
QUICK � A Graphical User Interface to Genome

Multidatabases

Wang Chiew Tan

Ke Wang

Department of Information Systems and Computer Science

National University of Singapore

Lower Kent Ridge Road� Singapore� ������

tanwangc�iscs�nus�sg� wangk�iscs�nus�sg

Limsoon Wong

Institute of Systems Science

Heng Mui Keng Terrace�

Singapore� �����	

limsoon�iss�nus�sg

Abstract

Formulating queries to access multiple databases can be a formidable task� especially
when many terms from various databases and complex constraints are involved� To specify
a multidatabase query� the user usually has to search through documents for exact database
terms and learn the multidatabase language� This report presents QUICK �QUery Interface
to CPL�Kleisli�� a graphical user interface to multiple databases� CPL �Collection Program�
ming Language� is a high�level multidatabase language built on top of an open query system
Kleisli� QUICK allows users to handle overwhelming information from di�erent data sources
in an intuitive and uniform manner� The query speci�cation is reduced to specifying user	s
terms in his
her own world� selecting paths and specifying constraints in a graph� Through
the terms entered by the user� QUICK is able to reduce the scope of the views and paths
to only those that are relevant to answering the user	s query� Furthermore� QUICK is able
to automatically generate a CPL query that corresponds to the user	s intent� Additional
graphical functions are provided for the user to �ne�tune the query generated�

Keywords� application� database language� genomic data� multidatabase� system� user
interface

� Introduction

A multidatabase system is a distributed system that acts as a front end to many autonomous
DBMSs and a global layer above the autonomous DBMSs through a global schema or a mul�
tidatabase language� The global user can access information from multiple sources in the mul�
tidatabase system in a single straightforward request� However� the multitude of information

�

Thesaurus View Definition Module

IO Module Query Composer

Graphical Editor

QUICK

Data Store

Thesaurus Dictionary

Meta Dictionary

Existing heterogeneous data sources

. . .

Network

Engine

Implementation Boundary

Figure �� Overall architecture of the system�

available in multidatabase systems often impedes the user from quickly formulating a query� One
reason is that the user often has to search through numerous manuals or documents for exact
database terms in order to precisely specify a query� For example� it is di�cult to be sure that
employee identi�cation number is termed �emp id	 and not �emp�id	 or �employee id	 in the
multidatabase� Although this problem also exists for single database systems� the magnitude of
information in multidatabase environments makes it a more immediate problem� For instance�
the schema documentation of GDB
��
Genome Data Base�� a collection of databases providing
human genome information� is well over ��� pages� In addition� multidatabase users are usually
occasional users� in the sense that they use their home databases most of the time and access
multidatabases only occasionally� As such� it is unreasonable to require multidatabase users to
provide exact database terms� Some form of help should be given to reduce the user�s e�ort in
query speci�cation�

The traditional textual query formulation requires syntactic and semantic knowledge of
the language� A large number of graphical user interfaces exist for single database systems which
make query speci�cation more user�friendly� However� the issue of graphical user interfaces is
not well�addressed in multidatabase systems� see related work in Section �� In this paper� we
present a prototype system QUICK
QUery Interface to CPL�Kleisli� to address this issue� The
CPL
��
Collection Programming Language� is a high level multidatabase language that can
handle nested relations and structured �les� QUICK is built on top of an open query system
called Kleisli
��� and is a graphical query interface to multiple autonomous and heterogeneous
databases� The purpose of QUICK is to minimize the e�ort of end users in formulating queries
for multidatabase systems� QUICK allows fast query formulation even with sporadic users
having neither su�cient knowledge of query languages nor extensive prior knowledge of database
structures� QUICK is written in Tcl ����Tk ��� and it can be executed in any unix environment
with X�Windows system and Tcl ����Tk ��� installed� To run a query� CPLTCL� a variant of
CPL for interfacing with TCL� is required to be installed�

Figure � shows the overall architecture of the system� QUICK is running on the Engine
module� CPLTCL in our implementation� that executes the query sent by QUICK� To replace
CPLTCL by another multidatabase language� only the Query Composer and Meta Dictionary

�

need to be replaced� The Thesaurus Dictionary provides a synonym mapping between user terms
and database terms� The Meta Dictionary contains the schema information about views and
frequently used predicates between views in the form of graphs� We consider general predicates
that are not necessarily join� The Meta Dictionary can only be modi�ed by the DBA� The editing
of graphs during a particular user session have no e�ect on the Meta Dictionary� Instead� the
editing result is saved onto a separate user �le kept in the Data Store� The user can retrieve
this �le in a later session� Within the QUICK� there are �ve main modules� The Thesaurus is
responsible for extracting corresponding database terms for the user speci�ed terms� The View
De�nition is responsible for extracting the subgraph that contains the database terms returned
by the Thesaurus� The Graphical Editor is the core module which supports essential graphical
functions� The IO module is responsible for accessing session �les in Data Store� Finally� the
Query Composer generates a well�formed CPL query from a graphical speci�cation�

There are three layers in the use of this system � the Thesaurus layer� Graph layer� and
CPL layer� A user can enter the system at any of these layers� An expert user may like to
enter the system at the lowest CPL layer� by directly formulating a query in CPL but in the
comfort of the graphical environment� A naive user may like to enter from the Thesaurus layer
or Graph layer� The Thesaurus layer is good for users with minimal knowledge of databases
and when only user terms are known� To map user terms to corresponding database terms�
an interactive con�rmation by the user may be needed and certain context information such as
description of database terms and containing views and databases will be available to help with
the con�rmation� Based on con�rmed database terms� the View De�nition module retrieves the
relevant portion view and schema de�nitions from the Meta Dictionary and presents it to the
user in the form of a subgraph� Then the user proceeds to formulate queries using graphical
interface functions provided by QUICK� The user can also choose to skip the Thesaurus layer
and work with the entire graph or retrieve a subgraph by manually removing the irrelevant
nodes � the Graph Layer� This is suitable for users with some knowledge of the underlying
databases�

Though the use of QUICK in the paper is based on an example from the Human Genome
Project� QUICK is a generic interface for general multidatabase applications� For a new ap�
plication running on CPL� only new Meta Dictionary and Thesaurus Dictionary need to be
created
by the DBA�� for a new application running on a multidatabase language rather than
CPL� the Query Composer also needs to be substituted� The rest of the system� as shown in
Figure �� remains unchanged� The rest of this paper is organized as follows� In Section �� we
review related interface work on multidatabase systems� In Section �� we describe the example
biological databases used in this paper� In Section �� we show how a multidatabase query can
be formulated with our prototype system QUICK using some biological databases� In Section
�� we present the coherence theory which is the basis of the correctness of our Query Composer�
The conclusion is given in Section ��

� Related Work

Most multidatabase research projects have emphasized on schema con�ict resolution� query
optimization� query processing and concurrency control� Query formulation for multidatabase
systems has been predominantly textual� For example� see
��� ��� ���� Most aim to perform

�

query transformation and optimization� but have much neglected the graphical user interface
aspect of multidatabase systems�

Graphical user interface� which has evolved from textual languages to the WIMP
Win�
dows� Icons� Menus� Pointing devices� metaphor� is a mature research area for single database
systems� A large number of graphical user interfaces already exist� mostly based on the popular
relational databases
for example� SUPER
��� and CANDID
����� There has been a growing
number of graphical user interfaces for object�oriented databases� e�g��
��� ��� ��� ��� Most of
these interface work focus on schema editing operations and navigations� and translation from
a graphical speci�cation into a query program is mostly on a single database system based on
the relational model�

The multidatabase graphical user interface in
��� uses the object�oriented approach to
structure its databases� Standard retrieval functions are available for accessing objects� However�
the user is still responsible to explicitly specify which databases� object classes and operations
to invoke� Each instance of a class or attribute is returned in a separate window� which could
be a problem if there are many instances to be returned� In our approach� the thesaurus helps
naive users to immediately scope down to relevant views and relationships� Join and selection
conditions can be added dynamically and the results are returned in a nested relation in one
window�

� Biological Data Sources

In this paper� the query speci�cation by QUICK will be demonstrated through an example
based on two biological data sources� namely� GDB
Genome Database� and GenBank
����
GDB is a Sybase relational database that supports biomedical research� clinical practice and
professional and scienti�c education by providing human gene mapping information� It is an
international collaboration sponsored by biomedical funding agencies worldwide� GenBank is a
genetic sequence database which is a collection of all known DNA sequences� We will be accessing
GenBank via Network Entrez which is a retrieval program for a specially formatted text �le that
contains all information of GenBank in a certain release� An average record in this source has
over �� levels of nesting and over ��� di�erent kinds of subobjects� These databases are part of
the Human Genome Project whose primary aim is to identify all genes in the human genome
and to sequence � billion bases of DNA that comprise the human genome� These biological
sources are chosen for two reasons� First� it is an open research problem to integrate these
genome databases well
see
����� Second� databases in the Human Genome Projects are among
the most complex and diverse information sources in the world� The study on such applications
will have general implications on a total solution�

Important genomic data exist in a number of distributed databases� e�g�� GDB is hosted at
The John Hopkins University at Baltimore� Maryland� whereas GenBank is located at National
Center for Biotechnology Information which is part of National Library of Medicine which is in
turn part of National Institute of Health at Washington� D� C� They also exist in a number of
di�erent formats� For example� GDB is a Sybase relational database and GenBank is a data
source consisting of structured �les in the ASN��
Abstract Syntax Notation� format� These are
just two of the databases in the Human Genome Project� It was noted in
�� that structured
�les in various formats are adopted in preference over database management systems for the

�

following reasons� Biological data are generally complex structures in its natural form� It can
include sequential data as well as deeply nested record structures� It can also contain a number
of data types not supported in conventional databases� such as lists and variants which may
also be deeply nested� Hence it is di�cult to represent these data using the relational model�
Besides� structured �les can also be easily accessed from programs written in languages such as
C which in turn makes them easily available for a variety of platforms as well as special retrieval
packages� The constant need of database restructuring� makes object�oriented databases an
unsuitable choice� Therefore� many genomic data are best represented as free text or structured
text �les� At the same time� there is also a need to integrate these structured �les with traditional
databases�

Genomic data are not only diverse in type� but also large in size� A typical genetic database
can consist of hundreds of tables and thousands of database terms� GDB version ��� contains
close to ��� tables and approximately ����� database terms� A typical genetic query usually
requires joins spanning relations in several distributed databases� Currently� there are many
special�purpose HTML forms available on the internet such as the Entrez Browser
��� Query
Forms for searching data in GDB
��� ��� ���� As these interface tools only put certain aspects
of the data online� they do not allow �exible access to all the data available� Although powerful
query languages such as CPL o�er �exible access to these data sources� they often require strong
syntax and semantic knowledge of the language before a query can be formulated� QUICK is
one step towards a more �exible and friendly interface to multiple sources in such applications�

� An Application with QUICK

Since CPL is the target query language of QUICK� we give a brief introduction to it�
CPL uses the comprehension syntax
��� A CPL query has the form

f e j GF�� ���� GFn g

called a comprehension� GFi is of the form ny �� R or is a condition such as �y��name �
z��name	� e is an expression for the result to be returned� A CPL query can be read in a way
similar to tuple calculus� �The set of all e such that GF�� ���� GFn�	

XXX� Please thoroughly explain y� z� R� �� and
For example� in the expression

���name�m� �matric	no�n
 � ��name��m��matric	no��n�

 �� STUDENT��

where nm is a simple pattern that matches anything and binds it to �m	� Subsequent references
to �m	 will use this binding� The same goes for nn � ����	 matches anything� � marks labels
or attribute names� Thus� the above expression matches each tuple in STUDENT partially�

XXX� does the above computes the projection of STUDENT on name and matric no! If
so� explicitly say so�

A �primitive	 is analogous to the concept of a function in programming languages� For
example� the primitive below adds one to its argument� and the statement �addone
���	 invokes
the primitive and the returned result will be ��

�Database restructing occurs when new experimental techniques are developed or new generalization and

higher order biological laws are discovered�

�

primitive addone �� �x �� x � �

In CPL� the construct for sending a request e to a server N has the form

�cpl�process� �e� �cpl�using� �N�

Comments are indicated by �"	�

A Real Application

Consider the following four views in Figure � derived from databases GDB and GenBank�
View GDB�locus contains the locus summary information� View GDB�object genbank eref con�
tains the class description of genes� View GDB�locus cyto location contains the information
about chromosomes� View GENBANK�entrez summary contains the GenBank summary� The
�rst three views are related through identi�ers locus id and object id� and the second and
fourth views are related through attributes genbank ref and accession� Relating attributes share
a common domain and are links for specifying across�view queries� The CPL de�nitions of
views� created by the DBA in the Meta Dictionary� are given below� In our convention� each
view name has the form �DBname�Viewname	� So� GDB�locus means the view locus derived
from database GDB� It is also possible that a view is derived from more than one database�
GENBANK�entrez summary is one such example� It contains information from both GDB and
GenBank but the main information
summary� comes from GenBank� Therefore� we still call it
GENBANK�entrez summary� By leaving out �DBname	� the user will be completely unaware
of the location of each view� However� for clarity� we include database names as part of node
names in the display�

The following are the CPL de�nitions of the �rst three views in Figure �� These de�nitions are kept
in the Meta Dictionary and are automatically referenced by QUICK through involved database terms�
That is� the user does not need to input them at all�

primitive GDB�locus ��

� ��locus�

�locus�id� x	�locus�id

�locus�loc�summary� x	�locus�loc�summary

�locus�name� x	�locus�name

�locus�symbol� x	�locus�symbol�� �

x �� process �select � from locus l where ���� using gdb ��

XXX� � one line comment for the above	 explain what is locus � and ����

primitive GDB�object�genbank�eref ��

� ��object�genbank�eref�

��genbank�ref� x	�genbank�ref

�object�class�key� x	�object�class�key

�object�id� x	�object�id�� �

x �� process �select � from object�genbank�eref o where ���� using gdb ��

XXX� � one line comment for the above

�

View Name Attributes Attribute Description

GDB�locus locus id unique internal identi�er for a locus�
locus loc summary summary listing of the cytogenetic

location for the locus�
locus name HGM�approved name given to de�

scribe this locus�
locus symbol HGM�approved symbol given to de�

scribe this locus�
GDB�object genbank eref genbank ref GenBank accession number� that is�

an external identi�er�
object class key number key indicating the type of

database object� For locus object�
this number is ��

object id unique internal identi�er for this
object�

GDB�locus cyto location loc cyto band end cytogenetic band at the qter end of
the locus location

loc cyto band start cytogenetic band at the pter end of
the locus location�

loc cyto chrom num chromosome number on which the
locus is located�

locus id unique internal identi�er for a locus�
GENBANK�entrez summary accession accession number�

uid internal identi�er used by GenBank
title name for this accession�

Figure �� The views of each node in the subgraph of Figure �

primitive GDB�locus�cyto�location ��

� � �locus�cyto�location�

��loc�cyto�band�start� x	�loc�cyto�band�start

�loc�cyto�band�end� x	�loc�cyto�band�end

�loc�cyto�chrom�num� x	�loc�cyto�chrom�num

�locus�id� x	�locus�id�� �

x �� process �select � from locus�cyto�location l where ���� using gdb ��

XXX� � one line comment for the above

The last of the four views in Figure � is more complicated� For each GDB accession in the GDB
database� the view retrieves the entrez summary in the GenBank database through the network entrez�
This provides a cross reference between GDB and GenBank on nucleic acid entries� The condition

object class key � �� speci�es human genes�

primitive GENBANK�entrez�summary �� �

� �entrez�summary� � �accession� x
 �uid� u
 �title� t � � �

� �accn�
x � ��

process �select distinct accn � o	genbank�ref

from object�genbank�eref o

where o	object�class�key � ��

�

using gdb

� �title�
t
 �uid�
u
 			 � ��

process � �db� �na�

�args� ��D�

�path� �Seq�entry�

�select� �accession � � x �

using entrez ��

XXX� � one line comment here

Suppose that we wish to answer the following query� Retrieve the GenBank summary and locus

summary information about human genes on chromosome ��p���

Figure �� Part of chromosome �� showing the p�� band�

The steps to specify the query using QUICK are described below�
Step �� Specify the user terms� The user enters terms in his
her own world through the

Thesaurus module� For the above query� user terms are entered through the following SQL�like statement

SELECT summary
locus
human genes
 chromosome

WHERE chromosome��� and band start�p��

where
locus��
human genes��
summary��
chromosome��
band start� are user terms� which are
mentioned� explicitly or implicitly� in the query either as the data to be retrieved or as the constraint
of such data� If the user further knows that these information are contained in databases
GDB� and

GenBank�� he
she may enter these database names in a
WITHIN� sub�statement� Both
WHERE�
and
WITHIN� are optional�

There are important di�erences between a standard SQL statement and the above SQL�like state�
ment� First� all terms in the above statement are user terms� not database terms� Second� the above
statement does not have the
FROM� sub�statement because the user is not required to know the views
or nodes containing the required data� In other words� through the above statement the user speci�es
what is wanted in his
her own terms as if there were a universal relation containing all data items� It is
the job of the Thesaurus modules to map the user terms to database terms� with some degree of inter�
action with the user� and to decide and retrieve views containing the required data� which are nodes in
graphs contained in the Meta Dictionary� For this example� the Thesaurus module will retrieve �i� the
node GDB�locus �containing the locus summary information� due to user terms
locus� and
summary��
�ii� the node GDB�locus cyto location �containing the cytogenetic location information for locus objects�
due to user terms
locus��
band start� and
chromosome�� �iii� the node GDB�object genbank eref
�containing an attribute for restriction to human genes� due to user term
human genes�� Since node

�

GENBANK�entrez summary provides a cross reference between GDB and GenBank on nucleic acid en�
tries and contains information about locus� it is also returned� Corresponding database terms in these
nodes and their information are presented to the user for con�rmation� The con�rmed database terms
are then passed to the View De�nition module which will extract a subgraph to be displayed on the
Graphical Editor�

Step �� Edit the retrieved subgraph� The subgraph retrieved is displayed in Figure �� A list of
pre�de�ned predicates is associated with an edge� The CPL de�nitions of views for nodes and de�nitions
of predicates for edges can be examined by clicking on the edge or node� such as in Figure � and Figure
�� Frequently used predicates on edges are maintained in the Meta Dictionary� However� predicates can
be added or deleted and unwanted nodes can be deleted during a user session� Such updates are local
to the separately stored session �le� the underlying graphs in the Meta Dictionary remain unchanged�
From the displayed subgraph the user will select edges and predicates on edges to compose the query�
For the above query� three selected predicates are shown in Figure �� When the graphical editing is
completed� the query is formulated with the click of a button� A name can be given to a saved query for
later references� in our case� ENTREZ�OBJECT�CYTO�LOCUS� which is the concatenation of names of
views involved�

Figure �� A display of a subgraph in Graphical Editor

Step �� Specifying additional conditions� The additional conditions that the chro�

�

Selected edge Selected predicates with de�nitions in CPL

GDB�locus JOIN locus genbank

GDB�object genbank eref

primitive JOIN�locus�genbank �� �
L

R� ��

L	�locus	�locus�id � R	�object�genbank�eref	�object�id

andalso R	�object�genbank�eref	�object�class�key � ��

GDB�object genbank eref JOIN object cyto

GDB�locus cyto location

primitive JOIN�object�cyto �� �
L

R� ��

L	�object�genbank�eref	�object�id �

R	�locus�cyto�location	�locus�id andalso

L	�object�genbank�eref	�object�class�key � ��

GENBANK�entrez summary JOIN entrez summary object genbank

GDB�object genbank eref

primitive JOIN�entrez�summary�object�genbank ��

�
L

R� �� L	�entrez�summary	�accession �

R	�object�genbank�eref	�genbank�ref�

Figure �� The selected edges and selected predicates

mosome is No� ��� that cytogenetic band at the pter end of the locus location is �p��	� and
that only human genes are of interest� are speci�ed by selecting the �Add Condition	 function
in the �Query	 menu on the upper�left part of the window� This window displays the query
in the familiar SQL format� For example� Figure � shows the selection of four attributes from
the intermediate view ENTREZ�OBJECT�CYTO�LOCUS formulated in Step �� with additional
conditions appended to the WHERE portion of the SQL window� The resulting CPL query�
which is generated automatically by QUICK� is shown below�

� The name convention of intermdiate views� the concatenation of the

� names of individual views involved�

� Connects to databases GDB and Entrez �in GENBANK� with � connection each�

connect�to�gdb����

connect�to�entrez����

� CPL definitions of nodes and predicates involved are produced here but

� not shown� They can be found in on Page 	 and Figure
�

� �

� �

� Intermediate views ��

� The first intermediate view between GENBANK�entrez�summary and

� GDB�object�genbank�eref generated by the Query Composer�

��

Figure �� Information on the edge� by double
clicking the edge�

Figure �� Information on the view� by double
clicking the node�

primitive ENTREZ�OBJECT ��

� �entrez�summary� x��entrez�summary�

�object�genbank�eref� y��object�genbank�eref � �

�x �� GENBANK�entrez�summary�

�y �� GDB�object�genbank�eref�

JOIN�entrez�summary�object�genbank�x�y�

��

� The second intermediate view between ENTREZ�OBJECT and

� GDB�locus�cyto�location generated by the Query Composer�

primitive ENTREZ�OBJECT�CYTO ��

� �entrez�summary� x��entrez�summary�

�object�genbank�eref� x��object�genbank�eref�

�locus�cyto�location� y��locus�cyto�location � �

�x �� ENTREZ�OBJECT�

�y �� GDB�locus�cyto�location�

JOIN�object�cyto�x�y�

��

� The third intermediate view �also the final view� between

� ENTREZ�OBJECT�CYTO and GDB�locus generated by the Query Composer�

�

� User specified conditions are inserted in this final view�

� �locus�cyto�location��loc�cyto�band�start � �p��� is to specify that

� only p�� band is required�

� �locus�cyto�location��loc�cyto�chrom�num � ���� is to specify that

� only chromosome �� is required�

primitive ENTREZ�OBJECT�CYTO�LOCUS ��

��

Figure �� Adding the �rst condition� Figure �� All conditions added�

� �locus� x��locus�

�entrez�summary� y��entrez�summary�

�object�genbank�eref� y��object�genbank�eref�

�locus�cyto�location� y��locus�cyto�location � �

�x �� GDB�locus�

�y �� ENTREZ�OBJECT�CYTO�

JOIN�locus�genbank�x�y��

y��locus�cyto�location��loc�cyto�band�start � �p����

y��locus�cyto�location��loc�cyto�chrom�num � ����

��

� The invocation statement�

ENTREZ�OBJECT�CYTO�LOCUS�

The CPL engine comes with an optimizer which will automatically avoid materializing
intermediate views as well as migrating joins� selections and projections on GDB to the remote
server
see
��� ��� ���� Therefore� QUICK only needs to generate queries that are clear and easy
to understand�

Step �� Getting the result� The generated query can be executed with the click of a
button� The result is returned in a window as a nested relation� An example of the result is
shown below�

� 			

�locus� �locus�name� �centromere protein B ���kD��

locus�symbol� �CENPB�

locus�id� ��

locus�loc�summary� ���p����

entrez�summary�

�accession� �X������

��

uid� �����

title� �Human hCENP�B gene for centromere

autoantigen B �CENP�B���

object�genbank�eref�

�genbank�ref� �X������

object�class�key� �

object�genbank�id� �����

object�id� ���

locus�cyto�location�

�loc�cyto�band�start� �p���

loc�cyto�band�end� ��

locus�id� ��

loc�cyto�chrom�num� ������

			 �

In the above example� the user�s e�ort of specifying a query is reduced to three steps�
that is� specify user terms� select nodes or edges at the con�rm of their on�line de�nitions�
and specify additional conditions� Thesaurus and browsing capabilities help the user to quickly
and easily recall exact terms� Any
generic� joins between nodes will be depicted graphically�
Most predicates needed for join conditions will probably be already available or it can be easily
incorporated into the graph� With QUICK� minimal knowledge of underlying databases and
CPL are required because the process of transacting a graphical speci�cation to a CPL query is
automated�

Other than the features shown above� a great deal of e�orts are made towards a user�
friendly graphical editor� Here are a few of them� The top menu bar of Figure � contains options
�File	� �Query	� �Edit	� and �Help	� QUICK allows to save the current session and retrieve
a saved session for further editing work in a later time� The �File	 menu contains commands
for saving and retrieving a session �le� After the user �nishes the graphical speci�cation of
the query� he�she may choose to translate the speci�cation to a named CPL query� or edit the
query manually within QUICK� or run the query� These functions are contained in the �Query	
menu� Named queries can be further manipulated using the set functions �Union	� �Intersect	
and �Di�erence	 displayed on the right side of Figure �� The menu �Edit	 contains additional
graphical functions� Among them� �Abstract	 and �Unabstract	 allow the user to collect a
set of nodes together under one node or reverse the operation� thus enabling the user to hide
away irrelevant portions for a while and put them back on the screen when required� �Zoom
In	 and Zoom Out	 zoomed in or out a portion of a graph in a separate window� �Clear All
Selection	 cancels selection of nodes� edges� and predicates� �Undo	 undoes the most recent
graph operation� Nodes and edges can be moved around or deleted and the graph can be scaled
in size to a level conformtable to the user� The �Help	 option will bring up the help information
on various topics in the form of hypertext links� Finally� most frequently used functions in
�File	� �Query	� �Edit	 menus are explicitly displayed below these menus so that only a single
click is needed to use these functions�

��

� The Coherence of Graphs

So far� the user selects nodes and edges without concerning the order of selection and the Query
Composer processes selected edges in an order that may or may not correspond to the user
selection order� A fundamental question is whether the query result depends on the order of
processing edges� This question arises because predicates on edges are general� not necessar�
ily natural join predicates� For example� we can de�ne �is�blast�homolog�of	 as a predicate
which executes the NCBI BLAST�
National Center for Biotechnology Information Basic Local
Alignment Search Tool� program to check whether a given gene is homologous� to another� For
general predicates� the query result may depend on the processing order of edges� therefore�
a subgraph alone does not specify a unique query� We propose the notion of �coherence	 to
capture the independence of the result with respect to the order of processing edges� First� we
need a formal de�nition of �graphs	�

De�nition ��� �Graph	 A graph G consists of a �nite set of nodes V and edges E� such that
the following are satis�ed�

�� A set is attached to each node which is a view de�ned on some relations� The set has the
type f � d� � r�� ���� dn � rn � g� where each di is a view name and each ri is the set of
attribute names under the view di� The order of di	s are not important� A basic node has
the form f � d � r � g�

� An edge connects two nodes only�

�� An edge cannot connect two identical nodes� By renaming of nodes this can be satis�ed�

�� An edge is visible if and only if both its end nodes are visible�

� An edge has an orientation� that is� the left and right nodes of an edge are precisely de�ned
so that any predicate on it is oriented with respect to this edge�

�� An edge has a predicate p � s� t � B which takes the left and right nodes of type fsg and
ftg as arguments and returns a boolean value�

�� Each view name di appears at most once in G� This property can always be satis�ed by
renaming of view names�

Two nodes may have multiple edges connecting them� The user can select more than one
edge between two nodes and specify a relationship among the selected edges� i�e�� conjunctively�
disjunctively� ��� etc� In our implementation� however� there is at most one edge between any two
nodes so as to make the graph look neater� However� this causes no loss of generality because
predicates associated with multiple edges can be represented by a predicate associated with
one edge� For instance� suppose that between nodes A and B there are three edges that have

�BLAST is a heuristic search algorithm employed by BLAST programs� The BLAST programs are tailored

for sequence similarity searching � for example to identify homologs to a query sequence�
�Two sequences are homologous if they are �similar��

��

predicates p�� p�� p�� respectively� and suppose that the user selects
p� � p�� � p� relationship
among these predicates� Then the three edges between A and B can be replaced with one edge
that has predicate
p��p���p�� Edge is associated with a list of predicates and only the selected
predicate is used for the edge�

Graph Transformations

Assume that a subgraph and associated predicates are selected by the user� The Query
Composer generates the query based on the following graph transformation� At each step� one
edge in the selected subgraph is reduced to one node� For example� in Figure �� the reduction
on edge connecting X� and X� will result in a new node N being formed� The set attached to
N is the one that satis�es the selected predicate P�� on edge
X�� X��� The edges
X��X�� and

X��X�� now become
X��N� and
N �X��� respectively� Figure �� shows how the properties
of a graph in De�nition ��� are preserved by one step transformation� Assume that V �� is the
view attached to node X� with attributes A� to Ai� V �� and V �� are views attached to node
X� with attributes B� to Bj and C� to Ck respectively� Views V ��� V �� and V �� are attached
to the new node N � The attribute names remain attached to the respective view names� Thus�
the type of the set attached to N remains in the form f
 d� � r�� ���� dn � rn � g� where each
di is a view name and each ri is the set of attribute names under the view di� Therefore� the
transformation preserves all properties of a graph required in De�nition ��� and the result is
also a graph�

L

R

L R

X2

L

R

L R
X3 X4

L R

L

R

N

X3 X4

R

L

P13 P32P13P32

X1
P12

Figure ��� One transformation� L and R denote left and right ends of an edge

X1 X2

v11

A1 Ai

v21

B1 Bj C1 Ck

v11

A1 Ai

v21

B1 Bj C1 Ck

N

...

v22 v22

Figure ��� The new node type after one transformation

De�nition ��
 �Transformation	 Given a graph G
V�E� and an edge
X�� X�� in G� G is
transformed into a graph G�
V �� E �� with respect to
X�� X�� if

��

�� The two nodes are discarded and a new node is created� that is�

V � � V n fX�� X�g� fNg�

where N is the new node�

� The set attached to N is

f �s� t� j s � S�� t � S�� P��
s� t� g�

where S� is the set attached to X� and its type is f � d� � r�� ���� dn � rn � g� S� is the
set attached to X� and its type is f � dn�� � rn��� ���� dm � rm � g� P�� is the predicate
selected for edge
X�� X���

�� The set of new edges E� are obtained from E as follows� Remove edges connecting to X� or
X�� For each edge that has only one end connecting to X� or X� in E� add corresponding
edge which connects to the new node N instead of X� or X�� That is�

E� � E n f �Xi� Xj� j i � f ��
 g or j � f ��
 g g �
f �N � Xi� j �X�� Xi� � E or �X�� Xi� � E and i �� f ��
 g g �
f �Xj� N� j �Xj� X�� � E or �Xj� X�� � E and i �� f ��
 g g

�� Predicates attached to edges remain unchanged�

Let # denote the above transformer� We denote the above graph G�
V �� E�� by #G
X�� X���

Theorem ��� The graph transformer # de�ned above is commutative and associative� That is�

�� #G
X�� X�� � #G
X�� X��� and

� #�G�X��X��
X��� X�� � #�G�X��X��
X�� X���� where X�� is the new node that results
from #G
X�� X�� and X�� is the new node that results from #G
X�� X���

We omit the straightforward proof from the de�nition of transformation� Let �� denote
one step transformation and ��

� denote zero or more step transformation�

De�nition ��� �Coherency	 A graph G is coherent with respect to a graph transformer # if
whenever G �� G� and G �� G� then there exists G� such that G� �

�

� G� and G� �
�

� G��

The following corollary follows immediately from this de�nition�

Corollary ��� If a graph G is coherent with respect to a graph transformer� the attached set
and type for the �nal graph containing only one node are uniquely de�ned� In other words� the
�nal result is independent of the order of applying transformations�

Luckily� every graph as de�ned in De�nition ��� is coherent with respect to the above
graph transformer� as shown below�

��

Theorem ��
 A graph is coherent with respect to the above graph transformer #�

The proof of this result proceeds by a case analysis� Suppose that the original graph is
G and it can be transformed to G� and G� in one step� There are three cases to consider�
The �rst case is when G� � #G
X�� X�� and G� � #G
X�� X��� Then G� � G� follows by
commutativity of #� The second case is when G� � #G
X�� X�� and G� � #G
X�� X��� Let
G�� � #G�
X��� X��� where X�� is the new node in G�� Let G�� � #G�
X�� X���� where X��
is the new node in G�� Then G�� � G�� follows by associativity of #� The third and �nal case
is when G� � #G
X�� X�� and G� � #
X�� X��� with X�� X�� X�� and X� distinct� Let
G�� � #G�
X�� X�� and G�� � #G�
X�� X��� It is straightforward to verify using the de�nition
of # that G�� � G��� This completes the case analysis�

Since a graph is �nite� regardless of the order of processing edges� for each connected
component of n nodes there will be a �nal resulting node whose attached set and type are
de�ned below

Attached set�

f
s�� ���� sn� j s� � S�� ���� sn � Sn� Pij
si� sj� � TRUE� � 	 i � j 	 n g�

where Si is the set attached to node i and Pij
si� sj� is TRUE if there are no edges between
nodes i and j� otherwise Pij
si� sj� is the predicate selected between nodes i and j taking into
account their orientations�

Attached type�

f
 d�� � r��� ���� dm�

� � rm�

� � d�� � r��� ���� dm�

� � rm�

� � ���� d�n � r�n� ���� dmnn � rmnn � g�

where dji is a view attached to node i and r
j
i is the set of attributes attached to the view d

j
i � Since

the result set is uniquely de�ned� it does not matter which edge is chosen �rst and processed
next� See Figure �� for an illustration�

Two implications follow from Corollary ��� and Theorem ���� First� the query result of
a graph is unique and thus well�de�ned� Second� the query optimizer of CPLTCL engine has
the freedom to rewrite the join order of a CPL query generated by QUICK for the purpose of
optimizing query processing� This lays down a sound theoretical basis for our interface design
and query optimization�

� Conclusion

A preliminary prototype interface to multiple autonomous heterogeneous databases� called
QUICK� is implemented� QUICK translates a graphical speci�cation into well�formed CPL
primitives that can be run on the CPL�Kleisli system� Graphical functions are supported to
allow the generated query to be enhanced or modi�ed to suit speci�c needs� Though the use
of QUICK is based on an example from the Human Genome Project� the interface is generic in
the sense that for a new application running on CPL� only new Meta Dictionary and Thesaurus
Dictionary need to be created� for a new application running on a multidatabase language rather
other CPL� the Query Composer also need to be substituted� The rest of the system remains
unchanged� Clearly� the study on such applications will have general implications on a total
solution�

��

DB1-View1 DB2-View2

DB3-View3

DB3-View3

New_Node_1

New_Node_2

L R

L

RL

R

P12

P32P13

L

R L

R

P32P13

S1 is the set attached to DB-View1

S2 is the set attached to DB-View2

S3 is the set attached to DB-View3

DB1-View1 has type of the form { (d1 : r1) }

DB2-View2 has type of the form { (d2 : r2) }

DB3-View3 has type of the form { (d3 : r3) }

ASSUME:

New Node 1 has type of the form { (d1 : r1, d2 : r2) }

New Node 2 has type of the form { (d1 : r1, d2 : r2, d3 : r3) }

= { (s, t) | s is in S12, t is in S3, P13(s,t), P32(t,s) }

S12 = { (s, t) | s is in S1, t is in S2, P12(s,t) }

S12 is the set attached to New_Node_1

Figure ��� An illustration of two step transformation

Like other interface work� QUICK does not have much formal theory due to the nature
of this type of work� However� several principles of designing a user�friendly interface have
been addressed� that is� no requirement of the user to know the exact database terms� no
requirement of the user to learn a new multidatabase language� a graphical representation is
generally preferred to a textual one� etc� These principles serve the foundation for the interface
design�

Many experiments and runs show that QUICK has been very e�cient in helping the user
to formulate a correct query quickly� To understand this better� think what a naive user of a
multidatabase may do without QUICK� First� the user has to �nd the exact database terms and
databases for the data items interesting to him� In the case of the biological data sources
in
particular� GDB version ����� this means that the user has to search through over ��� pages of
schema documents� which contains close to ��� tables and approximately ���� database terms�
and follow links among tables� In most cases the search is very slow because most multidatabase
users are occasional users and are not familiar with structures of remote databases� The second
painful step is to learn a multidatabase language for specifying the query� This language is
usually di�erent from the user�s home database languages� After the query program is written
and submitted for compilation� the user realizes there are a lot of syntax errors in his�her
program� So the third step is to debug the query program� Lastly� the query is run� The user
examines the result and �nds the result is not something that he expects� Then the cycle of the
four steps restarts� until the user is satis�ed with the result�

On the other hand� QUICK helps the user in every of the above four steps� With QUICK�
the user does not need to look through the ��� pages document� instead� the user inputs the
data items in his�her own familiar terms� The Thesaurus will do the search and �nd the
exact database terms� Relevant database schemas are presented to the user in a graphical form

��

with detailed explanation available at a click of button� Then the user constructs the query
through selecting nodes and edges� which are automatically translated into CPL programs� The
automatic translation is important because the user does not have to learn a new language and
deal with syntax errors� Restarting the cycle means simply editing a saved �le graphically�

In all experiments with QUICK performed� the gain over the conditional textual query
speci�cation is obvious� For example� a user with some domain knowledge in the biological
application needs hours� sometime days� to search for the data sources� learn the CPL language
and specify a query correctly� whereas the same user needs less than half an hour to specify the
same query� The key point is that multidatabases are usually very large and diverse in format
and location� For such applications� an on�line graphical interface with an intelligent search
mechanism
such as the Thesaurus� is probably the only solution�

As the future work� we plan to conduct more intensive and broad experiments with QUICK
on large and real world applications� We also intend to study and extend the expressiveness
of queries that can be formulated in QUICK� The ultimate goal of QUICK is to provide a
user�friendly interface for querying large heterogeneous databases such as genome databases�

References

�� John Boyle� John E� Fothergill� and Peter M�D� Gray� Design of a �D User Interface to
a Database� In Proceedings of the
nd International Workshop on Interfaces to Database
Systems� pages �������� Lancaster University� July �����

�� M�W� Bright� A�R� Hurson� and Simin H� Pakzad� A Taxonomy and Current Issues in
Multidatabase Systems� Computer� ��
��������� March �����

�� Peter Buneman� Susan Davidson� Kyle Hart� Chris Overton� and Limsoon Wong� A Data
Transformation System for Biological Data Sources� In Proceedings of
�st International
Conference on Very Large Data Bases� pages �������� Zurich� Switzerland� August �����

�� Peter Buneman� Leonid Libkin� Dan Suciu� Val Tannen� and Limsoon Wong� Comprehen�
sion Syntax� SIGMOD Record� ��
��������� March �����

�� Hock Chuan Chan� Graphical Entity Relationship Query Languages� Technical Report
TRA����� Department of Information Systems and Computer Science� National University
of Singapore� Kent Ridge� Singapore ����� Jan �����

�� The Collection Programming Language Home Page
URL�http���www�cis�upenn�edu�
khart�cpl�cpl�html�

�� Susan Davidson� Chris Overton� and Peter Buneman� Challenges in Integrating Biological
Data Sources� Journal of Computational Biology� �
��� ����� In press�

�� Entrez Browser
URL�http���www��ncbi�nlm�nih�gov�Entrez�index�html�

�� The Genome Database
URL�http���gdbwww�gdb�org��

��

��� GDB Quick Search
URL�http���gdbwww�gdb�org�gdb�shortcuts�html�

��� GDB Query Forms for search Public Data
URL�http���gdbwww�gdb�org�gdb�queryPublic�html�

��� GDB Query Forms for search Public Data
URL�http���gdbwww�gdb�org�gdb�queryPrivate�html�

��� The National Center for Biotechnology Information
URL�http���www�ncbi�nlm�nih�gov��

��� Nathan Goodman� Research Problems in Genome Databases� In PODS� May �����

��� J� Grant� W� Litwin� N� Roussopoulos� and T� Sellis� Query Languages for Relational
Multidatabases� The Int	l Journal on Very Large Data Bases� �
����������� April �����

��� Yong S� Jun and Suk I� Yoo� A Graph�based Graphical User Interface for Object�Oriented
Databases� In Proc� of the ���� Int	l Conf� on Object�Oriented Information System� of
Data� pages �������� London� England� �����

��� The Kleisli Project
URL�http���sdmc�iss�nus�sg�kleisli�kleisli�kleisli�html�

��� R� Krishnamurthy� W� Litwin� and W� Kent� Interoperability of Heterogeneous Databases
with Schematic Discrepancies� In Proc� First Int	l Workshop� on Interoperability in Multi�
database Systems� pages �������� �����

��� W� Litwin and A� Abdellatif� An Overview of the Multi�Database Manipulation Language
MDSL� Proc� of the IEEE� ��
����������� May �����

��� Simon Monk� A Graphical User Interface for Schema Evolution in an Object�Oriented
Database� In Proc� of the
nd Int	l Workshop on Interfaces to Database Systems�� pages
�������� Lancaster University� �����

��� Anne Ngu� Lingling Yan� and Limsoon Wong� Heterogeneous Query Optimization using
Maximal Subqueries� In Proceedings of �rd International Symposium on Database Systems
for Advanced Applications� pages �������� Taejon� Korea� April �����

��� Martin H� Rapley and Jessie B� Kennedy� Three Dimensional Interface for an Object
Oriented Database� In Proc� of the
nd Int	l Workshop on Interfaces to Database Systems��
pages �������� Lancaster University� �����

��� M� Schneider and C� Trepied� Extensions for the graphical query language CANDID� In
Proc� of IFIP
nd Working Conf� on Visual Database Systems� pages �������� North�
Holland� Netherlands� �����

��� Stefano Spaccapietra and Zahir Tari� Super � A comprehensive approach to Database
Visual Interfaces� In Proc� of IFIP
nd Working Conf� on Visual Database Systems� pages
�������� North�Holland� Netherlands� �����

��

��� Elizabeth R� Towell and William D� Haseman� Implementation of an Interface to Multiple
Databases� Journal of Database Management� pages ������ Spring �����

��� Limsoon Wong� Normal Forms and Conservative Properties of Query Languages over Col�
lection Types� In Proceedings of �
th ACM Symposium on Principles of Database Systems�
pages ������ Washington� D� C�� May �����

��

