, 
r.TS=i. r.QI denotes the quasi-identifier attribute values and 
r.SA denotes the sensitive attribute value. |SA| denotes the 
number of distinct SA values in the domain of SA. We use 
D[i..j] to denote the subsequence D[i],D[i+1], …,D[j]. 

A. Privacy Model 
For a set of records T, |T| denotes the number of records 

in T. |T[s]| denotes the number of records for the SA value s 
in T, called the frequency of s in T. Level(T) denotes the 
maximum |T[s]| for any SA value s. An anonymized version 
T* consists of anonymity groups or A-groups. For example, 
A-groups can be produced by generalization [7] or 
bucketization [9].  We use the following notion of l-
diversity and l-eligibility used in [9].  

Definition 1 An A-group g satisfies l-diversity if for 
every SA value s, |g[s]|≤ |g|/l (that is, the frequency of s in g 
is ≤ |g|/l). T* satisfies l-diversity or is l-diverse if every A-
group g in T* satisfies l-diversity. T is l-eligible if Level(T) 
≤|T|/l; that is, the maximum frequency of any SA value in T 
is ≤|T|/l. � 

If T satisfies the l-eligibility condition, classical 
methods such as [7] and [9] can be applied to find an l-
diverse transformation T*. However, these works did not 
consider the case that T does not satisfy the l-eligibility 
condition,  thus, they cannot be applied to a snapshot D[i] 
that does not satisfy l-eligibility condition. 

B. Overview 
At each timestamp i, the snapshot D[i] arrives. Instead 

of publishing D[i], the publisher publishes an l-diverse 
version D’[i]. Over time, the recipient receives 
D’[1],…,D’[i] published so far, denoted by D’[1..i], and 
uses them to answer window queries. The problem is that 
D[i] is not necessarily l-eligible, thus, existing works fail to 
deal with such D[i]. To enable existing works, we focus on 
producing an l-eligible D’[i], and while doing so, 
minimizing the distortion to window queries. Prior to 
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publication, the l-eligible D’[1],…,D’[i] must be properly 
anonymized. In particular, to address the correlation of SA 
values of the individual in several snapshots, continuous 
publication or republication methods, such as [1][2][8][11], 
may be applied. The contribution of our work is enabling 
these great works by rendering D[i] into an l-eligible 
version.   

To transform D[i] into l-eligible D’[i], we make use of  
a reposition window for record reposition. For a window of 
size n, at the time instant i+w the window holds the w latest 
snapshots D[i+1],..., D[i+w], or denoted by D[i+1..i+w]. By 
repositioning records currently in the window, we want to 
transform  D[i+1..i+w] into D’[i+1..i+w] so that each D’[j] 
is l-eligible, i+1≤j≤i+w. At the next time instant i+w+1, the 
first snapshot D’[i+1] pops off the window and the next 
incoming snapshot D[i+w+1] joins the window at the right 
end. So the new window holds the old D’[i+2],..., D’[i+w], 
the new D[i+w+1]. Since D[i+w+1] is  not necessarily l-
eligible, reposition will  be performed on the new window. 
The popped D’[i+1] is l-eligible, therefore, can be processed 
by an existing method.  

The window size w represents the maximum delay of 
publication. Our study is that in most cases a record is 
repositioned over a small distance from its original 
timestamp in order to restore l-eligibility of D’[j]. This 
finding suggests that even if the window size is made 
infinite, the optimal solution would not be significantly 
better than that obtained under the constraint of a small 
reposition window size. Details are discussed in [13]. 

C. Cost Model 
Our reposition model involves two types of operations, 

reposition and suppression. Repositioning a record from 
D[i] to D[j] refers to moving a record from D[i] to D[j]. Let 
D’[i] and D’[j] denote the resulting D[i] and D[j] after this 
reposition. For each record r in D’[j], r.TS’ is defined as j, 
i.e., the timestamp after the reposition. |r.TS−r.TS’| denotes 
the reposition distance of r. We use a cost function μ(d) to 
model the information loss of this distortion, where 
d=|r.TS−r.TS’|. Suppressing a record r refers to withholding 
r from publication. The cost of suppressing a record for a 
SA value s is denoted by βs.  

As a result of reposition and suppression, each 
transformed D’[i] consists of a partition (Pi,Si). Pi, the 
eligible set, is l-eligible and is for publication, and Si, the 
suppressed set, will not be published. A suppressed record r 
always belongs to the home suppressed set Si, where i=r.TS, 
independently of where it was suppressed from.  For 
example, if r was originally in D[i], was repositioned to 
D’[j], and then was suppressed from D’[j], r should belong 
to Si, not Sj. We use D’[i] and (Pi,Si) interchangeably. 

Suppose that D[L..U] is transformed to D’[L..U]. Recall 
that D[L..U] denotes the collection D[L],D[L+1],…,D[U]; 
similarly, D’[L..U]. Let us consider the cost of this 
transformation. Let D’[i] consists of (Pi, Si), L≤i≤U. For 
each record r in Pi, the reposition cost is μ(|r.TS-r.TS’|), and 

for each record r in Si, the suppression cost is βs, where s is 
the SA value of r. The information loss (IL) of a record r in 
D’[i] is defined by 
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Example 1  Figure 1 shows the computation of IL(D’[6..8]). 
Each record ri is denoted by ri:TS, where TS is the 
timestamp. P6={r1,r2}, S6={r0}, P7={r3,r4}, S7=∅, P8={r5,r6} 
and S8=∅. Following Equation (1), IL(r0)= βs, and IL(r5)= 
μ(8−7)=μ(1) because r5 is repositioned from D[7] to D[8]. 
All other records have zero cost. IL(D’[6..8])= IL(r0) + 
IL(r5)= βs + μ(1). �  

D[8]

IL(r0)=βs

D[6]

r3:7

D[7]

Pi

Si r0:6

r6: 8

IL(r5)= μ(|7-8|)

r1:6

r4:7

r5: 7

r2:6

 
Figure 1. Computing IL(D’[6..8]) 

We consider a cost function μ satisfying the following 
three conditions.  

(C1): μ(0)=0; 
(C2): μ(d1)>μ(d2) if d1> d2≥0; 
(C3): μ(d1+Δ)−μ(d1) ≥ μ(d2+Δ) – μ(d2), if d1>d2≥0 and Δ>0. 

(C1) and (C2) are natural. (C3) models the non-linear 
deterioration of utility as the reposition distance increases. 
(C3) says that if two records r1 and r2 have been previously 
repositioned the distances d1 and d2, respectively, d1 > d2, 
and if we further reposition r1 and r2 by the same additional 
distance Δ, the cost increase for r1 is no less than the cost 
increase for r2. μ is non-linear if ≥ in (C3) is replaced with 
>, and μ is linear if ≥ in (C3) is replaced with =. For 
example, μ(d)=d2 is a non-linear cost function and μ(d)=c×d 
is a linear cost function for any constant c.  

The cost metric in Equation (2) models the cost 
pertaining to transforming D[i] to an l-eligible D’[i], which 
does not include the information loss for transforming an l-
eligible D’[i] to an l-diverse D”[i].  We focus on the former 
because the latter is incurred by all classical methods. In a 
sense, we are interested in seeing how much extra cost must 
be paid to address the additional challenge brought up by 
temporal skewness.   

III. THE PROBLEM 
Without loss of generality, we assume that the 

reposition window holds D[1..w]. Suppose that we have an 
optimal solution D’[1],…,D’[w], denoted by D’[1..w], in 
the current window. Each D’[i], 1≤i≤w, consists of the pair 
(Pi, Si) of the eligible set and suppressed set, and the cost 
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IL(D’[1..w]) is minimized. For the very first window, we 
can compute D’[1..w] by the more expensive integer linear 
program (ILP) with variables representing the number of SA 
values repositioned. For subsequent windows, however, ILP 
is too slow because ILP problems in general are NP-hard.  

At the next time instant w+1, D’[1] is removed from the 
window and D[w+1] joins the window from the right end, 
so the new window holds D’[2..w] plus D[w+1]. D[w+1] is 
not necessarily l-eligible. Our task is to find a new solution 
D’[2],…,D’[w+1], denoted by D’[2..w+1], through 
reposition and suppression, such that IL(D’[2..w+1]) is 
minimized, and for 2≤i≤w+1, Pi is l-eligible. The notation in 
Table 1 will be used in the rest of the paper.  

Table 1. Notation 

 

 

 

 

 

To formalize the notion of optimality for our solution, 
we first motivate our reposition model used. Suppose that 
we can obtain an “initial solution” by suppressing a 
minimum number of records from D[w+1] until l-eligibility 
is achieved. This can be done by repeatedly suppressing a 
record for the most frequent sensitive value until l-eligibility 
is achieved. Let D’[w+1]=(Pw+1,Sw+1) denote the set of 
remaining records and the set of suppressed records. The 
initial solution D’[2..w+1] consists of (P2,S2),…,(Pw,Sw), 
(Pw+1, Sw+1), where (Pi, Si), 2≤i≤w, are inherited from the 
previous window. Note that Pi is l-eligible for 2≤i≤w+1. 

Starting with the above initial solution D’[2..w+1] in 
the current window,  we can reduce IL(D’[2..w+1]) while 
maintaining the l-eligibility of all Pi by repositioning records 
within the current window. In general, a record can be 
repositioned forward or backward in time. Under the 
assumption that the data is distributed randomly in time, a 
similar result would be expected if we consider reposition in 
only one direction. This observation prompts us to consider 
forward reposition where a record from D[i] is repositioned 
to D[j] with i≤j. Forward reposition models “publishing 
after the event”, which is more natural than the backward 
reposition that models “publishing before the event”. Since 
the first w-1 snapshots D’[2..w] in the current window were 
inherited from the optimal solution for the previous 
window, further reposition among D’[2..w] will not be 
effective.  Therefore, we are left with two possible types of 
forward reposition:   

Type I: Reposition of records from P[2..w] to Pw+1. 
Such reposition increases the reposition distance for the 
records in P[2..w] and impair the l-eligibility on P[2..w].  

Type II: Reposition of records from S[2..w+1] to Pw+1. 
This type “recycles” previously suppressed records in 

S[2..w+1] for publication in Pw+1, and preserves the 
established l-eligibility on P[2..w] because P[2..w] is 
untouched. By recycling a suppressed record, the 
suppression cost of the record should be revoked. If the 
revoked suppression cost exceeds the cost of repositioning 
the suppressed record, the overall IL can be reduced.  

Motivated by the above discussion, we consider a 
restricted form of reposition called recycle-reposition. 
Recycle-reposition refers to the forward reposition of 
records from Pi and Si in such a way that Pi[s] never changes 
for all SA values s and 2≤i≤w.  As an example, if we first 
reposition a suppressed record r from Si to Pj (thus, revoking 
the suppression) where i≤j<w+1, and then reposition a 
record r’ in Pj to Pw+1, where r and r’ have the same SA 
value, |Pj[s]| is unaffected because the incoming r and the 
outgoing r’ have the same SA value. Therefore, applied to 
the initial solution (P2,S2),…,(Pw,Sw), (Pw+1, Sw+1), recycle-
reposition will preserve the l-eligibility of P2,…,Pw and it is 
only necessary to check the l-eligibility of Pw+1.  

Definition 2 (The optimal reposition problem) For a 
given reposition window size w, we want to obtain a 
solution D’[2..w+1] from the initial solution through 
recycle-reposition such that IL(D’[2..w+1]) is minimized 
and Pw+1 is l-eligible. � 

IV. TIMESTAMP ORDER PRESERVATION 
A seemingly simple solution to the problem in 

Definition 2 is directly repositioning records from S[2..w+1] 
to Pw+1. Unfortunately, such reposition does not give an 
optimal solution because it violates “timestamp-order”. We 
say that P[2..w+1] is timestamp-order preserving if for any 
r1 in Pi[s] and r2  in Pj[s] (i.e., r1 and r2 have the same SA 
value s), i<j implies r1.TS ≤ r2.TS. 

Theorem 1 For a non-linear cost function μ, every optimal 
solution is timestamp-order preserving. For a linear cost 
function μ, there is some optimal solution that is timestamp-
order preserving.  

Proof: It is always possible to remove a violation of 
timestamp-order by swapping the pair of records that causes 
the violation. The swapping reduces the cost for a non-linear 
μ and preserves the cost for a linear μ.� 

In light of Theorem 1, we can focus on timestamp-order 
preserving P[2..w+1] without affecting optimality of 
solutions. This focus allows us to design a linear-time 
algorithm for finding an optimal solution. Observe that the 
initial solution P[2..w+1] described above is timestamp-
order preserving because P[2..w] comes from the optimal 
solution for the previous window. To further reduce the cost 
by recycle reposition, we want to reposition a suppressed 
record r0 in Si[s] to Pw+1, where i<w+1. To preserve the 
timestamp-order, we first reposition r0 to 

1i
P  and then 

reposition r1 “on behalf of r0”. Since r0 and r1 have the same 
SA value s, the frequency distribution of SA in

1i
P is 

(P2,S2),…,(Pw,Sw), (Pw+1, Sw+1) --- the initial solution.  
Si[s] --- the set of records in Si with SA=s. 
Pi[s] --- the set of records in Pi with SA=s. 
S[2..w+1]:s --- shorthand for S2[s],…,Sw+1[s]. 
P[2..w+1]:s --- shorthand for P2[s],…,Pw+1[s].  
Smax[s] --- the nonempty Si[s] with the largest i. 
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unchanged, so the l-eligibility of 
1i

P is not affected. The 
relay model below formalizes this type of reposition.   

The relay model Assume i<w+1. Let r0 be a 
(suppressed) record in Si[s]. First, we move r0 from Si to Pi. 
Let 

0i
P , …, 

ki
P  be the all Pj with nonempty Pj[s] such that 

i=i0 < …< ik=w+1. For 1≤p≤k, let rp-1 be the record in 

1−piP [s] having the largest TS. Note that all these records rp-

1 have the same SA value s. The relay of r0 is the sequence 
of repositions: 

k

k
i

rr
i

r
i

r
i PPPP ⎯→⎯⎯→⎯⎯→⎯⎯→⎯ −12

2

1

1

0

0
...              (3) 

Here, each step 
       PP p

p

p ii
r⎯⎯→⎯ −

−

1

1

                                (4) 

repositions rp-1 from 
1−piP  to 

piP . The above relay preserves 
the timestamp-order by repositioning the record in 

1−piP [s] 
with the largest TS. Moreover, it does not change the 
frequency distribution of SA in Pi, 2≤i≤w, since whenever a 
record is moved into Pi, a record for the same SA value is 
moved out of Pi. The gain of the relay of a record r=r0 is 
defined by  

)()( rrIG s ψβ −= .            (5) 

βs is the suppression cost of r that now is revoked. ψ(r) is 
the increase of reposition cost due to the reposition of all 
records rp-1  in Equation (4).  

∑
=

−−− −−−=
k

p
pppp TSriTSrir

1
111 )].().([)( μμψ .  (6) 

In each summed term, the two elements are the reposition 
cost of rp-1 before and after its reposition. Property (C2) and 
ip > ip-1 imply that each term in Equation (6) is positive.  

V. THE ALGORITHM 
We now present the complete algorithm for finding an 

optimal solution D’[2..w+1]. Starting from the initial 
solution D’[2..w+1] described in Section III, we greedily 
relay a set of suppressed records r from S[2..w+1] with the 
largest IG(r) to reduce IL(D’[2..w+1]). At the ith iteration, 
we relay a set of suppressed records Mi to raise Level(Pw+1) 
to the next level such that (1) l-eligibility of Pw+1 is 
preserved, (2) IG(Mi)>0, and (3) IG(Mi) is as large as 
possible. When this is not possible, we show that IG(∪Mi) 
is maximized. We apply two strategies alternately to find 
Mi. 

A. Two Strategies 
Strategy I: Level Preserving Reposition Strategy 

(LP-Reposition) This strategy greedily relays a set of 
records r with G(r)>0 from S[2..w+1] to Pw+1 without 
increasing Level(Pw+1). This strategy preserves l-eligibility 
of Pw+1 because it does not increase Level(Pw+1).  

Example 2 (LP-Reposition) In Figure 2, the initial solution 
is on the right and S[2..w+1] is on the left. The records in 

S[2..w+1] are grouped according to the SA values s1,…,s5. 
Records are written in the form r: (TS, IG), ordered by TS. 
Level(Pw+1)=2. To preserve Level(Pw+1), we can relay one 
record in S[2..w+1]:s4 and one record in S[2..w+1]:s5. 
S[2..w+1]:s4 contains one record r8 and S[2..w+1]:s4 
contains one record r9. Since IG(r8)>0 and IG(r8)> IG(r9), 
we relay r8 at Line 2, as highlighted. In the next iteration, we 
fail to relay any record with positive IG without increasing 
Level(Pw+1). At this point, LP-Reposition stops.� 

S[2..w+1]:s1

S[2..w+1]:s2

S[2..w+1]:s3

S[2..w+1]:s4

S[2..w+1]:s5

r1:(w+1, +3)
r2:(w+1, +3)
r3:(w+1, +3)
r4:(w+1, +3)

r5:(w+1, +3)
r6:(w-1, _ )

r7:(w, -2)

r8:(w, +1)

r9:(w-1, -3)

6 -
Sw+1  5 -

4 -
3 -
2 -

Pw+1 1 -

s1 s2 s3 s4 s5

6

3
2 2

1

l=4

Level      Records: r(TS, IG(r) )

 
Figure 2. Pw+1 after LP-Reposition 

Strategy II: Level Lifting Reposition Strategy (LL-
Reposition) This strategy further reduces IL by lifting Pw+1 
to the next level by relaying more than 1 records while 
preserving l-eligibility of Pw+1. We first calculate the 
minimum number of records to be repositioned into Pw+1, 
denoted as m. Assume Level(Pw+1)=i prior to applying this 
strategy. In m iterations, this strategy searches for m records 
from S[2..w+1] for relay. In each iteration, it relays the 
record r from S[2..w+1] having largest IG(r) and satisfying 
|Pw+1[r.SA]|≤i. M2 accumulates the records relayed. This 
strategy stops when either |M2|=m or no record can b 
relayed. 

r8:(w, +1)

S[2..w+1]:s1

S[2..w+1]:s2

S[2..w+1]:s3

S[2..w+1]:s4

S[2..w+1]:s5

r1:(w+1, +3)
r2:(w+1, +3)
r3:(w+1, +3)
r4:(w+1, +3)

r5:(w+1, +3)
r6:(w-1, _ )

r7:(w, -2)

r9:(w-1, -3)

6 -
Sw+1  5 -

4 -
3 -
2 -

Pw+1 1 -

s1 s2 s3 s4 s5

6

3 3
2

1

l=4

Records: r(TS, IG(r) )

 
Figure 3. Pw+1 after LL-Reposition 

Example 3 (LL-Reposition) Continue with Example 2. At 
the end of LP-Reposition, Level(Pw+1)=2 and Pw+1 contains 9 
records. To lift Level(Pw+1) to level 3 while satisfying 4-
eligibility, Pw+1 must contain at least 4×3 =12 records. So 
the minimum number of records that should be relayed into 
Pw+1 is m=12−|Pw+1|=3. To maintain Level(Pw+1)=3,  for each 
SA value si, the maximum number of records that can be 
relayed into Pw+1 is m(si)= 3−|Pw+1[si]|: m(s1)=1, m(s2)=1, 
m(s3)=1, m(s4)=1 and m(s5)=2. So the problem becomes 
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finding m=3 records to maximize their total IG under the 
maximum number constraint m(si) for each si. In our 
example, under the maximum number constraint m(si), our 
pick of m=3 records is {r1, r5, r7} with a positive total 
IG=3+3−2=4. After relaying these records, the resulting 
Pw+1 and Sw+1 are shown on the right side in Figure 3. � 

B. The Complete Algorithm 
The complete algorithm OptimalReposition is given in 

Figure 4. It starts with the initial solution and relays records 
in S[2..w+1] in multiple iterations. In each iteration, it 
applies LP-Reposition and LL-Reposition to lift Level(Pw+1) 
to the next level. To raise Pw+1 to the next level 
Level(Pw+1)+1 while preserving l-eligibility, the minimum 
number of records that should be relayed into Pw+1 is m 
=max{0,  (i+1)×l−|Pw+1|} because the minimum number of 
records for l-eligibility at level i+1 is (i+1)×l.  

 
Figure 4. The complete algorithm 

The iterative process stops when either |M2|<m or 
IG(M2)≤0, where M2 is the set of records relayed by LL-
reposition in the last iteration. This condition implies that 
LL-Reposition in the last iteration fails to lift Pw+1 to the 
next level with a positive IG(M2). In this case, no further 
LP-reposition can relay any record either, because any such 
records have been picked up by the last LL-reposition to 
increase either |M2| or IG(M2). Line 7 rolls back the relays 
performed by the last LL-Reposition call.  

Theorem 2 For the reposition window of size w, the work 
of OptimalReposition is bounded by σ×(w+|SA|), where σ is 
the number of suppressed records that are relayed in the 
current window. � 

Proof: The detail is in [13]. � 

Theorem 3 The OptimalReposition algorithm produces an 
optimal solution to the problem in Definition 2. 

Proof: The key reason that the greedy algorithm actually 
produces an optimal solution is that, at any step, if we relay 
a suppressed record r having a SA value s, the relay does not 
affect the chance of relaying any suppressed record r’ 

having a different SA value s’, in terms of preserving the l-
eligibility constraint on Pw+1, because |Pw+1[s’]| is unaffected 
by the relay of r. The detail is in [13]. � 

VI. CONCLUSION 
The time-criticalness of temporal data calls for the 

ability to anonymize sensitive values that have a more 
skewed frequency distribution. This challenges the classical 
methods that require the special l-eligibility condition. The 
contribution of this work is a novel method to restore the l-
eligibility on temporal data; thus, this work enables classical 
methods on temporal data. 
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Algorithm OptimalReposition 
1. Let (P2,S2),…,(Pw,Sw), (Pw+1, Sw+1) be the initial 

solution; 
2. Repeat 
3.       LP-Reposition ();    
4.       m=max{0, (i+1)×l−|Pw+1|}, where i=Level(Pw+1); 
5.       M2 = LL-Reposition (m) ;   
6. Until  (|M2|<m OR IG(M2)≤0); 
7. Roll back the relay of the records in M2; 


