Detecting Data Inconsistency for Multidatabases

Ke Wang
Dept. of Info. Sys. & Comp. Sci.
National University of Singapore
Lower Kent Ridge Road, Singapore, 0511
wangk @iscs.nus.sg

Abstract

Traditional approaches to database integration re-
quire that a common key exist in all participating rela-
tions that model equivalent entities in the real-world,
therefore, compromising the logical heterogeneity of
multidatabases. The recent proposal of using knowl-
edge to identify equivalent entities without requiring a
common key gives rise to the issue of detecting poten-
tial inconsistency during entity identification. In this
paper, criteria of data consistency are proposed and
incremental tests in the process of updating data and
knowledge are considered. The proposed framework
and algorithms are tested by an experiment on three
databases extracted from the real-world.

Key words. Inconsistency detecting, data integra-
tion, entity 1dentification, multidatabase

1 Introduction

Multidatabase systems provide integrated, global
access to autonomous, heterogeneous local databases
via a simple global request. A central activity required
for processing a global request is to resolve the logical
heterogeneity as the result of the local autonomy of
multidatabases, namely, schema integration and data
integration. Schema integration resolves schematic
heterogeneity such as differences in attribute name and
domain, and differences in data format and structure.
Data integration, on the other hand, has to solve the
following problems

e entity identification: identify object instances in
different databases that model the same real-
world entities.

e missing or inconsistent data: some data items
may be recorded in one database but not in oth-
ers, or several databases record the same data

item but give it different values.

*This author’s work was supported by an NSERC Research
Grant

Weining Zhang*
Dept. of Math. & Comp. Sci.
University of Lethbridge

Lethbridge, Alberta, Canada, T1K 3M4
zhang@cs.uleth.ca

Two types of inconsistent data have been addressed
in the literature. The first type occurs when the same
data is represented differently in different databases
due to the schematic heterogeneity. Such inconsis-
tency is typically resolved by renaming attributes, do-
main mapping, value conversion, and structure trans-
formation. The second type of inconsistency occurs,
due to the failure of maintaining databases, when
equivalent data items in different databases, which are
expected to have the same value, store different values.
Data inconsistency of this type amounts to an error in
modeling the real-world and should be detected at the
time of updating data or knowledge.

We assume that local schemas have been translated
into the relational model and that schematic hetero-
geneity has been resolved by schema integration. How-
ever, participating databases may not share a common
key and it is not immediately clear which tuples in
these databases model equivalent entities. To identify
equivalent entities, we propose an inference process
that derives missing values with respect to some given
knowledge. We define a notion of consistency for the
correctness of integration, given the inference power of
knowledge.

Detecting algorithms of inconsistencies are pre-
sented. We focus on an incremental detecting method
in the process of updating data and knowledge. With
an incremental method, an update of data is tested at
nearly zero communication cost and a number of table
lookups bounded by the number of involved schemas.
By indexing or hashing technique each table lookup
needs only a small number of block accesses. Check-
ing update of knowledge is less efficient than that of
data in general, but it is affordable for knowledge that
is usually less dynamic. An experiment is conducted
on the proposed framework and algorithms based on
a case study in the real life.

In [4, 12], constraint enforcement in heterogeneous
multidatabases has been considered. They have de-
scribed languages of specifying constraints across sev-

eral databases and relational methods of testing con-
straints. However, the consistency constraint encoun-
tered in entity identification was not addressed in that
work, except for the simple case where equivalent en-
tities can be found by comparing directly key identi-
fiers. In the absence of common key identifiers and the
presence of background knowledge, the problem of in-
consistency detecting can be formulated as constraints
over database relations and knowledge and the dis-
tributed constraint checking techniques, e.g., [5, 14],
can be applied. However, too many constraints, de-
rived from all possible ways of deriving data, will be
generated and checked. Our methods make use of spe-
cial structures of knowledge tables so that update of
relations can be done independently of the number of
data derivations. The method uses materialized views
[9] for incremental detecting of inconsistency among
several databases.

The rest of the paper is organized as follows: Sec-
tion 2 defines an inference engine that is used in en-
tity identification. Sections 3 and 4 address the con-
sistency problem in a single database and a multi-
database, with the former being the foundation of the
latter. In each of these sections, the notion of con-
sistency, inconsistency detecting, and the incremental
implementation are presented. Section 5 describes an
experiment of the proposed framework and algorithms
on a case study. Section 6 concludes the paper.

2 Deriving Data Using Knowledge

Instead of using common keys, our approach uses
additional knowledge to infer missing data items
needed for identifying equivalent entities.

Example 2.1 (Running example) In Table 1, re-
lations r(R) and s(S) (or simply » and s) store in-
formation about restaurants in different databases.
Without additional knowledge, it is not possible to
tell which of the first three tuples in s model the same
restaurant as the first tuple in r, even though the
restaurants they model have the same name. Given
additional knowledge on each database stored in tables
of form M (X — Y), where a tuple uw in M(X — V)
means that if an entity has value u[X] on X it also
has value u[Y] on Y, one can infer, based on the
first tuple in each of M(speciality — cuisine) and
M (name, street — speciality), that the first tuple
in s models a Chinese restaurant, and the first tu-
ple in r models a restaurant specialized in Hunan
food, and so on. If the restaurants modeled by the
multidatabase can be uniquely identified by values of
{name, cuisine, speciality}, one can conclude that the
first tuple in 7 and that in s model the same restaurant
in the real-world, thus can be integrated to provide

more complete information to global users. O

Definition 2.1 A mapping schema on a relation
schema R is a statement of form X — Y, where X and
Y are non-empty sets of attributes such that XNY =
and RNY = . A mapping on X — Y, denoted
M(X — Y), is a function that, given values for all
attributes in X, returns a value for each attribute in
Y. O

In general, mappings encode common sense and
other discovered knowledge about data, and are as-
sumed to be on the same site where the data reside.
In the rest of the paper, let r denote a relation with a
schema R, €2 denote a collection of mapping schemas
on R, and 7 denote an assignment of mappings to
mapping schemas in €2.

We now formalize the process of inferring missing
values. Let X be a set of attributes not necessarily
in R. A sequence < X1 — Yi,..., Xz — Y > of
mapping schemas in 2, & > 0, is a derivation of X
from Rif X1 C Rand X; C RY;...Y;_1forl <<k,
and X C RY;...Y;. A derivation of X from R 1is
minimal if removing any mapping schema from 1t does
not result in a derivation of X from R. RT denotes
the set of all attributes appearing in some derivation
from R.

Mapping Process: Given (r,7), values on at-
tributes Rt — R can be derived as follows. Let aug(r)
be the relation on Rt obtained from r by padding ev-
ery tuple in » with NULLs for all attributes in RT — R.
Whenever there exists some mapping M (X = Y)in r
such that ¢[X] = u[X], where t is a tuple in aug(r) and
w is a tuple in M (X — V), ¢t[Y] is replaced by u[Y].
Mappings in 7 are applied to aug(T) in this way until
either a non-NULL value is replaced with a different
non-NULL value, in which case a conflict occurs, or
no more change can be made, in which case the final
aug(r) is denoted by »’.

Note that the mapping process i1s a conceptual not
an implementational model.

Example 2.2 Consider (r,71) in Example 2.1. By
applying mappings in M (name, street — speciality),
M (street — county), M (name, county — speciality),
and M (annual_profit — monthly_profit) to aug(r)
in order, values on speciality, county, monthly_profit
of r are derived. as shown in v’ in Table 2. O

3 M-Consistencies: A Single Database

We first consider the consistency problem in a sin-
gle database, where each attribute name has a unique
meaning and derivation of conflict values signals an
error in modeling the real-world.

name cuisine street annual-profit owner
Twin Cities | Chinese Co. B2 102k Lee
It’s Greek Greek Front Ave. 120k Pangalos
Anjuman Indian | LeSalle Ave. 240k Raman
Village Wok | Chinese | Wash. Ave. 200k Dong
name speciality county monthly-profit owner
Twin Cities Hunan Roseville 8.5k Lee
Twin Cities | Sichuan | Hennepin 9k Lee
Twin Cities Pizza Roseville 11k Thanos
It’s Greek Gyros Ramsey 10k Pangalos
Anjuman Mughalai Mpls. 20k Raman
Wong’s Canton Roseville 12k Wong
M (speciality — cuisine) on S
speciality cuisine M (street — county) on R
Hunan Chinese street county
Sichuan Chinese LeSalle Ave. Mpls.
Canton Chinese Front Ave. Ramsey
Gyros Greek Co. B2 Roseville
Mughalai Indian Wash. Ave. Roseville
Pizza Italy

M (name, street — speciality) on R

M (name, county — speciality) on R

name street speciality name county speciality
Twin Cities Co.B2 Hunan It’s Greek Ramsey Gyros
Anjuman | LeSalle Ave. | Mughalai Twin Cities | Roseville Hunan

M (annual_profit — monthly_profit) on R: monthly_profit = annual_profit/12
M (monthly_profit — annual_profit) on S: annual_profit = monthly_profit x 12

Table 1: The running example

Definition 3.1 (r,7) is M-consistent (M for map-
ping) if no conflict is derived by the mapping process
wrt (r, 7). O

For a given (r,7), M-consistency may be tested
by using the mapping process or by formulating the
M-consistency as constraints and applying constraint
checking techniques in the literature. However, both
these approaches suffer from poor performances. In
the following, we consider an incremental detecting
method. The idea is to materialize tuples on R, not
necessarily in 7, that will lead to a conflict if mappings
are applied to them. These tuples are completely de-
termined by the given mappings.

Given a sequence A =< X1 = Yy, ..., Xp = Vi >
of mapping schemas, let ATT(A) = X1Y1... X V5.
For sets X and Y of attributes such that X NY = {J,

G(X]Y) denotes the formula (X = X) A (Y # Y),
where X = X is conjunction of A = A for all A € X,
and Y # Y is disjunction of A # A for all A € Y.
Let Y — 7 and Y/ — Z' be two mapping schemas
such that Z N Z" # 0. A colliding derivation for Y —
Z,Y" — 7' from R is a sequence of mapping schemas
A=< W1 = Xq1,.... Wi = X3,V = 2V = 7' >,
where < W7, — Xq,..., W — Xj; > is a minimal
derivation of YY' from R. Let U = Y NY' and V =
ZN7Z'. The CS-relation (Conflict Source relation) for
the colliding derivation A, denoted C'S(A), is defined as
HROATT(A)(M(Wl — Xl) X... N M(Wk — Xk) X
[yy (MY = Z) Mypvy M(Y' = Z'))), where M is
the natural join. Intuitively, C'S(A) contains all possi-
ble values that will lead to a conflict if mappings are
applied in the order of A.

7,,/

name cuisine | speciality street county | m_profit | a_profit owner
Twin Cities | Chinese Hunan Co. B2 Roseville 8.5k 102k Lee
It’s Greek Greek Gyros Front Ave. Ramsey 10k 120k Pangalos
Anjuman Indian | Mughalai | LeSalle Ave. Mpls. 20k 240 Raman
Village Wok | Chinese NULL Wash. Ave. | Roseville 17k 204k Dong

Table 2: r’ in Example 2.2

Theorem 3.1 (r,7) is M-consistent if and only if
HROATT(A (r) does not contain any tuple in C'S(A)
for any col%iding derivation A from R. O

Example 3.1 Consider (r,7{), where r and 7 are
as given in Example 2.1, except that 7 is ob-
tained from 7 by adding a mapping < name =
Anjuman, county = Mpls., speciality = Gyros >
into M (name, county, — speciality). Only mapping
schemas f : name, street — speciality and f’
name, county — speciality have non-disjoint right-
hand sides, with 6(U|V) being name = name A
speciality # speciality. The only colliding derivation
A for f, f from R is < street — county, [, f >. It
can be verified that

CS(A) = [name strect (M (street — county) ™
[Ty y (M (f) Mowivy M(f)))

returns tuple < name = Anjuman,street =
LeSalle Ave. >, which is contained in [, ... cireer(7)-
By Theorem 3.1, (r,7{) is not mapping-consistent. O

Incremental Detecting 3.1: Let (r,7) be M-
consistent. We wish to test if insertion and deletion of
a tuple of r or 7 preserves the M-consistency.

Insertion of tuple t into r. Compute t' by applying
the mapping process to t. Initially, let ¢/ =¢ and Z =
R, and all mapping schemas are marked unprocessed.
If there is an unprocessed X — Y such that X C 7
and Y € Z, mark X — Y as processed and retrieve
the tuple in M (X — V) that has ¢t[X] on X. If no
tuple is returned, do nothing; otherwise, expand ¢’ by
values on Y of the returned tuple and let 7 = ZY . If
the expansion replaces a constant by another constant,
reject ¢ and stop. Repeat the above steps until either
there is no unprocessed X — Y such that X C Z and
Y & Z, or t is rejected. If ¢ is not rejected, add it to
7.

Deletion of tuple t from r. Free.

Insertion of tuple t into 7. Assume that ¢ is inserted
into mapping M. TLet CS(A)(M/t) denote CS(A)
in which M is replaced by {t}. If [Tgqarroy(r) N

CS(A)(M/t) # 0 for some C'S(A) involving M, reject
t and stop. If ¢ is not rejected, add it to M.

Deletion of tuple t from 1. Free.

Efficiency of Incremental Detecting: Assume
that the mappings are accessed through BT-tree or
hashing. The number of block accesses needed to in-
sert a tuple into r is bounded by s * d, where s is
the number of involved mapping schemas, and d is the
maximal depth of Bt-trees of mappings or a small
constant for hashing. d is usually no more than 5
and grows very slowly with the size of mappings. Al-
though detecting for insertion into mapping M is more
costly due to computation of C'S(A)(M/t), the update
to mappings are usually less frequent than that to re-
lations.

4 EI-Consistency: A Multidatabase

We now consider multidatabases and assume that
the schema integration has been completed. Since dif-
ferent entities may be modeled in different databases
with identical keys, an extended key [11] will be used
to model uniquely an entity in the multidatabase.

Definition 4.1 (Extended key) Let K; be the key
of R;; 1 <1 < m. An extended key, denoted K, is a
minimal set of attributes Ky U...U K,,, U W, needed
to uniquely model an entity in the global domain D,
where W C (RyU...URp)— (K1 U...UK,). O

Let K be the chosen extended key. Tuples modeling
the same entity in different databases will be identified
with the same K values.

Definition 4.2 (Entity identification)

Consider M-consistent (ry, 1), ..., ("m,7m) from m
different databases that model entities of the same
type. Let t; € v and ¢} € 7} be derived from ¢; € r;
and t; € r; by mappings. A conflict occurs in en-
tity identification if #;[K] = ¢ [K] and ¢;[A] # t;[A]
for some A € R; N R; — K. If no conflict occurs and
ti[K] = t;[K], the entity identification infers that ;
and ?; model the same real-world entity which has
value #;[K] on K, value ¢;[R; — K] on R; — K, and
value t;[R; — K]l on R; — K. O

Example 4.1 The < (r,71),(s,72) > in Example
2.1 can be shown to be El-consistent, if K =
{name, cuisine, speciality}. However, if s is updated
by changing owner “Lee” in the first tuple of s into
a different owner, say “Graham”, although (s, m3) re-
mains M-consistent, < (r,7),(s,7) > is no longer
El-consistent. O

Let K be a chosen extended key, X;; = R;NR; — K,
and Q% denote the set of K values derived by the
mapping process wrt (r;, 7;).

Theorem 4.1 A < (r1,7),...,("m,™m) >, where
each (r;, ;) is M-consistent, is El-consistent if and
only if, for every pair of ¢,j such that ¢ # j and
Xij + 0, (QZK X 7“2') Mgk |x,;) (Q‘}(X rj) = 0, where
X is the natural join. O

Incremental Detecting 4.1: Let
< (ri,m),. .., (*m, Tm) > be El-consistent, we wish
to test if an update to r; or 7; that preserves the M-
consistency will also preserve the El-consistency.
Insertion of tuple t into r;. If K &€ R;", QZK is
empty, so add ¢t into r; and stop. Assume that K C
RZ‘»I’. Expand ¢ by mappings in 7;. Let the result tuple
be ¢/ and contain constants on Z. If K € 7, add t into
r; and stop. Otherwise, send ¢’ to all database sites

j such that K C R}" and R; N R; — K # (. At each

site j receiving t': retrieve a tuple from Q‘}(by search
key t'[K;], where K; is the key for R;. If no tuple
is returned or if the returned tuple is not identical
to t'[K], do nothing. Assume that a tuple identical
to ¢'[K] is returned. Retrieve from r; by search key
t'[K;] the original tuple that derives the K value, say
u. Ifu[R; N R; — K] # t'[R; N R; — K] for any j, then
reject t. If ¢ is not rejected by any site j, add £ to r;
and ¥'[K] to Q% .

Deletion of tuple t from r;: Although the EI-
consistency is not violated by the deletion, if K C RZ‘»I’,
all tuples in Q% with value t[K;] on K; should be
deleted.

For update on mappings, we need the generalized
extension join of [10].

Definition 4.3 Let X C RY. An extension join cov-
ering X from R; is r; WM M(X; — Vi) X ... X
M(Xk — Yk), where < X1 — Y1,..., Xz — Y >
1s a minimal derivation of X from R;. O

Insertion of tuple t into 1;: Assume that ¢ is in-
serted into mapping M. If K ¢ RZ‘»I’, Q4 =0, so add
t to 7; and stop. Assume that K C RZ‘»I’. Compute
the union of projections onto K of all extension joins
covering K from R; that involve M| but with M re-
placed by {t}. Let the result be AK. In other words,

AK contains the increment of QZK due to insertion of
t. Compute r; X AR and let the result be AFzpand.
That 1s, A Expand contains tuples in r; expanded to K
using the new tuple ¢. Send AEzpand to all database
sites j such that K C R}" and R;NR; — K # (. Reject
t if and only if AExpand Mgk |x, ;) (Q‘}(X r;) # 0 for
some site j, where X;; = R; N R; — K. If ¢ is not
rejected, add ¢ to M and AK to Q% .

Deletion of tuple t from ;. Assume that ¢ is deleted
from mapping M. Remove ¢ from M. Compute the
union of projections onto R; of all extension joins cov-
ering K from R; that involve M, but with M replaced
by {t}. Let the result be Ar;. Ar; is a superset of
tuples in 7; whose contribution to Q% are affected by
the deletion. Some tuples in Ar; may not use ¢ in
an “essential” way and their K values should not be
deleted from QZK To find these tuples in Ar;, com-
pute the union of projections onto R; of all extension
joins covering K from R; that do not involve M, but
with r; replaced by Ar;. Let the result be stay. Then
remove from QZK all tuples that agree with some tuple
in HK,(AW — stay) on K;.

Efficiency of Incremental Detecting: For inser-
tion into 7;, at the updating site i the number of B+-
tree retrievals performed is no more than the number
of mapping schemas used in expanding ¢, and there are
at most two BT-tree insertions performed. At most
one tuple 1s sent from site ¢ to each remote site j. At
each receiving site j, at most two retrievals on Bt-
trees are performed. For deletion from r;, the cost is
at most two BT-tree deletions.

Checking update of mappings could be expensive if
there are many extension joins covering K. However,
since these extension joins compute only new K values,
they are expected to be cheaper than recomputing all
old K values.

5 Experiments on A Case Study

We have conducted an experiment on a case study
of three real life restaurant databases, with three ob-
jectives in mind: identify equivalent entities, incre-
mentally check consistency, and confirm the perfor-
mance of the detecting methods by comparing it with
other methods. The databases are created by UNIX
Ingres on IBM RS/6000 Model 560 machines. The
performance is measured by the elapsed time on each
database site (i.e., computation cost) and the num-
ber of tuples transmitted between database sites (i.e.,
communication cost).

Three relations, referred to as R, S, and T, from
the databases are considered. The mapping schemas
on Rare fi,..., fa,on Sare f5,..., fron S and on T
is fs. The data in databases and knowledge in map-
pings are obtained from the Singapore yellow pages,

local dining directories and street directories. Some
restaurants are modeled in all three databases, and
some are modeled only in one or two databases. Table
3 shows the structure and the number of tuples in these
databases and mappings. A BT-tree index is specified
on the index key of each relation and mapping. The
Ingres block size is 2K, with 44 Bytes of it reserved
by the system, and the pointer size is 4 Bytes. With
non-leaf nodes 70% full (the Ingres default value), the
branching factor of Bt-trees is 25 for index keys of 50
Bytes. Therefore, for the data in Table 3, at most 4
block accesses are needed for each retrieval using dense
indexing. Because of such a large branching factor, the
depth of these Bt-trees grows very slowly as the size
of relations or mappings increases.

We have conducted experiments on both M-
consistency and El-consistency. Due to space limi-
tation, we report only the experimental results on EI-
consistency.

The detecting of El-consistency requires to con-
struct and compute extension joins of the extended
key. Two incremental strategies for detecting EI-
consistency are compared.

1. the Incremental Detecting 4.1.

2. Non-materialization in which QZK 1s not material-
1zed. All deletions are free in this case. However,
insertions of a tuple into r; or 7; requires the pro-
cessing on r; at the updating site and r; at each
remote site j.

Table 4 gives the average elapsed times and the
number of tuples transmitted between databases for
different types of updates. In Table 4, 74 is the map-
ping assignments for mapping schemas of relation A.
For each type the average elapsed time is taken over
five randomly chosen tuples. The elapsed time is de-
fined as “local time”+max{“remote time j”}, where
the “local time” refers to the time spent on the up-
dating site, and “remote time j” refers to the time
spent on the remote site j. Since local operations are
sequentialized with remote operations, the total time
is the sum of these two times.

Table 4 indicates that Incremental Detecting 4.1
performs better than the non-materialization strategy
for all insertions. If insertion is frequent, the 30% sav-
ing on insertion in Incremental Detecting 4.1 could
be substantial. However, if deletion from mappings is
frequent, the non-materialization strategy will be pre-
ferred. We also observe that in both strategies the
amount of data transmission is quite small for all up-
date cases except for insertion into 7g. In general,
at most two tuples will be transmitted for insertion
of a tuple into any of relations R,S,7T. Because of

the large branching factor of B -trees, 25 in our case,
the degrading of performance will be slow and grad-
ual as the size of databases and mappings increases.
These experiments show that the proposed framework
has presented a practical solution to the inconsistency
detecting problem in multidatabases.

6 Conclusion

The problem of detecting data inconsistency in mul-
tidatabases without common key is studied. We pro-
posed a notion of data consistency based on additional
knowledge about data and a method of incremental
detecting of its violation during updates of user rela-
tions or the additional knowledge. The method makes
use of materialized view and involves very low commu-
nication cost when the updates are on user relations.
The incremental detecting for updates on knowledge
is less efficient in general, but is affordable if it is infre-
quent. Qur experiment on a case study of three real
life databases has shown that the proposed method
identifies equivalent entities and detects data incon-
sistency effectively and efficiently.

References

[1] R. Ahmed, P. DeSmedt, W. Du, B. Kent, M.
Ketabchi, W. Litwin, A. Rafii, and M-C. Shan,
“The pegasus heterogeneous multidatabase sys-
tem”, IEEE Computer, December 1991, pp. 19-
27

[2] R. Agrawal, T. Imielinski, A. Swami, “Mining
association rules between sets of items in large

databases”, ACM SIGMOD 1993, pp. 207-216

[3] A. Chatterjee and A. Segev, “Data manipulation
in heterogeneous databases”, SIGMOD Record,
20(4), December 1991, pp. 64-68

[4] S. Ceri, J. Widom, “Managing semantic het-
erogeneity with production rules and persistent
queues” | Conference of VLDB, 1993, Dublin, Ire-
land, pp. 108-119

[5] S. Ceri and J. Widom, “Deriving production rules
for incremental view maintenance” | Conference of

VLDB, 1991, pp. 577-589

[6] U. Dayal, “Processing queries over generalization
hierarchies in a multidatabase system”, Confer-

ence of VLDB, 1983, pp. 342-353

[7] U. Dayal, H.-Y. Hwang, “View definition and
generalization for database integration in a mul-
tidatabase system”, IEEE Transactions on Soft-
ware Engineering, SE-10, 11, 1984, pp. 628-645

[8] L.G. DeMichiel, “Resolving database incompati-

[10]

[11]

relation or mapping

No. of tuples

R

[SCRA R

EAR=N

ot
NN NN NG

SEEREERR

NN S B S N

(o]

9,808
9,752
9,761
985
985
94
860
77
96
657
599

record length (Byte) | index key (Byte)
70 name,area (50)
80 name (30)
105 name,cuisine (50)
80 name,area (50)
80 name,street (60)
40 speciality (20)
70 name,area (50)
25 postcode (5)
40 speciality (20)
70 name,area (50)
50 street (30)

Table 3: Size and index key of each initial table

updates Incremental Detecting 4.1 | Non-materialization || Tuples transmitted
insert a tuple into R 4.17 6.69 1
insert a tuple into S 3.97 6.78 2
insert a tuple into T' 3.54 6.18 1
delete a tuple from R 0.62 free 0
delete a tuple from S 0.72 free 0
delete a tuple from T' 0.63 free 0
insert a tuple into 75 28.45 33.17 5
insert a tuple into 7g 49.39 65.8 131.6
insert a tuple into mp 24.85 25.63 11.2
delete a tuple from 7 23.33 free 0
delete a tuple from 75 88.59 free 0
delete a tuple from 7 19.61 free 0

Table 4: Average elapsed time for El-consistency (in seconds)

bility: an approach to performing relational oper-
ations over mismatched domains” , IEEE Transac-
tions on Knowledge and Data Engineering, 1(4),
1989, pp. 485-493

A. Gupta and I.S. Mumick, “Maintenance of ma-
terialized views: problems, techniques, and ap-
plications” | in IEEE Data Engineering Bulletin,
Special Issue on Materialized Views and Data

Warehousing, 18(2), June 1995

P. Honeyman, “Extension joins”, Conference of

VLDB, Nontreal, 1980, pp. 239-244

E. P. Lim, S. Prabhakar, J. Srivastava, J.
Richardson, “Entity identification in database in-
tegration”, IEEE Conference of Data Engineer-
ing, 1993, pp. 294-301

[12] M. Rusinkiewicz, A. Sheth, G. Karabatis, “Spec-

ifying interdatabase dependencies in a multi-
database environment” | IEEE Computer, Vol. 24,
No. 12, 1991, pp. 46-54

[13] Gregory Piatetsky-Shapiro, William J. Fraw-

ley, “Knowledge Discovery in Databases”, AAAI
Press/The MIT Press, 1991

[14] A. Segev and J. Park, “Updating distributed ma-

terialized views”, IEEE Transactions on Knowl-
edge and Data Engineering, 1(2): 173-184, June
1989

