Concurrent Discretization of Multiple Attributes

Ke Wang and Bing Liu

Department of Information Systems and Computer Science
National University of Singapore
{wangk liub}@iscs.nus.edu.sg

Abstract. Better decision trees can be learnt by merging continuous
values into intervals. Merging of values, however, could introduce incon-
sistencies to the data, or information loss. When it is desired to maintain
a certain consistency, interval mergings in one attribute could disable
those in another attribute. This interaction raises the issue of determin-
ing the order of mergings. We consider a globally greedy heuristic that
selects the “best” merging from all continuous attributes at each step.
We present an implementation of the heuristic in which the best merging
is determined in a time independent of the number of possible mergings.
Experiments show that intervals produced by the heuristic lead to im-
proved decision trees.

1 Introduction

1.1 Motivation

Continuous values, mainly reals and integers, are linearly ordered. Unlike discrete
values, there could be many continuous values and each appears only a few times
in the data. Directly applying induction algorithms designed for discrete values
to continuous values will generate too many rules with poor predictive power.
A common technique for handling continuous values is discretization, that is,
merging adjacent values into intervals if their distinction contributes little to the
structure of the problem. However, such mergings could introduce inconsistencies
to the data where two examples with the same attribute values have conflicting
classes, consequently, leaves little room for an induction algorithm to do its job.
On the other hand, when the inconsistency level is constrained, interval mergings
in different attributes are no longer independent of each other. Let us explain
using an example.

Ezample 1. Consider the data in Table 1(A) where the underlying concept for
Class star is

Age <40 A Salary > b0K — Class = star.

ChiMerge [Kerber:1992] starts with one interval per continuous value and re-
peatedly merges two adjacent intervals that are most similar in the attribute
being considered, measured by the smallest y? value of two adjacent intervals.
The merging process is stopped by a threshold on the y? value. If the threshold

is too small, similar intervals cannot be merged. If the threshold is too large,
an attribute, say Age, may be over-merged, which prevents other attributes, say
Salary, from being merged due to a consistency requirement. In particular, if all
ages were merged into one interval, to keep the data consistent, the intervals in
Salary at the best can be S1=[40K], S2=[50K], S3=[54K], S4=[57K,59K], as in

Table 1(B). ! These intervals give rise to the rules

Salary € S2 — Class = star
Salary € S4 — Class = star,

which clearly do not capture the underlying concept. A similar argument applies
if Salary is merged into one interval first.

A B C
Age|Salary| Class Age|Salary| Class AgelSalary| Class
33 | B0K star A S star Ao | S star
39 | B7K star A1 Sy star Ao | S star
40 | 59K star A1 Sy star Ao | S star
45 | 54K |non-star A1 | S3 |non-star A1 | So |non-star
35 | 40K |non-star A1 | S1 |non-star As | S1 |non-star

Table 1. A motivating example

Suppose we always merge the two adjacent intervals that have the smallest
x? value in the two attributes (rather than in the attribute being considered),
the following sequence of mergings can be produced:

step 1. Salary: [4OA 2 [50[&] [57[&] [59[]

step 2. Age: [33] 22 35] 20 39] &8 [40] { [45]
step 3. Salary: [29

3
K2 50K, 57K & [59K]
step 4. Salary: [A]4—(>J [50A 59[&]

step 5. Age: [33] Z¥ [35] 23 [39, 40] ? [45]
step 6. Age: [33,35] = [39, 40] 2 [45]

step 7. Age: [33,40] =3 [45]

40
40

where “—” links all adjacent intervals, and the y? value for two adjacent intervals
is written between them. For example, at step 3 intervals [50K] and [57K] are
merged into [50K,57K], at step 4 intervals [50K,57K] and [59K] are merged
into [H0K 59K], etc. Steps 4 and 7 give the final intervals for Salary and Age
because further mergings make the data inconsistent. Table 1(C) shows the data

! Note that we simplify the presentation by considering only observed values for the
boundary of an interval.

discretized by these final intervals, from which we can easily induce the correct
rules

Age € Ay A Salary € Sy — Class = star.

This example shows that at each step merging the best pair of adjacent intervals,
whatever attributes they come from, leads to better rules.

1.2 Main results

Given an inconsistency threshold, mergings of intervals are no longer indepen-
dent of each other. We propose a globally greedy heuristic that at each step
merges the “best” pair of intervals chosen from all continuous attributes, rather
than the attribute being considered. The idea is simple: given the limited tol-
erance of inconsistency, the best merging in all continuous attributes should be
considered first. We consider two goodness measures of mergings, the x? value
and the change in entropy. A distinctive feature of the global greediness is that
mergings in several attributes are concurrent, in the sense that mergings in at-
tribute A can be performed without completing all mergings in attribute B.

Two questions need to be answered. First, 1s it really a good idea to be
globally greedy when the goodness of mergings itself is only a heuristic. In other
words, can the quality of rules learnt really be improved by being globally greedy.
We conducted several experiments to answer this question.

The second question is: can the globally greedy heuristic be implemented
efficiently, especially for large datasets. At each step, a critical operation 1s to
find the best merging across all continuous attributes. It does not work to sort
all possible mergings by their goodness and perform mergings in the sorted order
because early mergings will affect the goodness of later ones. Scanning all pairs
of adjacent intervals for each merge is not acceptable because the merging is
performed frequently, in the worst case, equal to the number of distinct values.
We propose the Merge-tree to find the best merging in a time independent of
the number of intervals.

2 ConMerge Algorithm

The proposed algorithm, called ConMerge (for Concurrent Merger), consists of
an initialization step and a bottom-up merging process. In the initialization step,
we put each continuous value into its own interval. In the merging process, we re-
peatedly select the best pair of adjacent intervals from all continuous attributes
according to a goodness criterion. The selected pair are merged if doing so does
not exceed a user-specified inconsistency threshold. (By default, the inconsis-
tency in the original data is used, but can be overridden by a larger value.) If
the pair are not merged, the merging of this pair is excluded from further con-
sideration. The merging process is repeated until no more merging is possible.
This 1s described below.

Conceptual ConMerge:
Initialization:
sort observed values for each continuous attribute;
put each continuous value into its own interval;
Merging process:
while there are interval pairs to merge do
select the best interval pair from all continuous attributes;
if merging the pair does not exceed the inconsistency threshold
then merge the pair into one interval
else exclude the pair from further merging;

Several questions remain to be answered: (a) how is the inconsistency for-
mally defined, (b) what is a goodness criterion of mergings, (c) how is the above
algorithm implemented efficiently, (d) does it produce good intervals. We answer
(a) and (b) in the rest of this section. (¢) and (d) will be addressed in sections
on Implementation and Empirical Evaluation, respectively.

2.1 Incomnsistency rate

Inconsistency refers to conflicting class information for examples that agree on
all attributes. For a set of examples agreeing on all attributes, called a matching
pattern, the wnconsistency count is the number of examples in the set minus
the number of examples belonging to a majority class in the set. For example,
suppose that, for a set of n examples having the same matching pattern, ¢, ¢s, 3
are the numbers of examples for class 1, 2, and 3, where ¢; + ¢o +¢3 = n. If
c1 1s the largest, the inconsistency count for the matching pattern is ¢y + c3.
The inconsistency rate is the sum of all inconsistency counts (for all matching
patterns) divided by the total number of examples. The following monotonicity
of inconsistency rate implies that if two adjacent intervals cannot be merged
because of execeding the inconsistency threshold, they cannot be merged later.
(The proof is straightforward, so omitted.)

Theorem 1. Merging two adjacent intervals does not decrease the tnconsistency
rate of the data.

To check the inconsistency threshold, in the merging process we can keep
track of inconsistency counts for each interval. Each time two intervals I; and
I> are merged, we find inconsistency counts for the merged interval Iy U I by
sorting examples in I3 Ul on all attribute values. If the sorting was kept for each
of I and I, the sorting for /1 U Is can be obtained by merging the sorted lists
for I; and I5. Therefore, for each merging operation the inconsistency threshold
can be checked by a linear scan of examples in the two intervals merged.

In the presence of unknown values, the inconsistency count is defined as
follows. If example e has known values on attributes A;,..., Ap, e will match
the pattern that agrees with e on Ai,..., A, and has the largest number of
examples. The inconsistency rate is defined as before.

2.2 Merging criteria

We consider two goodness criteria for the merging of two intervals.

The x? value. The x? value of two adjacent intervals, first used in [Kerber:1992],
1s a statistic measure about how the class is independent of the choice of the two
intervals. A smaller x? value implies more independence, or equivalently, less
significance in distinguishing the two intervals. Therefore, the smaller the y?
value, the more similar the two intervals. The y? value of two adjacent intervals
1s computed by

2 _ m k (Czj_Ezj)2
X = Ei:12j:17p;lj

, where
m = 2 (the 2 intervals being compared)

k = number of classes

Cs; = number of examples in ¢th interval, jth class

R; = number of examples in ith interval = ZleAij

C; = number of examples in jth class = 272, C;;

N = total number of examples = E’»“Ilc’j

Fi; = expected frequency of Cj; = ﬁ’;,cj

The change in entropy. The entropy for the ith interval I; is defined as

Ciy
R,

ent(l;) = =X %’j logs

where Cj; and and R; are as before. The more mixed the classes in interval I;,
the larger ent(I;). Let Iy Ul denote the merged interval of I; and I2. The change
of the entropy after merging /; and I is given by

A=ent(l;Ul)— Rllj}& ent(ly) — ﬁent(h).

(Note that A is non-negative [Quinlan:1993].) A is the information gain by split-
ting the merged interval into the two original intervals, or equivalently, the infor-
mation loss by merging the two intervals. Therefore, merging the two intervals
with the minimum A minimizes the information loss or maximize the pureness
of classes. In the literature, entropy has only been used in the top-down splitting
approach.

Suppose that Iy, I1, Is, I3 are 4 adjacent intervals and that Iy and I, are
merged into a single interval. The count information Cj;,C;, R; for the new
interval I; U I5 can be computed from those for I; and I5. Therefore, the y?
value or A for the affected pairs (Ip, I; U I) and (I U Iz, I3) can be computed
efficiently. In the rest of the paper, the x? value and A are called goodness values.

3 Implementation

At each merging, a critical operation is finding the best pair of adjacent intervals
from all continuous attributes. The implementation will affect the efficiency of
the algorithm significantly. For large datasets, scanning all pairs of adjacent

goodness value attribute chain for Age

firstinterval in a pair ~ / . v
| / | goodness chain Y | \\ ~. -
\ / ‘
| / l
/
‘ L
A~
/ J o 2.0
{ [iok 50k] [57k 57k] [39 39] [4Ok 40k] [33 33] [35 35] [40,40] [45,45] [59k,59Kk]
node 1 /1 > node 2 node 3 node 4 node 5
/ ‘\
/ NI
/ O -7

NI -

\
first data entry attribute chain for Salary

Fig. 1. The leaf level of the Merge-tree

intervals for each merging operation adds one more order to the complexity. A
minimum requirement is that the best pair be found in a time independent of
the number of intervals. We propose a Merge-tree structure, a modified B-tree,
to achieve this goal. This is not “just an implementation issue”, but an issue
that determines how useful the method is in real-world applications.

The Merge-tree. We modify the B-tree into a structure, called the Merge-
tree, for finding the best merging at the cost of B-tree operations. Each data
entry represents a potential merging of two adjacent intervals. ([, I2) denotes
the data entry for the potential merging of Iy and I,. The search key value for
(I, I3) is the goodness value (either x? value or A of entropy) of merging Iy
and I5. As in the B-tree, all leaf nodes are chained in the ascending order of the
goodness value, called the goodness chain. The best merging is thus represented
by the first data entry on the goodness chain.

There are two differences from the B-tree. The first difference 1s that all data
entries for the same continuous attribute are doubly chained according to the
adjacency of intervals. This chain is called an attribute chain. After merging
intervals /; and Is into a larger interval Iy U I, by following the two attribute
chain pointers in (I3, I5), we can find the two affected data entries of the form
(Io, I) and (I, I3), which must be replaced with new data entries (I, I3 U I2)
and ([; U I, I3) because I} and I were replaced with the new I; U 2. The
second difference is that there are two kinds of data entries in the Merge-tree.
Initially, all data entries are unexamined. When a pair of adjacent intervals is
examined and no merging can be done (because of the inconsistency threshold),
the corresponding data entry becomes non-mergeable. Since there is no need to
search non-mergeable data entries, they will be deleted from the goodness chain.
However, a non-mergeable data entry (I, I3) is still kept on the attribute chain.
This is because the boundary of I; (or I3) needs to be updated if a merging of
the form (Iy, I;) (or (12, I3)) is performed.

Let us look at one example. Figure 1 shows leaf nodes for attributes Age and
Salary in Example 1 before any merging. (Non-leaf nodes are omitted for sim-
plicity.) Each node contains 2 data entries, though typically much more. Each
interval, except the first and last for an attribute, is involved in two data entries,

one for “left-merging” and one for “right-merging” . Instead of storing each inter-
val twice, only the first interval I; is stored at data entry (11, I2); I can be found
at data entry (Iz, I3) by following the attribute chain in (73, I). For example,
the first data entry represents the potential merging of intervals [50K,50K] and
[67K,57K], the second represents the potential merging of intervals [57K,57K]
and [59K,59K], etc.

Suppose that [50K,50K] and [57K,57K] (represented by the first data entry)
are merged into [50K,57K]. We need to delete the first data entry and update
affected data entries. The affected data entries are ([40K,40K],[50K,50K]) and
([b7K,57K],[69K,59K]) because intervals [50K,50K] and [57K,57K] are replaced
with the new interval [50K,57K]. By following the attribute chain in the first
data entry, we find these affected data entries, delete them, and insert new
data entries ([40K,40K],[50K,57K]) and ([50K,57K],[59K,59K]). The insertions
are guided by the new goodness values, thus, not necessarily going back to the
old places. Since deletion and insertion are standard B-tree operations, we omit
the detailed description.

The merging process stops when the Merge-tree becomes empty, at which
time all data entries are non-mergeable and are linked by attribute chains. Non-
mergeable entries contain the boundary information of all final intervals, which
will be used to discretize the testing data. The time for the merging process
is X;(c 4+ n;), where ¢ is the constant time for updating the Merge-tree for
each merging, as discussed above, and n; is the number of examples in the two
intervals for the ith merging.

4 Empirical Evaluation

To evaluate the effectiveness of the proposed algorithm, we compare three meth-
ods: (a) Release 8 of C4.5, denoted C4.5(R8), (b) ConMerge using y?, de-
noted ConMerge(x?), and (c) ConMerge using the change of entropy, denoted
ConMerge(A). Unlike all previous releases, C4.5(R8) improves the performance
on continuous values by employing an MDL-inspired penalty to adjust the gain of
a binary split of continuous values. [Quinlan:1996] shows that C4.5(R8) compares
favorably with other discretization methods. Therefore, we choose C4.5(R8) as
a benchmark.

The three methods are applied to 15 datasets chosen from the UCI reposi-
tory [Merz and Murphy:1996] based on the variety of involvement of continuous
attributes. For ConMerge, the procedure is as follows. We partition a dataset
into 10 runs using 10-fold cross validation. For each run, ConMerge is applied to
the training set to produce intervals, C4.5 is applied to the discretized training
set to produce the (pruned) decision tree, and the error rate is collected for the
testing set and averaged over 10 runs. In all cases C4.5 was run using the default
setting. The default inconsistency threshold is 0% because all original datasets
are consistent. The result is shown in Table 2. The numbers following + are
standard errors.

Dataset C4.5(R8) ConMerge(x?) ConMerge(A)
size error (%)|size error (%) [size error (%)
Anneal 66.8+2.3 |7.5+£0.5 |46.6+ 3.7|12.24+0.6 |66.3+2.0 |9.5+0.8
Australian 35.7+3.5 (14.8+£1.1|29.9+4.3 |15.9+1.2 |39.6x3.2 |15.5+1.3
Breast-c 28.24+1.7 5.6+0.8 [(18.5+1.3 |5.3+0.6 |22.24+1.2 (4.440.6
Bupa 43.8+4.0 [34.84+1.5 |41.7+ 2.2(39.1+£2.5 [48.0+£2.7 |35.6%+1.9
Cleve 77.9+3.8 |47.2+2.0(62.3+3.7 |48.2+2.2 |68.7+5.6 |47.9£+2.0
Crx 32.1+4.2 (15.0£1.2(39.2+3.6 |13.6+1.5|27.44+1.9 |14.0+1.5
Diabetes 46.6+4.4 |26.1£1.5(22.7+ 1.4|24.24+1.4|37.8+1.8 [24.04+1.3
German 142.846.3(26.24+0.7 (90.2+ 3.6({24.4+0.6({122.01+7.5|28.84+1.6
Heart 36.4+1.8 [21.8+1.6(15.9+ 1.1{18.1+2.1|20.1+6.7 |16.3+2.2
Hepatitis 18.2+1.7 |18.24+2.0 |5.4+0.5 |(16.94+2.1|8.6+2.2 |17.61+2.1
Iris 8.8+0.7 [4.7£2.0 |6.4+0.4 |4.7x1.7 |10.0+0.0 |5.3+2.4
Labor 5.9+0.9 |[22.3+£5.5|3.0+0.0 |12.54+4.2|5.1+0.3 |25.0£9.1
Sick-euthyroid|24.1+1.7 |2.44+0.3 |60.8+1.8 |2.64+0.3 |[21.1+2.3 [3.8£0.3
Glass 11.0+£0.0 |2.8+1.0 [9.0+0.0 [0.54+0.5 [23.1+4.8 |[8.9£1.6
Wine 9.2+0.2 |7.3£2.9 |11.24+0.2 |2.2+0.9 |10.2+0.3 |6.2+1.8
Average 39.2 17.1 30.9 16.0 35.3 17.5

Table 2. Tree size and error rate at default (0%) inconsistency threshold

Tree size. ConMerge(y?) and ConMerge(A) win over C4.5 12 and 10 out

of the 15 cases, respectively, as in bold face. For Hepatitis, Heart, Diabetes,
Labor, German, the size produced by ConMerge(x?) is only 29%, 44%, 48%,
51%, 63% of the size produced by C4.5. On the other hand, for Sick-euthyroid,
the size produced by ConMerge(x?) is much larger. This is mainly due to the
0% inconsistency threshold. We will discuss the effect of the threshold below.

Error rate. On the error rate, ConMerge(x?) wins over C4.5 10 out of the
15 cases, with the biggest wins for Labor, Glass, and Wine. ConMerge(A) wins
only 6 out of the 15 cases, therefore, is not more accurate than C4.5.

Effect of inconsistency thresholds. Tables 3 (a) and (b) show tree size and
error rate for inconsistency thresholds between 2% and 10%. In general, for both
ConMerge algorithms, as the inconsistency threshold is increased, the tree size is
reduced and the error rate is increased, as shown by Average in the two tables,
because fewer intervals and more inconsistencies are produced. Interestingly,
ConMerge(x?) performs better at 0% threshold than at 2% threshold, on both
error rate and tree size. Compared to C4.5, ConMerge(x?) at 2% threshold wins
13 out of 15 cases on tree size, and wins or ties 11 cases out of 15 on error rate.

Dataset C4.5(R8) ConMerge(x?) ConMerge(A)
2% 4% 6% (8% |10%12% [4% (6% |8% [10%
Anneal 66.8 54.2|18.0|18.0{17.6|17.6|82.4 |62.4 (62.6(55.0|17.6
Australian 35.7 23.9143.3|34.2|34.2134.2136.0 |40.3 (34.2|34.2|34.2
Breast-c 28.2 21.2117.2|7.4 5.0 |3.0 |23.8 |10.0 |13.2(5.0 |4.8
Bupa 43.8 42.5|37.3|29.3|145.9|35.6|38.7 [32.8 |27.9|31.9(29.2
Cleve 77.9 63.8(52.5|49.2(50.0(50.4(61.4 [60.3 [49.5(51.6(50.1
Crx 32.1 33.7|33.7(33.7|33.7|33.7|33.7 |33.7 |33.7|33.7|33.7
Diabetes 46.6 65.0(66.3|48.146.0{33.3|40.0 |41.1 |28.1{35.6|25.6
German 142.8 73.4|64.1154.0{49.8]40.6|107.2|103.2|93.6|88.4|76.4
Heart 36.4 22.8|28.2|119.4|22.2{15.4|21.8 |21.8 [15.8{20.4|16.0
Hepatitis 18.2 34134 134 134 (34 |48 |3.4 (34 |3.4 |3.4
Iris 8.8 6.4 15.0 5.0 [5.0 5.0 |18.2 |13.3 8.4 |13.5|12.0
Labor 5.9 3.0 144 |44 |44 (44 |b.1 |44 |44 4.4 |4.4
Sick-euthyroid|24.1 11.1|15.4(12.0(12.0{12.0|52.0 (16.1 |8.8 [12.0{12.0
Glass 11.0 10.0/10.0(8.6 |8.0 |8.0 |24.0 (24.8 |38.2|34.5(32.8
Wine 9.2 11.0/8.4 |8.0 |8.8 8.8 |11.0 ({10.4 9.2 9.0 |7.0
Average 41.4 29.7\27.1122.3|23.1]20.4|35.3 |25.0 |26.4|28.8/|26.6
(a) Tree size
Dataset C4.5(R8) ConMerge(x?) ConMerge(A)
2% 4% 6% (8% [10%[2% (4% (6% [8% [10%
Anneal 7.5 11.7{19.1{19.1|21.5|21.5|13.4|16.7|16.1{16.3|21.5
Australian 14.8 12.9|17.9(15.5(15.5|15.5|14.6|14.9|15.5{15.5[15.5
Breast-c 5.6 4.6 4.9 6.4 |7.4 (9.3 |4.7 |5.1 5.3 |7.0 |10.3
Bupa 34.8 34.2(35.0(39.1(35.1|33.9(32.1|39.4|31.6(34.8|33.0
Cleve 47.2 49.2148.1|145.2|46.2|46.8148.5|47.8|48.5(45.2|45 .2
Crx 15.0 14.3|14.3(14.3(14.3|114.3|14.3|14.3|14.3|14.3|14.3
Diabetes 26.1 23.6|21.8|22.8|22.3|23.5|24.5|25.7|25.9|25.1{26.3
German 26.2 27.9|27.3|27.1|26.6|27.2|129.3|30.0|28.2|27.9|27.7
Heart 21.8 17.4\17.4(18.1(18.9|18.1|17.4|16.6|15.9{19.2{19.2
Hepatitis 18.2 16.9]16.9(16.9(16.9|16.9|16.9(16.9|16.9|16.9(16.9
Iris 4.7 4.0 4.0 |4.0 |4.0 4.0 |6.0 9.3 8.0 |13.3|17.3
Labor 22.3 12.5|27.5|27.5(27.5|27.5|25.0|27.5|28.5|27.5|27.5
Sick-euthyroid|2.4 2.7 4.7 15.6 5.6 9.3 8.0 |8.9 |35.0(9.3 {9.3
Glass 2.8 2.8 12.8 |8.8 (7.0 |7.0 9.8 (9.3 |24.3|22.9|22.8
Wine 7.3 2.2 13.4 7.3 6.8 {9.6 (8.4 |8.9 |7.3 |6.7 9.5
Average 17.1 15.8|{17.7(18.5(18.4|19.0|18.2|119.4|21.4|20.1|21.1

(b) Error rate

Table 3. Comparison for different inconsistency thresholds

5 Related Work

Existing interval mergings methods include ChiMerge [Kerber:1992] and Stat-
Disc [Richeldi and Rossotto:1995]. ChiMerge merges two adjacent intervals at a
time whereas StatDisc merges several. Both algorithms merge intervals for one
attribute at a time. The merging for the current attribute is stopped when the
similarity of every two adjacent intervals for the attribute drops below a thresh-
old. The similarity measure depends only on the current attribute and the class
attribute, thus, the mergings in one attribute do not affect mergings in other at-
tributes. One problem with these methods is that the user has no control over the
inconsistency in the discretized data, and a poorly chosen similarity threshold
could either under-discretize the data, where intervals are not merged enough,
or over-discretize the data, where the data becomes highly inconsistent. Other
works on discretization, e.g., those in [Dougherty, et al.:1995], are less related to
our work.

6 Summary

The main contribution in this paper is (a) the establishment of an inconsistency
threshold as a quality control factor for discretizing continuous data and (b) a
discretization method that handles the attribute interaction raised by the in-
consistency threshold. Our method selects the best merging of intervals from all
continuous attributes, rather than from the one being considered. We proposed
an implementation that finds the best merging in a constant time, thus scales
up well in large datasets. Experiments show that by constraining the inconsis-
tency and merging the overall best pair of intervals at each step, the discretized
data does produce better decision trees, compared to the latest release of C4.5
improved for handling continuous attributes.

References

[Dougherty, et al.:1995] J. Dougherty, R. Kohavi, M. Sahami. Supervised and Unsu-
pervised Discretization of Continuous Features. In the 12th International Conference
on Machine Learning, 1995.

[Kerber:1992] R. Kerber. ChiMerge: Discretization of Numeric Attributes. In Ninth
National Conference on Artificial Intelligence, 1992, 123-128.

[Merz and Murphy:1996] C.J. Merz, P.M. Murphy. UCI Repository of machine learn-
ing databases [http://www.ics.uci.edu/ mlearn/MLRepository.html].

[Quinlan:1993] J.R. Quinlan. C4.5: Programs for Machine Learning. Los Altos, CA:
Morgan Kaufmann, 1993.

[Quinlan:1996] J.R. Quinlan. Improved Use of Continuous Attributes in C4.5. In Jour-
nal of Artificial Intelligence Research 4, 1996, 77-90

[Richeldi and Rossotto:1995] M. Richeldi and M. Rossotto. Class-driven Statistical
Discretization of Continuous Attributes. In Proc. of Furopean Conference on Ma-
chine Learning 1995, Springer Verlag, 335-338

This article was processed using the ¥TEX macro package with LLNCS style

