
Concurrent Discretization of Multiple Attributes

Ke Wang and Bing Liu

Department of Information Systems and Computer Science
National University of Singapore
fwangk�liubg�iscs�nus�edu�sg

Abstract� Better decision trees can be learnt by merging continuous
values into intervals� Merging of values� however� could introduce incon�
sistencies to the data� or information loss� When it is desired to maintain
a certain consistency� interval mergings in one attribute could disable
those in another attribute� This interaction raises the issue of determin�
ing the order of mergings� We consider a globally greedy heuristic that
selects the �best� merging from all continuous attributes at each step�
We present an implementation of the heuristic in which the best merging
is determined in a time independent of the number of possible mergings�
Experiments show that intervals produced by the heuristic lead to im�
proved decision trees�

� Introduction

��� Motivation

Continuous values� mainly reals and integers� are linearly ordered� Unlike discrete
values� there could be many continuous values and each appears only a few times
in the data� Directly applying induction algorithms designed for discrete values
to continuous values will generate too many rules with poor predictive power�
A common technique for handling continuous values is discretization� that is�
merging adjacent values into intervals if their distinction contributes little to the
structure of the problem� However� such mergings could introduce inconsistencies
to the data where two examples with the same attribute values have con�icting
classes� consequently� leaves little room for an induction algorithm to do its job�
On the other hand� when the inconsistency level is constrained� interval mergings
in di�erent attributes are no longer independent of each other� Let us explain
using an example�

Example �� Consider the data in Table ��A� where the underlying concept for
Class star is

Age � 	
 � Salary � �
K � Class � star�

ChiMerge Kerber������ starts with one interval per continuous value and re�
peatedly merges two adjacent intervals that are most similar in the attribute
being considered� measured by the smallest �� value of two adjacent intervals�
The merging process is stopped by a threshold on the �� value� If the threshold



is too small� similar intervals cannot be merged� If the threshold is too large�
an attribute� say Age� may be over�merged� which prevents other attributes� say
Salary� from being merged due to a consistency requirement� In particular� if all
ages were merged into one interval� to keep the data consistent� the intervals in
Salary at the best can be S��	
K�� S���
K�� S���	K�� S	���K���K�� as in
Table ��B�� � These intervals give rise to the rules

Salary � S�� Class � star

Salary � S	� Class � star�

which clearly do not capture the underlying concept� A similar argument applies
if Salary is merged into one interval �rst�

A
Age Salary Class
�� �
K star
�� ��K star
	
 ��K star
	� �	K non�star
�� 	
K non�star

B
Age Salary Class
A� S� star
A� S� star
A� S� star
A� S� non�star
A� S� non�star

C
Age Salary Class
A� S� star
A� S� star
A� S� star
A� S� non�star
A� S� non�star

Table �� A motivating example

Suppose we always merge the two adjacent intervals that have the smallest
�� value in the two attributes �rather than in the attribute being considered��
the following sequence of mergings can be produced�

step �� Salary� 	
K�
���
� �
K�

���
� ��K�

���
� ��K�

step �� Age� ���
���
� ���

���
� ���

���
� 	
�

���
� 	��

step �� Salary� 	
K�
���
� �
K� ��K�

���
� ��K�

step 	� Salary� 	
K�
���
� �
K� ��K�

step �� Age� ���
���
� ���

���
� ��� 	
�

���
� 	��

step �� Age� ��� ���
���
� ��� 	
�

���
� 	��

step �� Age� ��� 	
�
����
� 	��

where ��� links all adjacent intervals� and the �� value for two adjacent intervals
is written between them� For example� at step � intervals �
K� and ��K� are
merged into �
K���K�� at step 	 intervals �
K���K� and ��K� are merged
into �
K���K�� etc� Steps 	 and � give the �nal intervals for Salary and Age
because further mergings make the data inconsistent� Table ��C� shows the data

� Note that we simplify the presentation by considering only observed values for the
boundary of an interval�



discretized by these �nal intervals� from which we can easily induce the correct
rules

Age � A� � Salary � S� � Class � star�

This example shows that at each step merging the best pair of adjacent intervals�
whatever attributes they come from� leads to better rules�

��� Main results

Given an inconsistency threshold� mergings of intervals are no longer indepen�
dent of each other� We propose a globally greedy heuristic that at each step
merges the �best� pair of intervals chosen from all continuous attributes� rather
than the attribute being considered� The idea is simple� given the limited tol�
erance of inconsistency� the best merging in all continuous attributes should be
considered �rst� We consider two goodness measures of mergings� the �� value
and the change in entropy� A distinctive feature of the global greediness is that
mergings in several attributes are concurrent� in the sense that mergings in at�
tribute A can be performed without completing all mergings in attribute B�

Two questions need to be answered� First� is it really a good idea to be
globally greedy when the goodness of mergings itself is only a heuristic� In other
words� can the quality of rules learnt really be improved by being globally greedy�
We conducted several experiments to answer this question�

The second question is� can the globally greedy heuristic be implemented
e�ciently� especially for large datasets� At each step� a critical operation is to
�nd the best merging across all continuous attributes� It does not work to sort
all possible mergings by their goodness and perform mergings in the sorted order
because early mergings will a�ect the goodness of later ones� Scanning all pairs
of adjacent intervals for each merge is not acceptable because the merging is
performed frequently� in the worst case� equal to the number of distinct values�
We propose the Merge�tree to �nd the best merging in a time independent of
the number of intervals�

� ConMerge Algorithm

The proposed algorithm� called ConMerge �for Concurrent Merger�� consists of
an initialization step and a bottom�up merging process� In the initialization step�
we put each continuous value into its own interval� In the merging process� we re�
peatedly select the best pair of adjacent intervals from all continuous attributes
according to a goodness criterion� The selected pair are merged if doing so does
not exceed a user�speci�ed inconsistency threshold� �By default� the inconsis�
tency in the original data is used� but can be overridden by a larger value�� If
the pair are not merged� the merging of this pair is excluded from further con�
sideration� The merging process is repeated until no more merging is possible�
This is described below�



Conceptual ConMerge�
Initialization�

sort observed values for each continuous attribute�
put each continuous value into its own interval�

Merging process�
while there are interval pairs to merge do
select the best interval pair from all continuous attributes�
if merging the pair does not exceed the inconsistency threshold
then merge the pair into one interval
else exclude the pair from further merging�

Several questions remain to be answered� �a� how is the inconsistency for�
mally de�ned� �b� what is a goodness criterion of mergings� �c� how is the above
algorithm implemented e�ciently� �d� does it produce good intervals� We answer
�a� and �b� in the rest of this section� �c� and �d� will be addressed in sections
on Implementation and Empirical Evaluation� respectively�

��� Inconsistency rate

Inconsistency refers to con�icting class information for examples that agree on
all attributes� For a set of examples agreeing on all attributes� called a matching

pattern� the inconsistency count is the number of examples in the set minus
the number of examples belonging to a majority class in the set� For example�
suppose that� for a set of n examples having the same matching pattern� c�� c�� c�
are the numbers of examples for class �� �� and �� where c� � c� � c� � n� If
c� is the largest� the inconsistency count for the matching pattern is c� � c��
The inconsistency rate is the sum of all inconsistency counts �for all matching
patterns� divided by the total number of examples� The following monotonicity
of inconsistency rate implies that if two adjacent intervals cannot be merged
because of execeding the inconsistency threshold� they cannot be merged later�
�The proof is straightforward� so omitted��

Theorem�� Merging two adjacent intervals does not decrease the inconsistency

rate of the data�

To check the inconsistency threshold� in the merging process we can keep
track of inconsistency counts for each interval� Each time two intervals I� and
I� are merged� we �nd inconsistency counts for the merged interval I� � I� by
sorting examples in I��I� on all attribute values� If the sorting was kept for each
of I� and I�� the sorting for I� � I� can be obtained by merging the sorted lists
for I� and I�� Therefore� for each merging operation the inconsistency threshold
can be checked by a linear scan of examples in the two intervals merged�

In the presence of unknown values� the inconsistency count is de�ned as
follows� If example e has known values on attributes A�� � � � � Ap� e will match
the pattern that agrees with e on A�� � � � � Ap and has the largest number of
examples� The inconsistency rate is de�ned as before�



��� Merging criteria

We consider two goodness criteria for the merging of two intervals�
The �� value� The �� value of two adjacent intervals� �rst used in Kerber�������

is a statistic measure about how the class is independent of the choice of the two
intervals� A smaller �� value implies more independence� or equivalently� less
signi�cance in distinguishing the two intervals� Therefore� the smaller the ��

value� the more similar the two intervals� The �� value of two adjacent intervals
is computed by

�� � �m
i���

k
j��

�Cij�Eij �
�

Eij
� where

m � � �the � intervals being compared�
k � number of classes
Cij � number of examples in ith interval� jth class
Ri � number of examples in ith interval � �k

j��Aij

Cj � number of examples in jth class � �m
i��Cij

N � total number of examples � �k
j��Cj

Eij � expected frequency of Cij �
Ri�Cj

N

The change in entropy� The entropy for the ith interval Ii is de�ned as

ent�Ii� � ��j
Cij

Ri
log�

Cij

Ri
�

where Cij and and Ri are as before� The more mixed the classes in interval Ii�
the larger ent�Ii�� Let I��I� denote the merged interval of I� and I�� The change
of the entropy after merging I� and I� is given by

� � ent�I� � I���
R�

R�	R�

ent�I���
R�

R�	R�

ent�I���

�Note that � is non�negative Quinlan��������� is the information gain by split�
ting the merged interval into the two original intervals� or equivalently� the infor�
mation loss by merging the two intervals� Therefore� merging the two intervals
with the minimum � minimizes the information loss or maximize the pureness
of classes� In the literature� entropy has only been used in the top�down splitting
approach�

Suppose that I�� I�� I�� I� are 	 adjacent intervals and that I� and I� are
merged into a single interval� The count information Cij� Cj� Ri for the new
interval I� � I� can be computed from those for I� and I�� Therefore� the ��

value or � for the a�ected pairs �I�� I� � I�� and �I� � I�� I�� can be computed
e�ciently� In the rest of the paper� the �� value and � are called goodness values�

� Implementation

At each merging� a critical operation is �nding the best pair of adjacent intervals
from all continuous attributes� The implementation will a�ect the e�ciency of
the algorithm signi�cantly� For large datasets� scanning all pairs of adjacent



0.0 0.0 0.0 2.0 2.0 2.0 2.0

attribute chain for Age

attribute chain for Salary

goodness chain

goodness value

[50k,50k] [57k,57k] [39,39] [40k,40k] [33,33] [35,35] [40,40] [45,45] [59k,59k]

first interval in a pair

node 1 node 2 node 3 node 4 node 5

first data entry

Fig� �� The leaf level of the Merge�tree

intervals for each merging operation adds one more order to the complexity� A
minimum requirement is that the best pair be found in a time independent of
the number of intervals� We propose a Merge�tree structure� a modi�ed B�tree�
to achieve this goal� This is not �just an implementation issue�� but an issue
that determines how useful the method is in real�world applications�

The Merge�tree� We modify the B�tree into a structure� called the Merge�

tree� for �nding the best merging at the cost of B�tree operations� Each data
entry represents a potential merging of two adjacent intervals� �I�� I�� denotes
the data entry for the potential merging of I� and I�� The search key value for
�I�� I�� is the goodness value �either �� value or � of entropy� of merging I�
and I�� As in the B�tree� all leaf nodes are chained in the ascending order of the
goodness value� called the goodness chain� The best merging is thus represented
by the �rst data entry on the goodness chain�

There are two di�erences from the B�tree� The �rst di�erence is that all data
entries for the same continuous attribute are doubly chained according to the
adjacency of intervals� This chain is called an attribute chain� After merging
intervals I� and I� into a larger interval I� � I�� by following the two attribute
chain pointers in �I�� I��� we can �nd the two a�ected data entries of the form
�I�� I�� and �I�� I��� which must be replaced with new data entries �I�� I� � I��
and �I� � I�� I�� because I� and I� were replaced with the new I� � I�� The
second di�erence is that there are two kinds of data entries in the Merge�tree�
Initially� all data entries are unexamined� When a pair of adjacent intervals is
examined and no merging can be done �because of the inconsistency threshold��
the corresponding data entry becomes non�mergeable� Since there is no need to
search non�mergeable data entries� they will be deleted from the goodness chain�
However� a non�mergeable data entry �I�� I�� is still kept on the attribute chain�
This is because the boundary of I� �or I�� needs to be updated if a merging of
the form �I�� I�� �or �I�� I��� is performed�

Let us look at one example� Figure � shows leaf nodes for attributes Age and
Salary in Example � before any merging� �Non�leaf nodes are omitted for sim�
plicity�� Each node contains � data entries� though typically much more� Each
interval� except the �rst and last for an attribute� is involved in two data entries�



one for �left�merging� and one for �right�merging�� Instead of storing each inter�
val twice� only the �rst interval I� is stored at data entry �I�� I��� I� can be found
at data entry �I�� I�� by following the attribute chain in �I�� I��� For example�
the �rst data entry represents the potential merging of intervals �
K��
K� and
��K���K�� the second represents the potential merging of intervals ��K���K�
and ��K���K�� etc�

Suppose that �
K��
K� and ��K���K� �represented by the �rst data entry�
are merged into �
K���K�� We need to delete the �rst data entry and update
a�ected data entries� The a�ected data entries are �	
K�	
K���
K��
K�� and
���K���K����K���K�� because intervals �
K��
K� and ��K���K� are replaced
with the new interval �
K���K�� By following the attribute chain in the �rst
data entry� we �nd these a�ected data entries� delete them� and insert new
data entries �	
K�	
K���
K���K�� and ��
K���K����K���K��� The insertions
are guided by the new goodness values� thus� not necessarily going back to the
old places� Since deletion and insertion are standard B�tree operations� we omit
the detailed description�

The merging process stops when the Merge�tree becomes empty� at which
time all data entries are non�mergeable and are linked by attribute chains� Non�
mergeable entries contain the boundary information of all �nal intervals� which
will be used to discretize the testing data� The time for the merging process
is �i�c � ni�� where c is the constant time for updating the Merge�tree for
each merging� as discussed above� and ni is the number of examples in the two
intervals for the ith merging�

� Empirical Evaluation

To evaluate the e�ectiveness of the proposed algorithm� we compare three meth�
ods� �a� Release � of C	��� denoted C	���R��� �b� ConMerge using ��� de�
noted ConMerge����� and �c� ConMerge using the change of entropy� denoted
ConMerge���� Unlike all previous releases� C	���R�� improves the performance
on continuous values by employing an MDL�inspired penalty to adjust the gain of
a binary split of continuous values� Quinlan������ shows that C	���R�� compares
favorably with other discretization methods� Therefore� we choose C	���R�� as
a benchmark�

The three methods are applied to �� datasets chosen from the UCI reposi�
tory Merz and Murphy������ based on the variety of involvement of continuous
attributes� For ConMerge� the procedure is as follows� We partition a dataset
into �
 runs using �
�fold cross validation� For each run� ConMerge is applied to
the training set to produce intervals� C	�� is applied to the discretized training
set to produce the �pruned� decision tree� and the error rate is collected for the
testing set and averaged over �
 runs� In all cases C	�� was run using the default
setting� The default inconsistency threshold is 
� because all original datasets
are consistent� The result is shown in Table �� The numbers following � are
standard errors�



Dataset C	���R�� ConMerge���� ConMerge���
size error ��� size error ��� size error ���

Anneal �������� ����
�� ����� ��� �����
�� �������	 ����
��
Australian �������� �	������ �
�
���� �������� �������� ��������
Breast�c �������� ����
�� �������� ����	�� �������� ����	��

Bupa 	����	�
 �	������ ����� ��� �������� 	��
���� ��������
Cleve �������� 	������
 �������� 	������� �������� 	������

Crx �����	�� ���
���� �������� �������� �������
 ���	����

Diabetes 	����	�	 �������� ����� ��� �������� �������� ���	����

German �	������� �����
�� 
	��� ��� �����	�� ����	���� ��������
Heart ���	���� �������� ���
� ��� �������� �	������ ��������

Hepatitis �������� �������
 ����	�� ���
���� ������� ��������

Iris ����
�� 	�����
 ����	�� ������� �
�
�
�
 ������	
Labor ����
�� �������� ��	�	�	 �������� ����	�� ���
����
Sick�euthyroid �	������ ��	�
�� �
������ ����
�� �������� ����
��
Glass ���
�
�
 ������
 
�	�	�	 	���	�� �����	�� �������
Wine ����
�� ������� �����
�� ����	�
 �
���
�� �������

Average ���� ���� �	�
 ���	 ���� ����

Table �� Tree size and error rate at default �
�� inconsistency threshold

Tree size� ConMerge���� and ConMerge��� win over C	�� �� and �
 out
of the �� cases� respectively� as in bold face� For Hepatitis� Heart� Diabetes�
Labor� German� the size produced by ConMerge���� is only ���� 		�� 	���
���� ��� of the size produced by C	��� On the other hand� for Sick�euthyroid�
the size produced by ConMerge���� is much larger� This is mainly due to the

� inconsistency threshold� We will discuss the e�ect of the threshold below�

Error rate� On the error rate� ConMerge���� wins over C	�� �
 out of the
�� cases� with the biggest wins for Labor� Glass� and Wine� ConMerge��� wins
only � out of the �� cases� therefore� is not more accurate than C	���

Eect of inconsistency thresholds�Tables � �a� and �b� show tree size and
error rate for inconsistency thresholds between �� and �
�� In general� for both
ConMerge algorithms� as the inconsistency threshold is increased� the tree size is
reduced and the error rate is increased� as shown by Average in the two tables�
because fewer intervals and more inconsistencies are produced� Interestingly�
ConMerge���� performs better at 
� threshold than at �� threshold� on both
error rate and tree size� Compared to C	��� ConMerge���� at �� threshold wins
�� out of �� cases on tree size� and wins or ties �� cases out of �� on error rate�



Dataset C	���R�� ConMerge���� ConMerge���
�� 	� �� �� �
� �� 	� �� �� �
�

Anneal ���� �	�� ���
 ���
 ���� ���� ���	 ���	 ���� ���
 ����
Australian ���� ���� 	��� �	�� �	�� �	�� ���
 	
�� �	�� �	�� �	��
Breast�c ���� ���� ���� ��	 ��
 ��
 ���� �
�
 ���� ��
 	��
Bupa 	��� 	��� ���� ���� 	��� ���� ���� ���� ���� ���� ����
Cleve ���� ���� ���� 	��� �
�
 �
�	 ���	 �
�� 	��� ���� �
��
Crx ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����
Diabetes 	��� ���
 ���� 	��� 	��
 ���� 	
�
 	��� ���� ���� ����
German �	��� ���	 �	�� �	�
 	��� 	
�� �
��� �
��� ���� ���	 ���	
Heart ���	 ���� ���� ���	 ���� ���	 ���� ���� ���� �
�	 ���

Hepatitis ���� ��	 ��	 ��	 ��	 ��	 	�� ��	 ��	 ��	 ��	
Iris ��� ��	 ��
 ��
 ��
 ��
 ���� ���� ��	 ���� ���

Labor ��� ��
 	�	 	�	 	�	 	�	 ��� 	�	 	�	 	�	 	�	
Sick�euthyroid �	�� ���� ���	 ���
 ���
 ���
 ���
 ���� ��� ���
 ���

Glass ���
 �
�
 �
�
 ��� ��
 ��
 �	�
 �	�� ���� �	�� ����
Wine ��� ���
 ��	 ��
 ��� ��� ���
 �
�	 ��� ��
 ��

Average 	��	 ���� ���� ���� ���� �
�	 ���� ���
 ���	 ���� ����

�a� Tree size

Dataset C	���R�� ConMerge���� ConMerge���
�� 	� �� �� �
� �� 	� �� �� �
�

Anneal ��� ���� ���� ���� ���� ���� ���	 ���� ���� ���� ����
Australian �	�� ���� ���� ���� ���� ���� �	�� �	�� ���� ���� ����
Breast�c ��� 	�� 	�� ��	 ��	 ��� 	�� ��� ��� ��
 �
��
Bupa �	�� �	�� ���
 ���� ���� ���� ���� ���	 ���� �	�� ���

Cleve 	��� 	��� 	��� 	��� 	��� 	��� 	��� 	��� 	��� 	��� 	���
Crx ���
 �	�� �	�� �	�� �	�� �	�� �	�� �	�� �	�� �	�� �	��
Diabetes ���� ���� ���� ���� ���� ���� �	�� ���� ���� ���� ����
German ���� ���� ���� ���� ���� ���� ���� �
�
 ���� ���� ����
Heart ���� ���	 ���	 ���� ���� ���� ���	 ���� ���� ���� ����
Hepatitis ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����
Iris 	�� 	�
 	�
 	�
 	�
 	�
 ��
 ��� ��
 ���� ����
Labor ���� ���� ���� ���� ���� ���� ���
 ���� ���� ���� ����
Sick�euthyroid ��	 ��� 	�� ��� ��� ��� ��
 ��� ���
 ��� ���
Glass ��� ��� ��� ��� ��
 ��
 ��� ��� �	�� ���� ����
Wine ��� ��� ��	 ��� ��� ��� ��	 ��� ��� ��� ���
Average ���� ���� ���� ���� ���	 ���
 ���� ���	 ���	 �
�� ����

�b� Error rate

Table �� Comparison for di�erent inconsistency thresholds



� Related Work

Existing interval mergings methods include ChiMerge Kerber������ and Stat�
Disc Richeldi and Rossotto������� ChiMerge merges two adjacent intervals at a
time whereas StatDisc merges several� Both algorithms merge intervals for one
attribute at a time� The merging for the current attribute is stopped when the
similarity of every two adjacent intervals for the attribute drops below a thresh�
old� The similarity measure depends only on the current attribute and the class
attribute� thus� the mergings in one attribute do not a�ect mergings in other at�
tributes� One problem with these methods is that the user has no control over the
inconsistency in the discretized data� and a poorly chosen similarity threshold
could either under�discretize the data� where intervals are not merged enough�
or over�discretize the data� where the data becomes highly inconsistent� Other
works on discretization� e�g�� those in Dougherty� et al�������� are less related to
our work�

� Summary

The main contribution in this paper is �a� the establishment of an inconsistency
threshold as a quality control factor for discretizing continuous data and �b� a
discretization method that handles the attribute interaction raised by the in�
consistency threshold� Our method selects the best merging of intervals from all
continuous attributes� rather than from the one being considered� We proposed
an implementation that �nds the best merging in a constant time� thus scales
up well in large datasets� Experiments show that by constraining the inconsis�
tency and merging the overall best pair of intervals at each step� the discretized
data does produce better decision trees� compared to the latest release of C	��
improved for handling continuous attributes�

References

�Dougherty� et al�	
��� J� Dougherty� R� Kohavi� M� Sahami� Supervised and Unsu�
pervised Discretization of Continuous Features� In the ��th International Conference

on Machine Learning� 
����
�Kerber	
��� R� Kerber� ChiMerge	 Discretization of Numeric Attributes� In Ninth

National Conference on Arti�cial Intelligence� 
���� 
���
���
�Merz and Murphy	
��� C�J� Merz� P�M� Murphy� UCI Repository of machine learn�
ing databases �http	��www�ics�uci�edu� �mlearn�MLRepository�html�

�Quinlan	
��� J�R� Quinlan� C���� Programs for Machine Learning� Los Altos� CA	
Morgan Kaufmann� 
����

�Quinlan	
��� J�R� Quinlan� Improved Use of Continuous Attributes in C���� In Jour	

nal of Arti�cial Intelligence Research �� 
���� �����
�Richeldi and Rossotto	
��� M� Richeldi and M� Rossotto� Class�driven Statistical
Discretization of Continuous Attributes� In Proc� of European Conference on Ma	

chine Learning 
���� Springer Verlag� �������

This article was processed using the LATEX macro package with LLNCS style


