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ABSTRACT
Biosequences typically have a small alphabet, a long length,
and patterns containing gaps (i.e., “don’t care”) of arbitrary
size. Mining frequent patterns in such sequences faces a dif-
ferent type of explosion than in transaction sequences pri-
marily motivated in market-basket analysis. In this paper,
we study how this explosion affects the classic sequential
pattern mining, and present a scalable two-phase algorithm
to deal with this new explosion. The Segment Phase first
searches for short patterns containing no gaps, called seg-
ments. This phase is efficient. The Pattern Phase searches
for long patterns containing multiple segments separated by
variable length gaps. This phase is time consuming. The
purpose of two phases is to exploit the information obtained
from the first phase to speed up the pattern growth and
matching and to prune the search space in the second phase.
We evaluate this approach on synthetic and real life data
sets.

Categories and Subject Descriptors: H.2.8 [Data-
base Applications]: Data Mining; J.3 [Life and Medical Sci-
ences]: Biology and Genetics

General Terms: algorithms, management, performance
Keywords: algorithm, bioinformatics, frequent pattern,

pruning technique, sequence, sequential pattern

1. INTRODUCTION
One important problem arising from bio-applications is

the discovery of sequential patterns that occur in many biose-
quences in a given database (i.e., DNA or protein sequences).
Such “frequent patterns” typically correspond to residues
conserved during evolution due to an important structural
or functional role. Finding frequent patterns often is the
first step in sequence analysis such as classifying sequences,
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extracting species-specific features, identifying transcription
factor binding sites, etc. The focus of this paper is scalable
techniques for mining frequent patterns from a large data-
base of biosequences.

In biology, various tools have been developed for search-
ing for similarity among biosequences. A well known tool is
BLAST [4]. The idea is aligning sequences so that similarity
can be revealed in the presence of small variations in posi-
tion. Sequential pattern mining developed in data mining
searches for all frequent patterns in “transaction sequences”
motivated in marketplaces, see [6, 18, 10, 17, 16, 15] for ex-
ample. A transaction sequence can be a purchase sequence,
a web link click stream, etc. The focus of those works is
on the scalability on large databases. A natural solution is
to sequential pattern mining to biosequences. Our experi-
ments show that this solution does not scale because of the
following features for biosequences.

Small alphabet. Biosequences have a very small alpha-
bet, i.e., 4 for DNA sequences and 20 for protein sequences,
and many short patterns occur in most sequences. In con-
trast, transaction sequences have a large alphabet, ranging
from 1,000 to 10,000, and only a tiny fraction of items oc-
curs in a transaction sequence. With most items occurring
in every biosequence, pruning strategies and data structures
based on the sparsity or absence of items, such as the hash-
tree [18, 17] and the idlist/bitmap representation [6, 16], are
not effective for biosequences.

Long sequence length. A biosequence has a typical
length of few hundreds, sometime thousands 1. In contrast,
a transaction sequence has a typical length from 10 to 20. A
long sequence (especially, with a small alphabet) often con-
tains long patterns. The classic sequential pattern growth
of one item at a time, as in [?, 16, 18, 15], requires many
database scans and high frequency of pattern matching.

Gapped patterns over long regions. Biosequence pat-
terns have the form of X1 ∗ · · · ∗ Xk spanning over a long
region, where each Xi is a short region of consecutive items,
called a segment, and * denotes a variable length gap cor-
responding to a region not conserved in the evolution. The
presence of * implies that pattern matching is more permis-
sible and involves the whole range in a sequence.

These features create a different type of explosion of pat-
terns. In this paper, we study the effect of these features
on the classic sequential pattern mining, and propose a two-
phase mining strategy to better deal with the new type of
explosion. The first phase finds frequent segments Xi effi-

1http://www.ncbi.nlm.nih.gov
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ciently by an existing technique. The second phase grows
patterns X1∗· · ·∗Xk−1∗Xk rapidly one segment at a time, as
opposed to one item at a time. The essence of this two-phase
approach is leveraging some information about Xi obtained
in the first phase to prune patterns and speed up pattern
matching in the second phase. Particularly, based on such
information, we propose indexing/compression methods to
reduce the work of pattern matching, and propose a novel
pattern enumeration scheme to prune the search space. The
details are explained in subsequent sections.

The rest of the paper is organized as follows. Section
2 reviews related work. Section 3 defines the problem and
presents an overview of our approach. Section 4 presents the
first phase of the algorithm. Section 5 presents the second
phase. Section 6 evaluates the performance of the proposed
method. Section 7 discusses possible extensions. Section 8
concludes the paper.

2. RELATED WORK
In bioinformatics, multiple sequence alignment was used

to find similarity of several sequences, see [8] for a detailed
survey on this technique. This notion is useful when an en-
tire sequence is similar, but makes no sense if the sequences
under comparison are distintly related. Pattern or motif
discovery addresses this problem by considering only regions
that are conserved among sequences. A survey of algorithms
for pattern discovery can be found in [2]. Most approaches
work only for small size problems because they enumerate
the entire solution space. Several approaches use heuristics
or structural restriction of patterns, such as maximum gaps
or pattern length allowed, to reduce the search space, but
at the expense of missing some useful patterns or sacrificing
the completeness of the results [11, 14, 9, 13].

Mining sequential patterns was studied in market-basket
analysis [6, 18, 10, 15, 17, 16], where a sequence represents
purchase transactions for a customer. Pattern matching is
by hash-partitioning of candidate patterns [18, 17], inter-
secting idlists or bitmaps of patterns [6, 16], partitioning
sequences [15]. Based on the absence of items or patterns,
these techniques aim at the type of explosion for short se-
quences over a large alphabet, but are less effective for biose-
quences that are typically long and over a small alphabet.
In addition, these methods do not take advantage of the
gapped structure X1 ∗ · · · ∗Xk for pattern pruning and pat-
tern matching.

Mining long patterns was examined for set-valued transac-
tions where each item occurs at most once [1, 7, 3]. The idea
is to lookahead longest patterns first, by extending the cur-
rent pattern with all “remaining items” [1, 7, 3]. For sequen-
tial patterns, since an item can occur repeatedly in a pat-
tern, there is no corresponding notion of “remaining items”.
Our algorithm finds all frequent patterns because sequence
analysis typically considers both support and confidence,
therefore, maximal patterns are not necessarily ranked high-
est. The sampling/bordering method [20, 19] finds the bor-
der between frequent patterns and infrequent ones using a
sample of the database, then adjusts the border on the en-
tire database. For biosequences, sampling is less effective
because sampling does not change the long sequence length
or the small alphabet size, which are the major factors for
explosion of patterns.

3. THE OVERVIEW

A database D is a collection of sequences {s1, · · · , sN}.
Each sequence si is an ordered list of items chosen from
a fixed alphabet. < si, j > denotes the jth position in a
sequence si, where j ≥ 1. A segment refers to one or more
items at consecutive positions in a sequence. A pattern has
the form X1 ∗ · · · ∗ Xn (n ≥ 1), where Xi is a segment
and ∗ denotes the variable length “don’t care” (VLDC). A
pattern X1 ∗ · · · ∗Xn matches a sequence si if each segment
Xj matches itself and each * can substitute for zero or more
items.

Useful patterns for sequences in D should occur frequently
in sequences in D, but not in other sequences. For long
sequences over a small alphabet, a segment Xi of a short
length tends to occur in every sequence, similar to “stop
words” that occur in every text document. Such trivial sim-
ilarity is not discriminating, therefore, not useful for biology
analysis. For example, it is known to biologists that a tran-
scription factor binding site has a length from 6 to 15 [12].
We can specify a minimum segment length to exclude trivial
segments.

Definition 3.1. The support of a pattern is the percent-
age of the sequences in D that contain the pattern. Given
a minimum segment length MinLen and a minimum sup-
port MinSup, a pattern X1 ∗ · · · ∗Xn is frequent if |Xi| ≥
MinLen for 1 ≤ i ≤ n and the support of the pattern is at
least MinSup. The problem of mining sequence patterns is
to find all frequent patterns.

We find all frequent patterns in two phases. The first
phase, Segment Phase, finds all frequent segments Xi sat-
isfying the minimum length. The second phase, Pattern
Phase, generates frequent patterns X1 ∗ · · · ∗ Xk using Xi

found in the first phase.
A key observation that our algorithm heavily uses is stated

as follows.
Observations. Consider a pattern

P = X1 ∗ · · · ∗Xk−1 ∗Xk

and a super-pattern of the form

P ′ = X1 ∗ · · · ∗Xk−1 ∗X ′
k or

P ′ = X1 ∗ · · · ∗Xk−1 ∗Xk ∗Xk+1,

where X ′
k contains Xk as a prefix. The following pruning

strategies hold:

Pattern Generation Pruning. If P ∗X fails to be a fre-
quent pattern, so does P ′∗X. Therefore, we can prune
P ′ ∗X.

Pattern Matching Pruning. If P ∗X fails to occur before
position i in sequence s, so does P ′ ∗ X. Therefore,
we only need to examine the positions after i when
matching P ′ ∗X against s.

To support these prunings, we need a strategy for enumer-
ating the pattern space X1∗· · ·∗Xk so that P is enumerated
before P ′, and we need to answer the following queries effi-
ciently.

Definition 3.2. A position query Q(X, s, i): given a fre-
quent segment X, a sequence id s, and a position i in s, find
the smallest start position of X in s greater than i. If such
a position j is found, return < s, j >; otherwise, return nil.
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In the subsequent sections, we present a two-phase algo-
rithm based the above ideas of Pattern Generation Pruning
and Pattern Matching Pruning.

4. SEGMENT PHASE
This phase finds all frequent segments and builds an aux-

iliary structure for answering position queries.

4.1 Finding base/frequent segments
We use the generalized suffix tree (GST) [14] to count

support of segments. The time and space needed for con-
structing the GST is O(|D|), where |D| is the total length
of the sequences in D. We extract the following information
from the GST. (1) The frequent segments of length MinLen,
Bi, called base segments, and the position lists for each Bi,
s : p1, p2, · · · , where pj < pj+1 and each < s, pj > is a start
position of Bi. (2) All frequent segments of length greater
than MinLen. Note that we do not extract position lists
for such frequent segments.

Theorem 1. The total length of position lists for base
segments is no more than the total length of sequences in D.

Proof. Consider a single sequence. No two base seg-
ments occur at the same position in the sequence (otherwise,
they are identical). Thus, the total length of the position
lists involving the sequence is no more than the length of
the sequence. The theorem follows from summing up over
all sequences.

Below, we consider two methods for answering position
queries Q(X, s, i).

4.2 Index-based querying
In this method, we build an in-memory index for the po-

sitions of base segments. First, we rewrite each frequent
segment X using base segments only. Consider two base
segments B1 and B2, such that the last k items in B1 are
identical to the first k items in B2, k ≥ 0. The k-join of
B1 and B2, denoted B1 1k B2, is the segment obtained by
overlapping the last k items of B1 with the first k items of
B2.

Corollary 1. A frequent segment X can be written into
a sequence of k-joins of base segments, 0 ≤ k < MinLen:

B1 10 B2 10 · · · 10 Bp 1k Bp+1.

Example 4.1. Table 1 shows a database of three sequences,
with the alphabet {a, b, c, d}. Let MinSup = 2/3, and MinLen =
2. The following segments are frequent:

ab(2), ac(3), acd(3), acda(2), cd(2), cda(2), da(2).

The integers in the brackets are support counts. The base
segments and their position lists are given in Table 2. ab ∗
cda occurs in s1 and s2, so is a frequent pattern. We can
write ab ∗ cda as B1 ∗ (B3 11 B4) using only base segments.
Similarly, ab ∗ acda is frequent and can be written as B1 ∗
(B2 10 B4).

We build the following index using the position lists of
base segments.

ID Sequence

s1 abacdab
s2 abcacda
s3 baacdca

Table 1: The database D

Base Segments Position Lists

B1 = ab (s1 : 1, 6), (s2 : 1)
B2 = ac (s1 : 3), (s2 : 4), (s3 : 3)
B3 = cd (s1 : 4), (s2 : 5), (s3 : 4)
B4 = da (s1 : 5), (s2 : 6)

Table 2: The position lists

SP−treesRoot Directory

(<s1,5>,ptr), (<s2,6>,nil)

(<s1,4>,ptr), (<s2,5>,ptr), (<s3,4>,nil)

(<s1,3>,ptr), (<s2,4>,ptr), (<s3,3>,ptr)

(<s1,1>,ptr), (<s1,6>,nil), (<s2,1>,nil)

B1:ab

B2:ac

B3:cd

B4:da

Figure 1: The SP-index in Example 4.1

Definition 4.1. The SP-index (Segment-to-Position in-
dex) has two components, the root directory and the SP-
trees. For each Bi, the root directory has an entry for the
root of the SP-tree for Bi. The SP-tree for Bi is a B-tree for
indexing the start positions < s, p > of Bi in all sequences
s. A leaf entry has the form (< s, p >, ptr). Unlike the
standard B-tree, ptr points to the leaf entry (< s, p′ >, ptr′)
for the next base segment in Corollary 1 if there is one, or
else nil.

Example 4.2. Figure 1 illustrates the sketch of SP-index
for the base segments in Example 4.1. Only the leaf entries
are shown. The entry (< s1, 3 >, ptr) links to entry (<
s1, 5 >, ptr) because B2 10 B4 is a frequent segment. The
entry (< s3, 3 >, ptr) links to entry (< s3, 4 >, ptr) because
B2 11 B3 is a frequent segment.

We explain how to compute a query Q(X, s, i) using the
SP-index. Let X = B1 1 · · · 1 Bm, as in Corollary 1.
We search the SP-tree for B1 (like the B-tree) using the
search key value < s, i >. Suppose that we reach a leaf
entry (< s, p >, ptr). Note that < s, p > is the smallest
start position of B1 greater than i. To check if X actually
occurs at this position, we follow the ptr link until ptr = nil.
If the linked leaf entries represent the k-join for X, return
the current position < s, p > of B1; otherwise, move to the
next leaf entry for B1 in sequence s, and repeat the above
checking. This “move and check” is repeated until either the
checking is successful, or either there is no more leaf entry
for B1 in sequence s, in which case we return nil.
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Example 4.3. Let us answer Q(acda, s1, 1) using the SP-
index in Figure 1. Note that acda = B2 10 B4. First,
we search the SP-tree for B2 using the search key value <
s1, 1 >. The search reaches the leaf entry (< s1, 3 >, ptr).
Then, we check if acda occurs at the current start position
< s1, 3 > by following the ptr link. In this case, (< s1, 3 >
, ptr) links to (< s1, 5 >, ptr) in the SP-tree for B4, which
shows that B2 10 B4 indeed occurs at < s1, 3 >. So we
return the current position < s1, 3 > of B2 as the answer to
the query.

4.3 Compression-based querying
This method compresses all positions in a non-coding re-

gion into a new item ε that matches no existing item except
*. A non-coding region contains no part of a frequent seg-
ment. We can scan each original sequence once, identify
each consecutive region not overlapping with any frequent
segment, collapse it into the new item ε. For a long sequence
and large MinLen and MinSup, a compressed sequence is
typically much shorter than the original sequence. To an-
swer the query Q(X, S, i) over a compressed sequence S, we
scan S sequentially because S is short. Note that ε in S does
not match any item in X.

Example 4.4. For the database in Example 4.1, the com-
pressed sequences for s1, s2, s3 are:

S1 : abacdab.
S2 : abεacda (c collapses into ε).
S3 : acd (ba and ca collapse into leading ε and ending ε,

which are deleted)

The compression-based querying is amenable to approxi-
mate pattern matching. We will elaborate on this in Section
7.

5. PATTERN PHASE
This phase generates all frequent patterns X1 ∗ · · · ∗ Xk

using frequent segments Xi found in Segment Phase. The
key is to organize the search space for patterns X1∗· · ·∗Xk so
that the Pattern Generation Pruning and Pattern Matching
Pruning mentioned in Section 3 can be easily exploited. The
segment tree and pattern tree defined below describe this
organization.

Segment tree (ST). The ST organizes frequent seg-
ments X into a tree so that if X is a prefix of X ′, X is
enumerated before X ′ in the depth-first enumeration of the
tree. A terminal edge is labeled by an integer k ≥ 0. A
non-root node w is labeled by a base segment Bi, and repre-
sents the frequent segment B1 10 · · · 10 Bp−1 1k Bp, where
B1, · · · , Bp−1, k, Bp are the labels on the path from the root
to w. Let seg(w) denote the frequent segment represented
by w.

Example 5.1. Figure 2 shows the ST for Example 4.1,
with wi denoting the ith node in the depth-first enumeration
of the ST. w3 represents the frequent segment seg(w3) =
B2 11 B3 = acd, where B2, 1, B3 are the labels on the path
from the root to w3. w4 represents the frequent segment
seg(w4) = B2 10 B4 = acda, and w6 represents the frequent
segment seg(w6) = B3 11 B4 = cda.

Pattern tree (PT). The PT organizes patterns X1 ∗
· · · ∗ Xk into a tree so that a super-pattern is enumerated

after a sub-pattern in the depth-first enumeration of the
tree. A non-root node v is labeled by a frequent segment
seg(wi), where wi is a node in ST, and represents the pat-
tern seg(w1) ∗ · · · ∗ seg(wk), where seg(w1), · · · , seg(wk) are
the labels on the path from the root to v. Let pat(v) denote
the pattern represented by v. Furthermore, if v1, · · · , vn are
the child nodes from left to right, with the labels seg(w′1),
· · · , seg(w′n), w′1, · · · , w′n are in the order of depth-first enu-
meration of ST.

Therefore, if (non-root node) w is the parent of w′ in
ST (therefore, seg(w) is a prefix of seg(w′)), the node for
P = X1 ∗ · · · ∗Xk−1 ∗ seg(w) is the immediate left sibling of
the node for P ′ = X1 ∗ · · · ∗Xk−1 ∗ seg(w′) in PT, therefore,
P is enumerated before P ′ in the depth-first enumeration of
PT. Below, we sketch our algorithm of using this property to
perform Pattern Generation Pruning and Pattern Matching
Pruning.

Algorithm. We enumerate patterns P = X1 ∗ · · · ∗Xk in
the order of depth-first enumeration of PT. At the current
node v in PT, we maintain the set, v.dead, of highest nodes
w in ST that failed to extend P = pat(v), i.e., pat(v)∗seg(w)
is not frequent. Following the Pattern Generation Pruning,
for each node w in v.dead, the subtree at w are pruned from
extending P . We also maintain the smallest position i of
each sequence at which pat(v) occurs. We use such posi-
tions i in the query Q(X, s, i) to restrict the region in a
sequence s when matching pat(v) ∗X against s. As we ad-
vance from v to the immediate right sibling or the first child
node v′ in the depth-first enumeration of PT, P ′ = pat(v′)
is a super-pattern of P = pat(v). Following Pattern Gen-
erating Pruning and Pattern Matching Pruning, we obtain
v′.dead as v.dead and obtain the smallest position at v′ as
the position returned by Q(X, s, i) at v.

Example 5.2. Figure 3 shows a part of PT generated us-
ing the ST in Figure 2. vi : seg(w) denotes the ith node in
the depth-first enumeration of PT, with seg(w) being the la-
bel. Initially, v1.dead = ∅. At v2, extending v1 by w1, i.e.,
pat(v1) ∗ seg(w1), is not successful, indicated by a dashed
line, so v1.dead = {w1}. At v3, pat(v1)∗seg(w2) (= ab∗ac)
is frequent. We set v3.dead to v1.dead = {w1}, At v4,
extending v3 by w2 (= ab ∗ ac ∗ ac) is not successful, so
v3.dead = {w1, w2}. At v5, extending v3 by w5 (= ab∗ac∗cd)
is not successful, so v3.dead = {w1, w2, w5}. At v6, extend-
ing v3 by w7 (= ab ∗ ac ∗ da) is successful. At v7, the label
of v3, i.e., seg(w2) = ac, is a prefix of the label of v7, i.e.,
seg(w3) = acd, so v7.dead = v3.dead = {w1, w2, w5}.

6. EXPERIMENTS
We evaluated the proposed two-phase depth-first enumer-

ation algorithm, denoted 2PDF. 2PDF-Index denotes the
index-based method and 2PDF-Compression denotes the
compression-based method. We compared these algorithms
with two sequential pattern mining algorithms developed in
the data mining field, PrefixSpan [15] 2 and SPAM [6], which
have shown superior performance on transaction sequences
compared to earlier algorithms such as [18, 17, 16]. Our
purpose is to see how these algorithms, primarily designed
for market-basket analysis, would respond to the new type
of explosion in biosequences. Since our algorithm finds the

2For PrefixSpan, we used the pseudo-projection technique
as suggested in [15], which makes PrefixSpan faster than
SPAM.
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root

w1:B1 w2:B2 w5:B3 w7:B4

w6:B4w4:B4w3:B3

0 0

1 11

Figure 2: The segment tree in Example 5.1

.......v1:seg(w1)

v3:seg(w2)

v6:seg(w7)

v2:seg(w1) v7:seg(w3)

v4:seg(w2) v8:seg(w7)v5:seg(w5)

root

Figure 3: The pattern tree in Example 5.2

Symbol Meaning in [18]

D Number of customers (number of sequences)
C Average number of transactions per customer (length of sequences)
T Average number of items per transaction (=1)
S Average length of maximal potentially frequent sequences
I Average size of itemsets in maximal potentially frequent sequences (=1)
NS Number of maximal potentially frequent sequences
NI Number of maximal potentially frequent itemsets (=N)
N Number of items (=4 or 20)

Table 3: Parameters of the data generator
Simulated category Name C S N D MinLen
DNA sequences C256S64N4D100K 256 64 4 100K 7

C128S32N4D100K 128 32 4 100K 5
Protein sequences C256S64N20D100K 256 64 20 100K 3

C128S32N20D100K 128 32 20 100K 3
Transaction sequences C20S8N10000D100K 20 8 10,000 100K 1

Table 4: Synthetic data sets

complete set of frequent patterns, we did not compare with
methods that find a subset of frequent patterns. All exper-
iments were conducted on a PC with 2GHZ CPU and 1GB
memory running the Windows 2000 Professional.

6.1 Synthetic data sets
The first set of experiments was conducted on the syn-

thetic data sets generated in [18]. Table 3 shows the para-
meters used and Table 4 shows the names of data sets. The
alphabet size N and sequence length C characterizes the ex-
plosion of search space. The data sets with N = 4 simulate
DNA sequences, the data sets with N = 20 simulate pro-
tein sequences, and the data set with N = 10, 000 simulates
transaction sequences. The DNA or protein sequences have
significantly longer average length C, i.e., 128 or 256, than
transaction sequences, i.e., 20. In general, for larger C and
smaller N , we use a larger MinLen due to more expected
local similarity. Like in [18], NS was set to 5000.

Execution time. Figures 4-7 show the result on biose-
quences. The first column shows the execution time in
logarithm scale (i.e., log10T for execution time T ) against
MinSup. For 2PDFs, this includes the time in Segment
Phase (i.e., computing frequent segments, building the SP-
index or compressing sequences) and Pattern Phase. Both

2PDF-Index and 2PDF-Compression are several orders of
magnitude faster than PrefixSpan and SPAM on long se-
quences of a small alphabet. Several factors contributed
to this speedup: the reduced frequency of pattern match-
ing because of “one segment at a time” pattern growth,
the more aggressive Pattern Generation Pruning and the
Pattern Matching Pruning. This experiment also shows
that 2PDF-Index is more scalable for a small MinSup than
2PDF-Compression. Table 6 shows the number of base seg-
ments, frequent segments, and frequent patterns for

C128S32N4D100K at MinLen = 5.

Figure 8 shows the result on the transaction data set with
the execution time in the first figure. For this dataset, we set
MinLen = 1, which is the worst case for the 2PDF meth-
ods. There are two findings. First, mining biosequences
is much more difficult than mining transaction sequences,
as indicated by the much smaller execution time and mini-
mum support here compared to Figures 4-7. Note that the
actual time is used in Figure 8 instead of the logarithm scale.
Second, the 2PDFs, though designed for long sequences of
a small alphabet, are also highly competitive on short se-
quences of a large alphabet.

Space consumption. The second column of Figures 4-8
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Figure 4: C128S32N4D100K, MinLen = 5

2

3

4

5

6

0 5 10 15 20 25

E
xe

cu
tio

n 
Ti

m
e 

(s
ec

on
ds

, l
og

ar
ith

m
 s

ca
le

)

Minimum support %

2PDF-Index
2PDF-Compression

PrefixSpan
SPAM

0

5

10

15

20

25

30

0 5 10 15 20 25

D
yn

am
ic

 S
pa

ce
 (M

B
)

Minimum support %

2PDF-Index
2PDF-Compression

PrefixSpan
SPAM

0

40

80

120

160

0 5 10 15 20 25

S
ta

tic
 S

pa
ce

 (M
B

)

Minimum support %

2PDF-Index
2PDF-Compression

Dataset

Figure 5: C128S32N20D100K, MinLen = 3
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Figure 6: C256S64N4D100K, MinLen= 7
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Figure 7: C256S64N20D100K, MinLen= 3
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Figure 8: C20S8N10000D100K, MinLen = 1
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Figure 9: Scalability wrt the database size
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Data set # sequences Min length Max length Avg length
DNA data set 122,855 200 300 254
Protein data set 192,497 150 250 198

Table 5: Biological data sets

MinSup # base segment # segment # pattern
5% 223 1288 557722
10% 142 602 471015
15% 101 313 18502
20% 91 240 6131

Table 6: Statistics for C128S32N4D100K,
MinLen=5

shows the maximum space used by the current depth-first
path in all algorithms, called “Dynamic Space”. The two
2PDFs required little dynamic space because only one posi-
tion is kept for each sequence. The last column of Figures
4-8 shows the space for storing the index in 2PDF-Index and
compressed database in 2PDF-Compression, called “Static
Space”, compared to the input database size denoted by
”Dataset”. For a small MinSup, the static space of 2PDF-
Index is high. Our current implementation stores a sequence
id repeatedly in every entry for the sequence in the SP-trees.
This static space can be significantly reduced by eliminating
this repeated store using the partial-key technique [5]. The
static space for 2PDF-Compression is much less than the
database size.

Scalability. Figure 9 shows, from left to right, the ex-
ecution time after scaling up the database size up to 500K
for three challenging data sets:

C128S32N4D100K (MinLen = 5, MinSup = 30%),
C256S64N4D100K (MinLen = 7, MinSup = 25%),

C20S8N10000D100K (MinLen = 1, MinSup = 0.2%).

The 2PDFs show a linear scalability with respect to the
database size. On the most time-consuming C256S64N4D100K
(the center figure), 2PDF-Index is superior to 2PDF-Compression.
This confirms the intuition that the index method has a bet-
ter scalability for large data sets.

6.2 Biological data sets
The second set of experiments was conducted on real life

DNA and protein sequences extracted from the web site of
National Center for Biotechnology Information 3. The DNA
data set was extracted by the conjunction of (1) search cat-
egory =“Nucleotide”, (2) sequence length range=[200:300],
and (3) data submission period=[2002/12, 2003/02]. The
protein data set was extracted by the conjunction of (1)
search category=“Protein”, (2) sequence length range=[150:250],
and (3) data submission period=[2002/12, 2003/02]. The
statistics of these data sets is given in Table 5.

Figures 10-11 show the execution time, dynamic space and
static space. The comparison of 2PDFs with PrefixSpan and
SPAM is similar to that for synthetic data sets in Section 6.1.
This experiment confirmed the superiority of the proposed
methods on real life biosequence data.

3http://www.ncbi.nlm.nih.gov

7. EXTENSION
So far, approximate matching is allowed through variable

length gaps ∗ in a pattern X1 ∗ · · · ∗Xk. We can extend ap-
proximate matching to segments Xi using the standard edit
distance measured by the number of insertion, deletion and
mutation on items to achieve exact matching. A segment
X approximately matches a segment Y if the edit distance
between X and Y is no more than the specified maximum
tolerance. A sequence s approximately contains a pattern
X1 ∗ · · · ∗ Xk if for 1 ≤ i ≤ k, Xi approximately matches
a segment Yi in s and ∗ matches zero or more item, such
that the total edit distance is no more than the specified
maximum tolerance.

The index-based method no longer works for the edit dis-
tance based approximate matching because it has to index
all “approximate base segments”, which can be too large.
The compression-based method is amenable to approximate
matching. A non-coding region now is defined as a region
that approximately matches no part of any frequent seg-
ment. The approximate matching will reduce the effec-
tiveness of compression. Such a complexity increase is ex-
pected for any method because approximate matching leads
to a larger solution space. On the other hand, approximate
matching has no impact on Pattern Generation Pruning and
Pattern Matching Pruning observed in Section 3. Therefore,
the compression-based method continues to work for approx-
imate matching, provided that the compression and pattern
matching take into account of this change.

8. CONCLUSION
Biosequences experience a different type of explosion of

search space from that for classic transaction sequences, and
traditional pruning techniques are not effective for mining
biosequences. Particularly, growing a pattern X1 ∗ · · · ∗Xk

one item at a time requires many database scans and high
frequency of pattern matching. We proposed a two-phase
algorithm to address this problem. The novelty is using the
information obtained about local patterns Xi in the first
phase to help reduce the search of global patterns X1∗· · ·∗Xk

in the second phase. Experiments on both synthetic and
real life data sets demonstrated significant speed up over
sequential pattern mining methods.

9. REFERENCES
[1] R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad,

Depth first generation of long patterns, SIGKDD,
2000.

[2] A. Brazma, I. Jonassen, I. Eidhammer, and D.
Gilbert, Approaches to the automatic discovery of
patterns in biosequences, Technical report, Department
of Informatics, University of Bergen, Norway, 1995.

[3] D. Burdick, M. Calimlim, and J. Gehrke, MAFIA: A
maximal frequent itemset algorithm for transactional
databases, ICDE, 2001.

8



3

4

5

6

7

0 5 10 15 20 25 30

E
xe

cu
tio

n 
Ti

m
e 

(s
ec

on
ds

, l
og

ar
ith

m
 s

ca
le

)

Minimum support %

2PDF-Index
2PDF-Compression

PrefixSpan
SPAM

0

20

40

60

80

100

0 5 10 15 20 25 30

D
yn

am
ic

 S
pa

ce
 (M

B
)

Minimum support %

2PDF-Index
2PDF-Compression

PrefixSpan
SPAM

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30

S
ta

tic
 S

pa
ce

 (M
B

)

Minimum support %

2PDF-Index
2PDF-Compression

Dataset

Figure 10: The real life DNA dataset, MinLen = 5
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