
Discovering Frequent Closed Partial Orders
from Strings

Jian Pei, Haixun Wang, Member, IEEE Computer Society, Jian Liu, Ke Wang,

Jianyong Wang, Member, IEEE Computer Society, and Philip S. Yu, Fellow, IEEE

Abstract—Mining knowledge about ordering from sequence data is an important problem with many applications, such as

bioinformatics, Web mining, network management, and intrusion detection. For example, if many customers follow a partial order in

their purchases of a series of products, the partial order can be used to predict other related customers’ future purchases and develop

marketing campaigns. Moreover, some biological sequences (e.g., microarray data) can be clustered based on the partial orders

shared by the sequences. Given a set of items, a total order of a subset of items can be represented as a string. A string database is a

multiset of strings. In this paper, we identify a novel problem of mining frequent closed partial orders from strings. Frequent closed

partial orders capture the nonredundant and interesting ordering information from string databases. Importantly, mining frequent

closed partial orders can discover meaningful knowledge that cannot be disclosed by previous data mining techniques. However, the

problem of mining frequent closed partial orders is challenging. To tackle the problem, we develop Frecpo (for Frequent closed partial

order), a practically efficient algorithm for mining the complete set of frequent closed partial orders from large string databases. Several

interesting pruning techniques are devised to speed up the search. We report an extensive performance study on both real data sets

and synthetic data sets to illustrate the effectiveness and the efficiency of our approach.

Index Terms—Frequent patterns, closed patterns, partial orders, strings, data mining.

Ç

1 INTRODUCTION

MINING ordering information from sequence data is an

important data mining task. Sequential pattern

mining [3] can be regarded as mining frequent segments
of total orders from sequence data. However, sequential

patterns are often insufficient to concisely capture the

general ordering information.

Example 1 (Motivation). Suppose MapleBank in Canada
wants to investigate whether there are some orders
which customers will follow to open their accounts. A
database DB in Table 1 about four customers’ sequences
of opening accounts in MapleBank is analyzed.

Although there does not exist a “global template” for
customers’ behavior, finding the frequent patterns may
help to capture their habits. Given a support threshold
min sup, a sequential pattern is a sequence s which
appears as subsequences of at least min sup sequences.
For example, let min sup ¼ 3. The following four
sequences are sequential patterns since they are sub-
sequences of three sequences, 1, 2, and 4, in DB:

CHK! MMK! MORT! RESP;

CHK! MMK! MORT! BROK;

CHK! RRSP! MORT! RESP;

CHK! RRSP! MORT! BROK:

Sequential patterns capture the frequent account
opening patterns shared by customers. However, the
four sequential patterns cannot completely capture the
ordering shared by customers 1, 2, and 4. It is easy to see
that a partial order R as shown in Fig. 1 is shared by the
three account opening sequences.

Moreover, we can make the following two interesting
and stimulating observations.

. The partial order R summarizes the four sequen-
tial patterns—the four sequential patterns are
paths in partial order R.

. The partial order R provides more information
about the ordering than the sequential patterns.
For example, R indicates that some customers
often open money market accounts and RRSP
accounts in any order, but those two accounts are
often opened before the mortgage account. One
possible business explanation for this ordering is
that, according to Canadian revenue regulation, a
person can use an amount from her/his RRSP
account free of income tax to purchase her/his
first house if some prerequisites are satisfied.
Such information is not presented in the sequen-
tial patterns explicitly.

Partial order R is shared by a good number of
customers and is meaningful in business. For example,
after a customer opens a checking account in MapleBank,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 11, NOVEMBER 2006 1467

. J. Pei and K. Wang are with the School of Computing Science, Simon
Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A
1S6. E-mail: {jpei, wangk}@cs.sfu.ca.

. H. Wang and P.S. Yu are with the IBM T.J. Watson Research Center,
19 Skyline Drive, Hawthorne, NY 10532.
E-mail: {haixun, psyu}@us.ibm.com.

. J. Liu is with Efficient Frontier Inc., 321 Castro St., Ste. 201, Mountain
View, CA 94041-1205. E-mail: jian.liu@efrontier.com.

. J. Wang is with the Department of Computer Science and Technology,
Tsinghua University, Beijing, 100084, China.
E-mail: jianyong@mail.tsinghua.edu.cn.

Manuscript received 26 Aug. 2005; revised 9 May 2006; accepted 30 May
2006; published online 19 Sept. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0335-0805.

1041-4347/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

a customer representative from the bank may call the
customer to introduce the money market account and the
RRSP account. However, at this point, the bank may not
want to mail the customer brochures on RESP accounts.

This example motivates the idea of using frequent
partial orders to effectively summarize sequential pat-
terns and provide more general and more concise
ordering information.

Given a set of items (or events), a total order of a subset of

items can be represented as a string. A string database is a

multiset of strings. The knowledge about ordering, espe-

cially the frequent partial orders in string databases, has

many applications. Here, we list four of them.
Application 1: Bioinformatics. Ordering information is

often important in the analysis of biological experiment

data. For example, to discover patterns in gene expression

matrices, one promising approach [5] is to look for order-

preserving submatrices (OPSMs). That is, in an n by m gene

expression matrix for n genes and m experiments, each

element vi;j gives the expression level of a gene gi in an

experiment ej. A submatrix is order-preserving if the

expression levels of all genes in the submatrix induce the

same (linear or partial) ordering of the experiments. As

indicated in [5], such a pattern may arise if the experiments

in the order-preserving submatrix represent distinct stages

in the progress of a disease or in a cellular process, and the

expression levels of all genes in the submatrix vary across

the stages in the same way. Moreover, [15] also shows that a
partial order of conditions shared by a group of genes may
indicate that the genes form a coexpressed group and they
respond to a sequence of environment stimuli.

Application 2: Process model mining, Web mining, and

market basket analysis. The workflow paradigm has been
extensively used to specify how business processes should
be conducted. It is often desirable to construct process
models from logs of past, unstructured executions of a
given process [1], [25].

In Web mining and market basket analysis, a critical task
is to identify groups of customers in which all customers’
sequences of purchases induce the same ordering of a series
of products. In previous studies, sequential patterns are
often used for this purpose. However, as shown in
Example 1, sequential patterns may not be able to concisely
capture the general ordering information. Instead, a partial
order can model the customers’ purchase behavior better.
Thus, it can be more informative and more effective to use
frequent partial orders in place of sequential patterns in
many cases. Moreover, selected frequent partial orders can
be used as signatures of customer behavior in classification
and clustering analysis.

Application 3: Network management and intrusion

detection. In network management, it is important to
characterize network traffic. Frequent partial orders ob-
tained from network packet scheduling data may disclose
frequent routing paths and identify possible bottlenecks of
networks.

Moreover, it is important to discover the signatures (i.e.,
distinct features) of normal network access and intrusions.
Consider misuse detection, where a training data set
containing both labeled normal activities and intrusions is
available. We can mine from the training data set partial
orders which are frequent in the subset of intrusions and
are rare in the subset of normal activities. Such frequent
partial orders can be used to identify malicious activities in
the future. On the other hand, in anomaly detection,
frequent partial orders can be used to characterize the
major patterns of network accesses. If an activity does not
follow any frequent partial orders observed so far, then it
can be a candidate of anomaly.

1468 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 11, NOVEMBER 2006

TABLE 1
A Database DB of Sequences of Account Opening

Fig. 1. A frequent partial order R in Example 1.

Application 4: Preference-based service. Preferences can
be modeled as partial orders. It is interesting to study
common preferences from a large collection of data, such as
marketing survey and product evaluation. For example, a
customer may be asked to rank a set of products in a
marketing survey. The preference of a customer can be
derived from her/his ranking. Then, it is interesting to mine
the common preferences as frequent partial orders from the
ranking data. Moreover, customer segmentation and mar-
keting campaigns may be developed based on such
ordering information.

The problem of mining partial orders in sequence data
has been studied before from angles different from our
study. Two major categories of previous work exist. The
first batch of studies only look at some specific kinds of
frequent partial orders. Particularly, a seminal piece [17] is
on mining serial and parallel frequent episodes. As
indicated in Section 3, the expression power of serial and
parallel episodes may not be sufficient enough to capture
the general partial orders shared by sequences.

Another category of research is on mining global partial
orders, i.e., finding a single or a set of partial order(s) to fit
the whole sequence data set. However, while global orders
may be desirable in some applications, they may not meet
the requirements in some other situations. There can be
multiple different trends existing in a sequence data set.
Therefore, in some applications, such as mining preferences
or network packet scheduling data, a single or a set of
partial order(s) may not fit the whole data set well.
Moreover, developing efficient approximation algorithms
for finding a partial order globally fitting a large data set
well is still an open issue.

Simultaneously to this study, Casas-Garriga [7] also
proposed a similar idea to use closed partial orders to
summarize sequential data. However, [7] focuses on the
concept and does not provide an efficient algorithm for the
mining. As shown in our experimental results, the method
is not efficient for large data sets. Therefore, mining
frequent partial orders from sequence data remains a
challenging problem.

In this paper, we study the problem of mining frequent
closed partial orders from strings and make the following
contributions:

First, we comprehensively model the problem. We
identify the problem of mining frequent partial orders.
There can be many frequent partial orders in a large string
database. It is desirable to devise a concise and nonredun-
dant representation for frequent closed partial orders.
Technically, we develop the concept of frequent closed partial
orders (FCPO) that captures the interesting and nonredun-
dant information about frequent orders. The major idea is
that we only present the frequent partial orders which do
not have a proper superset with the same support.

We show the relationship among several types of
frequent patterns which can be mined from sequence data,
including frequent itemsets, frequent closed itemsets,
sequential patterns, closed sequential patterns, frequent
graph patterns, frequent closed graph patterns, and
frequent closed partial orders. We also investigate the
computational complexity of the problem.

Moreover, by a systematic survey of previous work,
we show that most of the previous studies focus on

series-parallel orders (SPO) [24]. However, in general, the
expression power of series-parallel orders is insufficient
enough to capture the closed partial orders shared by
strings.

Second, we propose practically efficient algorithms to
mine frequent closed partial orders. The first method is to
represent every string as the set of edges in its transitive
closure, and mine frequent sets of edges. It can be shown
that a frequent closed set of edges is a frequent partial order
in transitive closure. This leads to our first algorithm
TranClose. Unfortunately, even though TranClose avoids the
costly mining of frequent graph patterns [28] directly, it is
still inefficient in many cases since it has to compute the
closures of strings and orders, which can be much larger in
size than their transitive reduction.

To tackle the problem, we propose algorithm Frecpo,
which mines the string database directly and never
computes the transitive closure. Moreover, it identifies the
frequent closed partial orders in the form of transitive
reduction, which is the minimal representation. It explores
several interesting pruning techniques to speed up the
mining process.

Last, we conduct an extensive performance study on real
and synthetic data sets to examine the effectiveness of
mining frequent closed partial orders and the efficiency of
our methods. It shows that Frecpo can mine large string
databases, and the mining results are interesting and
provide knowledge that cannot be discovered by previous
data mining techniques.

While the basic concepts and notions of frequent closed
partial order mining are briefly introduced in [21], in this
paper, we provide a substantially more thorough treatment
of the conceptual issues and the algorithms, and report a
comprehensive performance study.

The remainder of the paper is organized as follows: In
Section 2, we formulate the problem of mining frequent
closed partial orders from strings. We also thoroughly
examine the relationship between frequent partial orders
and other frequent patterns which can be mined from string
databases, and prove the complexity of the problem. We
systematically review related work in Section 3 and discuss
why the popularly used series-parallel orders are insuffi-
cient to capture the closed partial orders shared by strings
in general. The mining algorithms are developed in
Section 4. We report an extensive performance study in
Section 5. The paper is concluded in Section 7.

2 PROBLEM DEFINITION

In this section, we comprehensively model the problem of
mining frequent partial orders from strings. We propose the
concept of frequent closed partial order and examine the
relationship among several types of frequent patterns that
can be mined from sequence data. We also show the
complexity of the problem.

2.1 Preliminaries

A partial order is a binary relation that is reflexive,
antisymmetric, and transitive. A total order (also called
linear order) is a partial order R such that for any two items
x and y, if x 6¼ y, then either Rðx; yÞ or Rðy; xÞ holds.

PEI ET AL.: DISCOVERING FREQUENT CLOSED PARTIAL ORDERS FROM STRINGS 1469

A partial order R can be expressed in a directed acyclic
graph (DAG for short): the items are the vertices in the
graph and x! y is an edge if and only if ðx; yÞ 2 R and
x 6¼ y. We also write an edge x! y as ðx; yÞ or xy. For
example, Fig. 2a shows a partial order R, which has
13 edges.

Since a partial order is transitive, some edges can be
derived from the others and thus are redundant. For
example, in Fig. 2a, edge a! d is redundant given edges
a! b and b! d. Generally, an edge x! y is redundant if
there is a path from x to y that does not contain the edge.
For a partial order R, the transitive reduction of R can be
drawn in a Hasse diagram: For ðx; yÞ 2 R and x 6¼ y, x is
positioned higher than y; edge x! y is drawn if and only if
the edge is not redundant. Fig. 2b shows the transitive
reduction of the same partial order R in Fig. 2a. The
transitive reduction has only six edges. For an order R, the
transitive reduction may have much fewer edges.

In this paper, we draw a partial order in a Hasse
diagram, i.e., its transitive reduction, and omit the isolated
vertices. For example, Fig. 3 shows four partial orders R1,
R2, R3, and R4, and R1 is further a total order.

Let V be a set of items, which serves as the domain of our
string database. A string defines a global order on a subset
of V . In this paper, we focus on strings instead of general
sequences and assume that each item appears in a string at
most once, but not necessarily every item appears in a
string.

A string can be written as s ¼ x1 � � �xl, where

x1; . . . ; xl 2 V :

l is called the length of string s, i.e., lenðsÞ ¼ l. For strings
s ¼ x1 � � �xl and s0 ¼ y1 � � � ym, s is called a superstring of s0

and s0 a substring of s if 1) m � l and 2) there exist integers
1 � i1 < � � � < im � l such that xij ¼ yjð1 � j � mÞ. We also
say s contains s0. For a string database SDB, the support of a
string s, denoted by supðsÞ, is the number of strings in SDB
that are superstrings of s.

The total order defined by string s can be written in the
transitive closure of s, denoted by

CðsÞ ¼ fðxi; xjÞj1 � i < j � lg:

Please note that, in the transitive closure, we omit the trivial
pairs ðxi; xiÞ. For example, for string s ¼ abcd, lenðsÞ ¼ 4.
The transitive closure is

CðsÞ ¼ fða; bÞ; ða; cÞ; ða; dÞ; ðb; cÞ; ðb; dÞ; ðc; dÞg:

Here, we omit the trivial pairs ða; aÞ, ðb; bÞ, ðc; cÞ, and ðd; dÞ.

The order containment relation is defined as, for two partial
orders R1 and R2, if R1 � R2, then R1 is said to be weaker
than R2 and R2 is stronger than R1. By intuition, a partially
ordered set (or poset for short) satisfying R2 will also satisfy
R1. For example, in Fig. 3, R4 � R3 � R2 � R1. Please note
that R4 covers fewer items than the other three partial
orders. Trivially, we can add the missing items into the
DAG as isolated vertices so that every DAG covers the same
set of items. To keep the DAG simple and easy to read, we
omit such isolated items.

2.2 Frequent Closed Partial Orders (FCPO)

A string database SDB is a multiset of strings. For a partial
order R, a string s is said to support R if R � CðsÞ. The
support of R in SDB, denoted by supðRÞ, is the number of
strings in SDB that support R. Given a minimum support
threshold min sup, a partial order R is called frequent if
supðRÞ � min sup.

Following the related definitions and the order contain-
ment relation, we have the following result.

Property 2.1 (Antimonotonicity of frequent partial orders).

For a string database SDB and partial orders R and R0 such

that R0 � R, supðR0Þ � supðRÞ. Therefore, if R is frequent,

then R0 is also frequent.

To avoid the triviality, instead of reporting all frequent
partial orders, we can mine the representative ones only.

Example 2 (Frequent closed partial orders). Let us consider

string database DB in Table 1 again. The four sequential

patterns discussed in Example 1 can be regarded as

frequent partial orders which are supported by strings 1,

2, and 4. As discussed before, given that the partial order

R in Fig. 1 is also supported by strings 1, 2, and 4, the

four sequential patterns as frequent partial orders are

redundant.
There does not exist another partial order R0 such that

R0 is stronger than R in Fig. 1 and is also supported by
strings 1, 2, and 4. In other words, R is the strongest one
among all frequent partial orders supported by strings 1,
2, and 4. Thus, the partial order R is not redundant and
can be used as the representative of the frequent partial
orders supported by strings 1, 2, and 4. Technically, R is
a frequent closed partial order.

1470 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 11, NOVEMBER 2006

Fig. 2. A partial order and its transitive reduction. (a) A partial order.

(b) The transitive reduction.

Fig. 3. Four orders R1 � R2 � R3 � R4.

A partial orderR is closed in a string database SDB if there
exists no partial order R0 � R such that supðRÞ ¼ supðR0Þ. A
partial order R is a frequent closed partial order if it is both
frequent and closed.

Problem Definition. The problem of mining frequent
closed partial orders from strings is to find the complete set
of frequent closed partial orders in a given string database
SDB with respect to a minimum support threshold
min sup.

2.3 Various Types of Frequent Patterns from
Strings

For a string database SDB and a minimum support
threshold min sup, in addition to frequent closed partial
orders, we can mine some other types of frequent patterns
as follows:

Frequent itemsets [2] and frequent closed itemsets [18]. If the
ordering information in a string is ignored, a string can be
treated as a set of items. For a set of items X � I, supðXÞ is
the number of strings in SDB in which X appears. X is a
frequent itemset if supðXÞ � min sup. A frequent itemset X is
a frequent closed itemset if there exists no X0 � X such that
supðXÞ ¼ supðX0Þ.

Sequential patterns [3] and closed sequential patterns [29].
For string s, supðsÞ is the number of strings in SDB which
contain s as a substring. s is a sequential pattern if
supðsÞ � min sup. In other words, a sequential pattern is a
frequent total order on a subset of items. A sequential
pattern s is a closed sequential pattern if there exists no proper
supersequence s0 of s such that supðs0Þ ¼ supðsÞ.

Graph patterns [13] and closed graph patterns [28]. Since a
string defines a total order, its transitive closure can be
viewed as a DAG. For a DAG G, supðGÞ is the number of
graphs in which G is an embedded subgraph. G is a frequent
graph pattern if supðGÞ � min sup. A frequent graph pattern
G is a frequent closed graph pattern if there exists no graph G0

such that supðGÞ ¼ supðG0Þ and G is an embedded sub-
graph of G0.

Then, what are the relationships among the above types of
frequent patterns? We have the following results based on the
related definitions.

Corollary 2.1 (FPO, frequent itemsets, and sequential

patterns). The set of items in a frequent partial order is a
frequent itemset. Moreover, if R is a frequent partial order,
then every path s in R is a sequential pattern.

In a directed acyclic graph (DAG), a vertex v is a sink if
no edge leaves v. A vertex v is a source if no edge enters v.

Theorem 1 (FCPO and closed sequential patterns). Let R be
a frequent closed partial order, and s1; . . . ; sk be all the paths
in R’s transitive closure graph such that each path is from a
source to a sink. Then, a string s supports R if and only if it
simultaneously supports s1; . . . ; sk.

Proof. By Corollary 2.1, we have s simultaneously supports
s1; . . . ; sk. To show the other direction, we only need to
notice the fact that every pair ðx; yÞ 2 R must be in some
path from a source to a sink. That is, ðx; yÞ must be
contained in some si. Hence, s supports every pair in R.
That is, s supports R. tu

Theorem 2 (CPO and transitive closure graph patterns). A
partial order R is a frequent (closed) partial order in a string
database if and only if it is a frequent (closed) graph pattern in
the corresponding database of transitive closures of strings.

Proof. We only show the case of frequent partial orders. The
case of frequent closed partial orders can be proved
similarly. Let SDB be a string database and GDB be the
database of transitive closures of strings.

Consider a string s in SDB such that s supports R. It
is easy to see that R (in transitive closure) is a subgraph
of CðsÞ, the transitive closure of s. Thus, supðRÞ in GDB is
no less than that in SDB.

On the other hand, since every item appears in a
string at most once, every graph pattern in GDB defines
a partial order. Suppose RG is a frequent graph pattern in
GDB, and the partial order defined by RG is R. Consider
a graph G in GDB that is a supergraph of RG. Let G be
the transitive closure of s in SDB. R must be supported
by s. Hence, we have supðRÞ in SDB is no less than that
in GDB.

Based on the above, we have R is a frequent partial
order in SDB if and only if its transitive closure is a
frequent graph pattern in GDB. The claim on the
relationship between frequent closed partial orders and
frequent closed graph patterns can be proved similarly.tu

2.4 Complexity Analysis

We investigate the complexity of the frequent closed partial
order mining problem in two steps. First, we show that
counting the number of frequent closed partial orders
(called the counting problem) is #P-Complete. This means
that the corresponding decision problem (i.e., whether there
are n frequent closed partial orders in a given string
database with respect to a given support threshold) is
NP-hard. Second, we show that, under a polynomial time
transformation, the frequent closed partial order mining
problem can also be reduced to some typical frequent
pattern mining problems that have been studied before.

Theorem 3 (Complexity). The problem of counting the number
of frequent closed partial orders from strings is #P-Complete.

Proof. We construct a polynomial time parsimonious
transformation from the problem of counting the number
of frequent closed itemsets, which is known to be
#P-Complete [6], [12], [30].

As shown in Theorem 2, the problem of mining
frequent closed partial orders is equivalent to mining
frequent closed graph patterns in the transitive closure
graphs. We reduce the problem of mining frequent
closed itemsets into mining frequent closed graph
patterns in the transitive closure graphs as follows.

For a transaction database TDB, we construct a string
database SDB as follows: For each transaction (i.e.,
itemset) in TDB, we sort all the items alphabetically and
make up a string. It can be shown that every frequent
partial order in SDB is a total order. Moreover, an itemset
X is a frequent closed itemset in TDB if and only if the
alphabetical order of items inX is a frequent closed partial
order in SDB. That means the transformation is parsimo-
nious. Clearly, the reduction is of polynomial time. tu

PEI ET AL.: DISCOVERING FREQUENT CLOSED PARTIAL ORDERS FROM STRINGS 1471

Immediately following from Theorem 3, the correspond-
ing decision problem, determining whether there are
n frequent closed partial orders in a string database with
respect to a given support threshold, is NP-hard.

Interestingly, we can also reduce the problem of mining
frequent closed graph patterns in the transitive closure
graphs to the frequent closed itemset mining problem as
follows: For each string, its transitive closure graph can be
uniquely represented as the set of edges in the graph. We
treat each edge as an item. Then, a transitive closure graph
becomes an itemset. It can be shown that a subgraph G is a
frequent closed graph pattern if and only if its edge set is a
frequent closed itemset in the transformed transaction
database. Clearly, the reduction is of polynomial time. By
Theorem 2, we can reduce the problem of frequent closed
partial order mining problem to the frequent itemset
mining problem as well.

The above shows that the two problems are in the same
class of polynomial time equivalent problems. As shown in
[6], [12], [30], a whole set of frequent pattern mining
problems, including mining frequent (closed/maximal)
itemsets, (closed/maximal) sequential patterns, and
(closed/maximal) graph patterns, are in the same class,
their counting problems are #P-Complete. The problem of
mining frequent (closed) partial orders is also in this class.
The above result is consistent with the result in [5], which
shows that determining whether there exists a total order
on n items of support k is NP-Complete. It is a special case
of the search of frequent partial orders studied in this paper.

3 RELATED WORK

In this section, we systematically review related work.
Particularly, we address why series-parallel orders, which
are extensively studied in previous work, are insufficient
for capturing the ordering information shared by strings.
Moreover, we review the two-step method in [7] and point
out its inefficiency.

3.1 Sequential Pattern Mining

As sequence data is available in many applications, mining
sequence data has been investigated extensively. There are
intensive studies on mining sequential patterns [3]. Several
efficient algorithms were proposed, such as GSP [22],
PrefixSpan [19], SPADE [32], SPAM [4], and DISC [8].

There can be many sequential patterns. To improve the
effectiveness and remove the redundant sequential pat-
terns, closed sequential patterns can be mined [23], [26],
[29]. Another approach to improve the effectiveness is to
specify constraints. In [10], [20], various constraints on
sequential patterns were investigated.

Sequence data can be noisy. Yang et al. [31] studied the
problem of mining long patterns from noisy sequence data.
In [14], the problem of mining approximate sequential
patterns was addressed.

In [17], Mannila et al. considered mining frequent
episodes from event sequences (basically, strings). In
principle, an episode can be any partial order. However,
due to the computational complexity consideration, algo-
rithms on only series and parallel episodes were given. An
episode is parallel if the partial order is trivial (i.e., x 6� y for

all x 6¼ y). An episode is serial if the partial order is a total
order (i.e., for any x and y, either x � y or y � x). It
coincides with sequential pattern mining in general.

As illustrated in Section 1, mining frequent partial orders
is a generalization of mining sequential patterns.

3.2 Mining Partial Orders

Recently, two interesting studies investigated the problem
of mining a small set of partial orders globally fitting data
best [11], [16]. Particularly, [16] addressed sequence data.
However, very different from the problem studied here,
[16] tried to find one or a (small) set of partial orders that fit
the whole data set as well as possible, which is an
optimization problem. An implicit assumption is that the
whole data set somehow follows a global order.

Moreover, [1], [25] studied the problem of reconstructing
a workflow model from a set of executions of the model,
such as records in a log file. In process model mining, it is
also assumed that a global workflow template exists and the
mining wants to reconstruct the template as much as
possible from the executions of the template. The assump-
tion of a global template is feasible and useful in some
applications, such as scheduling jobs and students taking
courses.

For some other applications, such as the DNA micro-
array data analysis and network packet routing, there is
usually no nontrivial order that can be expected globally.
This paper addresses such situations. That is, we want to
find the partial orders that are frequent in a database, but
do not necessarily dominate the database. Some partial
orders found may even conflict with each other.

There is another important difference between the work
[16] and this paper. In [16], due to the complexity
consideration, only series-parallel orders [24] are consid-
ered, whose definition is recalled as follows.

The minimal series parallel (MSP) DAG is defined as
follows:

1. The DAG having a single vertex and no edges is MSP.
2. If G1 ¼ ðV1; E1Þ and G2 ¼ ðV2; E2Þ are two MSP

DAGs, so is either of the DAGs constructed by the
following operations:

a. Parallel composition: Gp ¼ ðV1 [V2; E1 [E2Þ.
b. Series composition:

Gs ¼ ðV1 [V2; E1 [E2 [ðN1 �R2ÞÞ;

where N1 is the set of sinks of G1 and R2 is the
set of sources of G2.

A partial order can be represented as a DAG. A partial
order is a series parallel order if the transitive reduction of its
DAG is an MSP DAG.

Intuitively, a series parallel order is formed by assem-
bling objects using parallelism and serialism. An important
property is that a series parallel order can be represented in
a binary decomposition tree [24]. Then, many search problems
can be solved efficiently by dynamic programming.

In [16], Mannila and Meek tried to find series parallel
orders that globally fit a data set as well as possible.
However, for mining frequent partial orders, series parallel

1472 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 11, NOVEMBER 2006

orders may not be sufficient, since they cannot always
capture all the partial orders shared by sequences.

Example 3 (Dimension 2 nonseries parallel order). Con-
sider two strings abdc and dacb. A partial order R shared
by them is shown in Fig. 4. Since R is exactly the
forbidden subgraph of MSP DAG [24], R is not series
parallel. In other words, only using the series parallel
orders cannot cover all frequent partial orders.

Moreover, it is shown [24] that any series parallel order is
the intersection of two total orders, i.e., the dimensionality
of any series parallel order is 2. For partial orders that are
frequent in multiple sequences (i.e., they are the intersection
of the corresponding total or partial orders), the dimension-
ality is likely more than 2. In such cases, the frequent partial
orders may not be series parallel.

In fact, as discussed in Section 5, we did find nonseries
parallel orders that are frequent in real data sets. Fig. 10
presents some examples (except for Fig. 10b). Such
nonseries parallel orders cannot be identified by any
previous methods.

There are several interesting studies on applications of
ordering information. For example, to discover local
structures in gene expression data, Ben-Dor et al. [5] looked
for local patterns that manifest themselves simultaneously
on a subset G of genes and a subset T of experiments.
Specifically, they searched for order-preserving submatrices
(OPSMs), in which the expression levels of all genes induce
the same linear ordering (i.e., total order on a subset) of the
experiments. They showed that the OPSM search problem
is NP-hard. They defined a probabilistic model in which an
OPSM is hidden within an otherwise random matrix.
Guided by this model, they developed an efficient algo-
rithm to find hidden OPSMs in a random matrix. Please
note that their method cannot find the complete set of linear
orders. Instead, our methods here find the complete set. In
[15], Liu and Wang proposed a sequential pattern mining
method to find the complete set of linear orders, i.e.,
substrings. However, their approach is not concerned with
partial orders in general.

3.3 A Two-Step Method

Simultaneously to this study, Casas-Garriga [7] also
proposed a similar idea to use closed partial orders to
summarize sequential data. A two-step algorithm was
proposed. First, the complete set of closed sequential
patterns is mined. Then, the combinations of closed
sequential patterns are enumerated. For a set of closed
sequential patterns s1; . . . ; sn, let R be a partial order
generated as follows: ðx; yÞ 2 R if and only if x 6¼ y and
for each sequential pattern sið1 � i � nÞ, x appears before y
in si. If R 6¼ ;, then a closed partial order is identified. It
checks the support of the closed partial orders identified in

the previous step and removes all redundant frequent
closed partial orders. That is, each frequent closed partial
order should be output only once.

However, the above algorithm is far from efficient. First,
mining the complete set of closed sequential patterns is
nontrivial. Second, there often exist a large number of
closed sequential patterns from large string databases. Last,
enumerating the combinations of closed sequential patterns
and removing redundant frequent closed partial orders in
the last step can be very expensive. Only some patterns
found from two small data sets are reported in [7]. The two
data sets used in the experiments in [7] are small, contain-
ing only 1,000 transactions and 607 transactions, respec-
tively. No experimental results on the efficiency and the
scalability of the algorithm are shown. As shown in our
experimental results, the method is not efficient for large
data sets. Therefore, mining frequent partial orders from
sequence data remains a challenging problem.

4 ALGORITHMS

In this section, we present two algorithms for frequent
closed partial order mining. First, we describe algorithm
TranClose (for Transitive Closure), which transforms a
string database into a database of the transitive closures of
the strings, and reduces the problem to mining frequent
closed itemsets. However, it has to enlarge the database
substantially.

Second, we propose an efficient algorithm, Frecpo (for
Frequent closed partial order), which mines the string
database directly and never computes any transitive
closure. Moreover, it identifies the frequent closed partial
orders in the form of transitive reduction, which is the
minimal representation. It exploits several interesting
pruning techniques to speed up the mining process.

4.1 TranClose: A Rudimentary Method

Here, we describe TranClose, a method more efficient than
the two-step algorithm in [7].

As shown in Section 2.4, the problem of mining frequent
closed partial orders can be reduced to mining frequent
closed graph patterns from the transitive closure DAGs of
the strings. However, mining graph patterns can be very
costly, since the bottleneck, many isomorphism tests to
determine whether a graph is a subgraph in another graph,
can be very expensive [28].

To tackle the problem, we can further reduce the problem
to mining frequent closed itemsets. That is, every transitive
closure DAG can be uniquely represented as the set of edges
in the DAG. Then, mining frequent closed graph patterns in
the DAG database can be accomplished by mining frequent
closed edge-sets in the transformed transaction database, as
illustrated in the following example.

Example 4 (TranClose). Consider a string database SDB as
shown in the first two columns of Table 2. Suppose the
minimum support threshold is 2.

TranClose mines the complete set of frequent closed
partial orders in three steps.

In the first step, we expand the strings to their transitive
closures. A transitive closure is denoted by the set of
edges. The third column of Table 2 shows the transfor-

PEI ET AL.: DISCOVERING FREQUENT CLOSED PARTIAL ORDERS FROM STRINGS 1473

Fig. 4. The frequent partial order R is shared by abdc and dacb.

mation. The set of edges in the transitive closure of each
string becomes a transaction so a transaction database
TDB is created. Please note that the edges are directed.
That is, edges bc and cb are different.

In the second step, we mine frequent closed edge-sets from
the transformed transaction database TDB (i.e., the third
column in Table 2) with support threshold min sup ¼ 2.
Each frequent closed edge-set corresponds to the transi-
tive closure of a frequent closed partial order.

In the last step, for each frequent closed edge-set, we
compute its transitive reduction. In this example, there are
six patterns found. They are shown in Fig. 5 together
with their transitive reduction DAGs for examination.

Algorithm TranClose is summarized in Fig. 6. We can use

any frequent closed itemset mining algorithm such as

CHARM [33] and CLOSET+ [27] to mine frequent closed

edge-sets from the transformed transaction database, and

derive the frequent closed partial orders from the frequent

closed edge-sets.

The bottleneck of TranClose is that it has to handle a very

much enlarged transitive closure database: For a string of

length l, its transitive closure has lðl	1Þ
2 edges.

In our small running example, there are totally 41 edges

in all the frequent closed edge-sets, while only 27 edges in

their transitive reduction DAGs. In other words, more than

one-third of the edges in the transitive closures are

redundant and will be removed in the transitive reductions.

For large string databases where there are long strings, the

redundancy may be even bigger. As a well accepted fact,

mining long patterns is often very costly. To improve the

efficiency, we have to avoid computing transitive closure in

mining frequent closed partial orders.

4.2 Algorithm Frecpo

In this section, we develop algorithm Frecpo which mines

frequent closed partial orders in the form of transitive

reductions directly from string databases and avoids

computing transitive closures.

4.2.1 General Idea and Framework

In order to efficiently mine the complete set of frequent

closed partial orders, we have to address the following two

issues.

. The correctness and completeness issue. We have to find
a systematic way to enumerate all the frequent
closed partial orders without duplicate. This will
guarantee that the mining result is correct and
complete.

1474 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 11, NOVEMBER 2006

TABLE 2
String Database SDB as the Running Example

Fig. 5. The frequent closed itemsets and the transitive reductions of the corresponding frequent CPOs.

Fig. 6. The TranClose algorithm.

. The efficiency and scalability issue. We must have an
efficient method to extract frequent closed partial
orders and prune futile search branches.

To address the correctness and completeness issue,

Frecpo searches a set enumeration tree of transitive reduc-

tions of partial orders in a depth-first manner.
In principle, a partial order can be uniquely represented

as the set of edges in its transitive reduction. Moreover, all

edges in a set can be sorted in the dictionary order1 and,

thus, it can be written as a list. Therefore, we can enumerate

all partial orders in the dictionary order. A set enumeration

tree of partial orders can be formed: For orders R1 and R2,

R1 is an ancestor of R2 and R2 is a descendant of R1 in the

tree if and only if the list of edges in R1 is a prefix of the list

of edges in R2.
For example, consider a set of items fa; b; cg. The

transitive reductions of all possible partial orders on the

three items can be enumerated in a set enumeration tree

shown in Fig. 7.
By a depth-first search of the set enumeration tree of

transitive reductions of partial orders, Frecpo will not miss

any frequent partial order. Frecpo employs depth-first

search instead of breadth-first search because there are

many previous studies (e.g., [8], [15], [19], [27], [28], [29],

[32], [33]) strongly suggesting that a depth-first search with

appropriate pseudoprojection techniques often achieves a

better performance than a breadth-first search when mining

large databases.
To address the efficiency and scalability issue, Frecpo

prunes the futile branches and narrows the search space as

much as possible. Basically, three types of techniques are

used:

. Pruning infrequent items, edges and partial orders.
According to Property 2.1, if a partial order R in
the set enumeration tree is infrequent, then the
partial orders in the subtree rooted at R, which are
stronger than R, cannot be frequent. The subtree can
be pruned. Hence, Frecpo often does not have to
search the complete set enumeration tree. Instead,
only the upper part of the tree which contains all the
frequent partial orders is searched. Moreover, only
frequent closed partial orders will be output.

. Pruning forbidden edges. Not every edge can appear in
the transitive reduction of a partial order. For
example, if every string containing ac also contains
ab and bc, then edge ac should not appear in the
transitive reduction of any frequent closed partial

order. Edge ac is called a forbidden edge. Removing
the forbidden edges can also reduce the search space.

. Extracting transitive reductions of frequent partial orders
directly. In Frecpo, we develop an efficient method to
identify frequent closed partial orders and also
extract their transitive reductions from various
subsets of strings. Thus, Frecpo does not need to
compute the transitive reductions.

Algorithm Frecpo is shown in Fig. 8. In the following

subsections, we will explain the technical details.

4.2.2 Pruning in Frecpo

Our first rule of pruning is a corollary of Property 2.1.

Lemma 4.1 (Pruning by support). An infrequent item or an

infrequent edge cannot appear in any frequent partial order.

The lemma is used in Frecpo in two ways. First, at the
beginning of the algorithm, the database is scanned so that
frequent items and frequent edges are identified. Infrequent
items and infrequent edges are pruned. Second, in the
recursive depth-first search, for any frequent closed partial
order R, only the edges that frequently appear together with
R in the string database should be used to expand R to form
R’s children. Technically, all the strings supporting R form
the R-projected database SDBjR ¼ fs 2 SDBjR � CðsÞg.
Only the frequent edges in the R-projected database and
satisfying the requirement of the enumeration tree should
be used to expand R to R’s children in the set enumeration
tree. The items and edges infrequent in the projected
database will be removed.

Our second rule of pruning is based on the observation

that not every frequent edge can appear in the transitive

reduction of a frequent closed partial order. An edge xy is

called a forbidden edge in a string database SDB if there

exists an item z such that for every string s in SDB which

contains xy, s also contains xzy. In such a case, for any

frequent closed partial order R which contains ðx; yÞ, R also

contains ðx; zÞ and ðz; yÞ, which disqualify ðx; yÞ in R’s

transitive reduction.

Lemma 4.2 (Pruning forbidden edges). A forbidden edge

cannot appear in the transitive reduction of any frequent closed

partial order.

Frecpo uses a detection matrix to identify both frequent

edges and forbidden edges, as illustrated in the following

example.

Example 5 (Frecpo—Part 1). Let us consider again mining

frequent closed partial orders from the string database

SDB in Table 2 with respect to minimum support

threshold min sup ¼ 2.

PEI ET AL.: DISCOVERING FREQUENT CLOSED PARTIAL ORDERS FROM STRINGS 1475

1. In fact, any global order on the edges works. For the sake of
convenience, we choose dictionary order as an example here.

Fig. 7. The set enumeration tree of the transitive reductions of all possible partial orders on items a, b, and c.

By scanning the database only once, Frecpo computes
the supports of the items. Following Lemma 4.1,
infrequent items are pruned, such as f in our running
example ðsupðfÞ ¼ 1Þ.

To prune the infrequent edges and the forbidden
edges, Frecpo scans the database again and fills in a
matrix fcnt½x; y
g, where x and y are both frequent items,
and cnt½x; y
 registers both supðxyÞ and the list of items
that appear between x and y in all strings having been
scanned so far that contain xy. The list is called the
anchor list. The matrix is called the detection matrix and is
shown in Fig. 9.

From the detection matrix, we can immediately prune
the infrequent edges (those with support less than 2,
such as ca). An edge is a forbidden edge if its anchor list
is not empty. Following Lemma 4.2, forbidden edges ad,
ae, and db can be pruned as well.

In this example, SDB contains six different items.
There are 6� 5 ¼ 30 possible different edges. Twenty
different edges appear in the database. Only 11 edges
survive from the pruning.

Clearly, the length of an anchor list monotonically

decreases as the scan goes on. If the strings are scanned in

an arbitrary order, the initial length of any anchor list for

any edge is bounded by the maximum number of frequent

items in any string. More often than not, the length of a

string is much shorter than the total number of items in the
whole database. Moreover, as a heuristic, we can scan the
short strings before the long ones. Then, the initial length of
any anchor list for any edge xy is bounded by the number of
frequent items in the shortest string which contains xy.

If the number of items is not very large and a detection
matrix for all items can be held in main memory, Frecpo can
scan the database only once to prune infrequent items,
infrequent edges and forbidden edges by using a detection
matrix holding all items instead of only the frequent ones.

4.2.3 Extracting Frequent Closed Partial Orders

Example 6 (Frecpo—Part 2). As shown in Example 5, only
the edges ab, ac, bc, bd, be, cb, cd, ce, da, dc, and de can be
used to construct the transitive reduction of frequent
closed partial orders. They are called the global feasible
edges. Among them, ab, be, ce, and de have support 4, i.e.,
they appear in every string in SDB. The four edges form
a frequent closed partial order, i.e., order R1 in Fig. 5. In
other words, the set of global feasible edges that appear
in every string forms a frequent CPO. Interestingly, the
set is in fact the transitive reduction, since any redundant
edge in the set is identified as a forbidden edge by the
detection matrix.

The observation in Example 6 leads to the following.

Lemma 4.3 (EXTRACTING TRANSITIVE REDUCTION OF

FCPO). In a string database SDB, the set of global feasible
edges that have support jSDBj is the transitive reduction of
the frequent closed partial order R of support jSDBj.

Proof. There exists only one FCPO whose support is jSDBj.
Otherwise, if there are two FCPOs R1 and R2 whose
support are jSDBj, both R1 and R2 ðR1 6¼ R2Þ are
supported by every string in the database. That means
R1 [R2 is supported by every string in the database and
thus is also a frequent partial order with support jSDBj.
That leads to a contradiction to the assumption that R1

and R2 are closed.

1476 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 11, NOVEMBER 2006

Fig. 8. The Frecpo algorithm.

Fig. 9. The matrix detecting infrequent edges and edges not in transitive

reduction.

We denote the FCPO with support jSDBj by R. The
set specified in the lemma is a superset of the transitive
reduction of R. On the other hand, if there exists a
redundant edge, the edge will be identified by the
detection matrix. Hence, the set is exactly the transitive
reduction of R. tu

Lemma 4.3 enables Frecpo to identify the transitive
reduction of frequent partial orders directly. In other
words, Frecpo prunes redundant edges using a detection
matrix. It never has to explicitly compute transitive
reduction for any frequent closed partial order.

4.2.4 Recursively Depth-First Searching

Once a frequent closed partial order R is found, Frecpo
expands R to its children. Following the similar reasoning
in Lemmas 4.1, 4.2 and 4.3, only frequent, nonforbidden
edges in the R-projected database should be used to expand
R to its children in the enumeration tree.

Example 7 (Frecpo—Part 3). Let us continue the mining
process in Example 6. Frequent closed partial order R1 is
the order shared by all strings. Thus, any other frequent
closed partial order will be stronger than R1.

The other frequent closed partial orders in transitive
reduction can be partitioned into the following subsets
according to the dictionary order of the remaining global
feasible edges (i.e., ac, bc, bd, cb, cd, da, and dc): 1) the
ones having edge ac in their transitive reduction, 2) the
ones having edge bc but no ac in their transitive
reduction, etc., and 7) the one having dc but no other
edges in its transitive reduction (if it is a frequent closed
partial order). These subsets can be mined one by one in
a depth-first search manner.

We first consider the subset of frequent closed partial
orders having edge ac in their transitive reductions. They
also contain R1. The strings in SDB that are superstrings
of ac, namely, strings 1, 2, and 3, are collected as the
ðR1 [facgÞ-projected database.

We prune the local infrequent items, infrequent
edges and forbidden edges by scanning the ðR1 [
facgÞ-projected database once and filling in the local

detection matrix. The feasible edges in this projected
database are bc, bd, and cd. Since each feasible edge has
support 2, which is less than the number of strings in
the projected database, we extract R2 ¼ R1 [facg as the
transitive reduction of a frequent closed partial order as
shown in Fig. 5. Any frequent partial order having ac
must be stronger than R2.

Since we have three local feasible edges in the ðR1 [
facgÞ-projected database, the remaining frequent closed
partial orders having ac in their transitive reduction can
be further partitioned into three subsubsets: the ones
having ac and bc, the ones having ac and bd but no bc,
and the ones having ac and cd but no bc nor bd.
R2 has an edge ab, and any frequent partial order

having ac is a superset of R2. Clearly, edges ab, ac, and
bc cannot stay together in a transitive reduction, since ac
is redundant in such a case. Thus, we immediately
determine that the first subsubset is empty without
checking the database at all.

The remaining frequent closed partial orders can be
found recursively.

4.2.5 Summary

In implementation, we use the pseudoprojection technique

which was first proposed in [19] and later has become

popular in depth-first search frequent pattern mining. That

is, if a database or a projected database can fit into main

memory, instead of deriving a copy of strings for every

projected database, we use hyperlinks (implemented as

pointers) to link the strings in the projected database

together. The recursive projected databases can share the

same physical database storage. Scanning and deriving

projected databases are efficient with the help of hyperlinks.

As discussed in [19], [26], if a database is large and cannot

fit into main memory, the physical projections should be

generated. Once a projected database can be held into main

memory, the recursion is switched to pseudoprojection.
The correctness of algorithm Frecpo can be justified based

on our previous discussion. Comparing to algorithm

PEI ET AL.: DISCOVERING FREQUENT CLOSED PARTIAL ORDERS FROM STRINGS 1477

Fig. 10. Some frequent closed partial orders found in real data sets. (a) A pattern in data set Yeast (support=80). (b) A pattern in data set

BreastCancer (support=224). (c) A pattern in data set Gazelle (support=10). (d) A pattern in data set Snake (support=107). (e) Another pattern in

data set Snake (support=80).

TranClose and other rudimentary methods, Frecpo has three
distinct advantages.

Advantage 1: Mining in transitive reduction to avoid
substantial space and I/O overhead. Frecpo never explicitly
unfolds strings into transitive closures. As discussed before,
the transitive closures of strings can be much larger than the
strings themselves. Thus, mining the strings directly avoids
the substantial space overhead and also the I/O cost. Frecpo
does examine combinations of items for each string.
However, such tests are conducted on the fly in main
memory. It does not involve any space or I/O overhead,
which is the bottleneck of mining large databases.

Advantage 2: Directly extracting frequent closed partial
orders in transitive reduction. Frecpo computes detection
matrices and extracts frequent closed partial orders in
transitive reduction directly (Lemma 4.3). It avoids the
postprocessing of computing transitive reductions. Transi-
tive reduction is the minimum representation of a partial
order. Using this minimum representation makes the
mining more effective and efficient.

Advantage 3: Aggressively and progressively pruning
futile branches in recursive depth-first search. Frecpo
aggressively prunes infrequent items and edges and
forbidden edges that are impossible to appear in transitive
reductions of frequent closed partial orders. Thus, the
search space shrinks dramatically in the recursive depth-
first search. Moreover, only frequent items and local
feasible edges in the current projected database will be
used to expand the current frequent closed partial order
into stronger ones. This pattern-growth approach makes the
search more focused.

5 EXPERIMENTAL RESULTS

In this section, we report a systematic performance study on
both real data sets and synthetic data sets. The experiments
were conducted on an IBM T41 laptop computer with a
Pentium M 1.4 G CPU and 512 M main memory, running
Microsoft Windows XP operating system. We implemented
algorithms TranClose and Frecpo in C++. We also compared
with BIDE [26], the so far fastest closed sequential pattern
method which can serve as the first step of the two-step
method in [7]. The original executable from the authors of
[26] was used. We used both real data sets and synthetic data
sets to test the algorithms. Here, as representative results, we
only report the results on real data sets Yeast, BreastCancer,
Snake, Connect-4, and Gazelle, and synthetic data sets
generated by the IBM sequence data generator [3]. In all
our experiments, the data sets can be held into main memory.

5.1 Interesting FCPOs in Real Data Sets

To test the effectiveness of mining frequent closed partial
orders, we first show some interesting patterns from real
data sets Yeast, BreastCancer, Snake, and Gazelle.

Data sets Yeast and BreastCancer are microarray data sets.
Data set Yeast contains the expression levels of 2,884 genes
under 17 conditions. Data set BreastCancer contains
3,226 genes under 22 conditions. In these two data sets,
we sorted the samples in each row (i.e., per gene) in
expression ascending order, as suggested in [5]. The Snake
data set contains 175 Toxin-Snake protein sequences and
20 unique items. It records a family of eukaryotic and viral
DNA binding proteins. This data set is also used in [26] for

evaluation of frequent closed sequential pattern mining.
Each record is a string. The average string length is 67 and
the maximal string length is 121. As preprocessing, we
removed the duplicate items in a string and only kept the
first occurrences. That is, an item appears at most once in a
string after the preprocessing. Gazelle contains 29,369 Web
click-stream sequences from customers. These data sets
have been popularly used as benchmarks for the perfor-
mance of frequent pattern mining in previous studies.

Some interesting frequent closed partial orders in those
real data sets are shown in Fig. 10. Some of those patterns
cannot be found by any previous frequent pattern mining
methods, since they may be hidden in multiple frequent
itemsets or sequential patterns and thus cannot be identified
in whole. For example, the pattern in Fig. 10d is also very
interesting from the graph theory point of view. First, it is a
bipartite graph. Moreover, it contains forbidden subgraphs
of MSP DAG [24]. The subgraph induced on vertex set
fC;G;N; Tg is such an instance, while there are several other
instances. Therefore, this pattern is not series parallel and,
thus, cannot be found by the previous methods on mining
(frequent) episodes [17], [16], [11]. In fact, the patterns in
Figs. 10a, 10c, and 10e are not series parallel, either.

5.2 Mining Long Strings in Connect-4

The Connect-4 data set contains all legal 8-ply positions in
the game of Connect Four in which neither player has won
yet, and in which the next move is not forced. The data set
has 67,557 strings, and each string has 42 nominal items.
Each item natively appears in each string at most once.
Thus, it does not need any preprocessing. Connect-4 is a
well-known dense data set and has been used extensively in
the studies of mining frequent (closed) itemsets and
frequent (closed) sequential patterns. We used this data
set to test the scalability of the algorithms on mining long
strings.

Fig. 11a shows the runtime of TranClose, BIDE, and Frecpo
with respect to the minimum support threshold. BIDE, the
so far fastest closed sequential mining method, can serve as
the first step of the two-step method in [7]. When the
minimum support threshold goes down, the number of
FCPOs increases substantially, as shown in Fig. 11b. Thus,
the runtime of all methods increases accordingly. However,
Frecpo is clearly more scalable than the other two, since
Frecpo does not unfold the strings onto their transitive
closures. Instead, it keeps the transitive reductions of the
FCPOs and exploits effective techniques to prune unfruitful
branches. This set of experiments clearly show that Frecpo is
substantially more efficient and more scalable than Tran-
Close and the two-step method in [7].

5.3 Results on Synthetic Data Sets: Scalability

To further test the scalability of the algorithms, we used the
renowned IBM sequence data generator to generate
synthetic data sets. Preprocessing is used to enforce that
each item appears only once in a string. The IBM data
generator takes quite a few parameters in generating
synthetic data sets. Here, we took most of the default
values for the command options provided by the data
generator and focused on testing the effect of the following
two factors: the average length of the strings in the database
and the number of strings in the database.

1478 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 11, NOVEMBER 2006

Fig. 12a shows the scalability on average length of strings
in the database. Here, we fixed the number of strings to
600,000, the number of items in the database to 500, and the
support threshold to 2,000 (i.e., 0.33 percent), and varied the
average length of the strings. As can be seen, TranClose,
BIDE and Frecpo are scalable, but Frecpo is clearly the most
efficient. As the average length increases, the number of
FCPOs and their size also increase. Maintaining the
transitive closures for large FCPOs is costly.

As the last experiment, we tested the scalability of the
mining algorithms on the database size up to 1 million
strings. The number of items in the database was set to 500
and the average number of items per string was 15.59. We
fixed the support threshold to 1 percent. The results are
shown in Fig. 12b. As can be seen, the three algorithms are
linearly scalable, and Frecpo is consistently the most
efficient.

6 DISCUSSION

In this section, we briefly discuss two possible extensions of
the Frecpo algorithm to mine other types of data and
patterns.

6.1 Mining Ordering Databases

In this paper, we focus on strings. A string specifies a total
order on a subset of items. Interestingly, algorithm Frecpo
can be extended to mine ordering databases, where each entry
is a partial order on a subset of items.

Conceptually, algorithm Frecpo can be applied on
ordering databases. However, comparing to mining string
databases, mining ordering databases incurs a major cost to

determine whether an edge is contained in a partial order in
the database. This is a common operation in determining
global feasible edges.

While a partial order can be represented as its transitive
reduction, searching the graphs directly can be costly. Here,
we propose an easy way to improve the efficiency. For each
vertex in the transitive reduction of a partial order, we can
assign a level number as follows: 1) each source vertex (i.e.,
such an item does not have any ancestor in the order) has
level 0 and 2) the level number of each other vertex is the
length of the longest path from a source to the vertex. ða; bÞ
is not contained in partial order R if the level number of a is
not smaller than that of b in R.

As preprocessing, we can compute the level numbers for
every partial order in the database. Then, to determine
whether ða; bÞ is an edge in R, we first check the level
numbers of a and b. Only when a has a smaller level
number than b will we search the graph for edge ða; bÞ. In
other words, we can use the level numbers to filter out
many impossible edges early.

6.2 Mining Emerging Order Patterns

In Section 1, we mention that, to support misuse detection,
we can mine partial orders that are frequent in the subset of
intrusions and are rare in the subset of normal activities.
Although we can apply Frecpo on the subsets of intrusions
and normal activities, respectively, and compare the
frequent closed partial orders found, it is more efficient to
mine the two sets jointly.

We can borrow the idea of emerging patterns [9]. In the
database, each string carries a label: either intrusion or

PEI ET AL.: DISCOVERING FREQUENT CLOSED PARTIAL ORDERS FROM STRINGS 1479

Fig. 11. The results on real data set Connect-4. (a) Runtime versus support threshold. (b) Number of FCPOs.

Fig. 12. The results on systhetic data sets. (a) Scalabilty with respect to average length. (b) Scalability with respect to database size.

normal. Instead of mining all frequent closed partial orders,
we monitor the class distribution in the projected databases.
We only output a frequent closed partial order if most
activities in its projected database are normal. If a projected
database is relatively pure, i.e., either there are very few
intrusions or there are very few normal activities, we can
prune the recursive mining since the current order already
distinguishes the two subsets.

7 CONCLUSIONS

In this paper, we studied a novel problem of mining
frequent closed partial orders from strings. We showed that
the problem is interesting and has broad applications, such
as in bioinformatics, network management, and intrusion
detection. However, our theoretical analysis showed that
the problem is challenging. We developed an efficient
algorithm, Frecpo, to tackle the problem. Frecpo mines the
string database directly without explicitly unfolding the
strings onto their transitive closures. Moreover, Frecpo
directly extracts the frequent closed partial orders in
transitive reduction and prunes the search space aggres-
sively and progressively by depth-first search.

As future work, we will investigate several interesting
problems inspired by this study. First, it is important to
exploit the frequent closed partial order mining techniques
in various applications, such as clustering and classification,
and tackle the problems of constraint-based or preference-
based mining. Second, how to extend the frequent pattern
mining techniques in general to mine other kinds of
advanced frequent patterns for emerging applications is
always an attractive topic.

ACKNOWLEDGMENTS

The authors thank Dr. Bongki Moon, the associate editor,
and the anonymous reviewers for their insightful and
constructive comments, especially their suggestions on the
complexity analysis and the pointers to related work on
workflow reconstruction. The research of Jian Pei and Jian
Liu is supported in part by the NSERC Grants 312194-05
and 614067, and US National Science Foundation Grant
IIS-0308001. The research of Ke Wang is supported in
part by NSERC grants. The research of Jianyong Wang is
supported in part by the National Natural Science
Foundation of China (NSFC) under Grant No. 60573061.
All opinions, findings, conclusions, and recommendations
in this paper are those of the authors and do not
necessarily reflect the views of the funding agencies.

REFERENCES

[1] R. Agrawal, D. Gunopulos, and F. Leymann, “Mining Process
Models from Workflow Logs,” EDBT ’98: Proc. Sixth Int’l Conf.
Extending Database Technology, pp. 469-483, 1998.

[2] R. Agrawal, T. Imielinski, and A. Swami, “Mining Association
Rules between Sets of Items in Large Databases,” Proc. 1993 ACM-
SIGMOD Int’l Conf. Management of Data (SIGMOD ’93), pp. 207-
216, May 1993.

[3] R. Agrawal and R. Srikant, “Mining Sequential Patterns,” Proc.
1995 Int’l Conf. Data Eng. (ICDE ’95), pp. 3-14, Mar. 1995.

[4] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu, “Sequential Pattern
Mining Using a Bitmap Representation,” Proc. 2002 ACM SIGKDD
Int’l Conf. Knowledge Discovery and Data Mining (KDD ’02), pp. 429-
435, July 2002.

[5] A. Ben-Dor, B. Chor, R. Karp, and Z. Yakhini, “Discovering Local
Structure in Gene Expression Data: The Order-Preserving Sub-
matrix Problem,” Proc. Sixth Ann. Int’l Conf. Computational Biology,
pp. 49-57, 2002.

[6] E. Boros, V. Gurvich, L. Khachiyan, and K. Makino, “On the
Complexity of Generating Maximal Frequent and Minimal
Infrequent Sets,” Proc. Symp. Theoretical Aspects of Computer Science,
pp. 133-141, 2002.

[7] G. Casas-Garriga, “Summarizing Sequential Data with Closed
Partial Orders,” Proc. 2005 SIAM Int’l Conf. Data Mining, Apr.
2005.

[8] D.Y. Chiu, Y.H. Wu, and A.L.P. Chen, “An Efficient Algorithm for
Mining Frequent Sequences by a New Strategy without Support
Counting,” Proc. 20th IEEE Int’l Conf. Data Eng. (ICDE ’04),
pp. 275-286, 2004.

[9] G. Dong and J. Li, “Efficient Mining of Emerging Patterns:
Discovering Trends and Differences,” Proc. 1999 Int’l Conf.
Knowledge Discovery and Data Mining (KDD ’99), pp. 43-52, Aug.
1999.

[10] M. Garofalakis, R. Rastogi, and K. Shim, “SPIRIT: Sequential
Pattern Mining with Regular Expression Constraints,” Proc. 1999
Int’l Conf. Very Large Data Bases (VLDB ’99), pp. 223-234, Sept.
1999.

[11] A. Gionis, T. Kujala, and H. Mannila, “Fragments of Order,” Proc.
Ninth ACM SIGKDD Int’l Conf. Knowledge Discovery and Data
Mining, pp. 129-136, 2003.

[12] D. Gunopulos, R. Khardon, H. Mannila, S. Saluja, H. Toivonen,
and R.S. Sharma, “Discovering All Most Specific Sentences,” ACM
Trans. Database Systems, vol., 28, no. 2, pp. 140-174, 2003.

[13] A. Inokuchi, T. Washio, and H. Motoda, “An Apriori-Based
Algorithm for Mining Frequent Substructures from Graph Data,”
Proc. 2000 European Symp. Principle of Data Mining and Knowledge
Discovery (PKDD ’00), pp. 13-23, Sept. 2000.

[14] H.C.M. Kum, J. Pei, and W. Wang, “Approxmap: Approximate
Mining of Consensus Sequential Patterns,” Proc. 2003 SIAM Int’l
Conf. Data Mining, May 2003.

[15] J. Liu and W. Wang, “Op-Cluster: Clustering by Tendency in High
Dimensional Space,” Proc. Third IEEE Int’l Conf. Data Mining
(ICDM ’03), Nov. 2003.

[16] H. Mannila and C. Meek, “Global Partial Orders from Sequential
Data,” Proc. 2000 ACM SIGKDD Int’l Conf. Knowledge Discovery in
Databases (KDD ’00), pp. 150-160, Aug. 2000.

[17] H. Mannila, H. Toivonen, and A. I. Verkamo, “Discovery of
Frequent Episodes in Event Sequences,” Data Mining and Knowl-
edge Discovery, vol. 1, pp. 259-289, 1997.

[18] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Discovering
Frequent Closed Itemsets for Association Rules,” Proc. Seventh Int’l
Conf. Database Theory (ICDT ’99), pp. 398-416, Jan. 1999.

[19] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and
M.-C. Hsu, “PrefixSpan: Mining Sequential Patterns Efficiently by
Prefix-Projected Pattern Growth,” Proc. 2001 Int’l Conf. Data Eng.
(ICDE ’01), pp. 215-224, Apr. 2001.

[20] J. Pei, J. Han, and W. Wang, “Constraint-Based Sequential Pattern
Mining in Large Databases,” Proc. 2002 Int’l Conf. Information and
Knowledge Management (CIKM ’02), Nov. 2002.

[21] J. Pei, J. Liu, H. Wang, K. Wang, P.S. Yu, and J. Wang, “Efficiently
Mining Frequent Closed Partial Orders,” Proc. Fifth IEEE Int’l
Conf. Data Mining (ICDM ’05), pp. 753-756, IEEE, Nov. 2005

[22] R. Srikant and R. Agrawal, “Mining Sequential Patterns: General-
izations and Performance Improvements,” Proc. Fifth Int’l Conf.
Extending Database Technology (EDBT ’96), pp. 3-17, Mar. 1996.

[23] P. Tzvetkov, X. Yan, and J. Han, “TSP: Mining Top-k Closed
Sequential Patterns,” Proc. Third IEEE Int’l Conf. Data Mining
(ICDM ’03), Nov. 2003.

[24] J. Valdes, R.E. Tarjan, and E.L. Lawler, “The Recognition of Series
Parallel Digraphs,” Proc. 11th Ann. ACM Symp. Theory of
Computing, pp. 1-12, 1979.

[25] W. van der Aalst, T. Weijters, and L. Maruster, “Workflow
Mining: Discovering Process Models from Event Logs,” IEEE
Trans. Knowledge and Data Eng., vol. 16, pp. 1128-1142, Sept. 2004.

[26] J. Wang and J. Han, “BIDE: Efficient Mining of Frequent Closed
Sequences,” Proc. 20th IEEE Int’l Conf. Data Eng., pp. 79-90, 2004.

[27] J. Wang, J. Han, and J. Pei, “CLOSET+: Searching for the Best
Strategies for Mining Frequent Closed Itemsets,” Proc. Ninth ACM
SIGKDD Int’l Conf. Knowledge Discovery and Data Mining (KDD
’03), 2003.

1480 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 11, NOVEMBER 2006

[28] X. Yan and J. Han, “Closegraph: Mining Closed Frequent Graph
Patterns,” Proc. Ninth ACM SIGKDD Int’l Conf. Knowledge
Discovery and Data Mining (KDD ’03), 2003.

[29] X. Yan, J. Han, and R. Afshar, “CloSpan: Mining Closed
Sequential Patterns in Large Databases,” Proc. 2003 SIAM Int’l
Conf. Data Mining, May 2003.

[30] G. Yang, “The Complexity of Mining Maximal Frequent Itemsets
and Maximal Frequent Patterns,” Proc. 10th ACM SIGKDD Int’l
Conf. Knowledge Discovery and Data Mining (KDD ’04), 2004.

[31] J. Yang, P.S. Yu, W. Wang, and J. Han, “Mining Long Sequential
Patterns in a Noisy Environment,” Proc. 2002 ACM-SIGMOD Int’l
Conf. Management of Data (SIGMOD ’02), Jun. 2002.

[32] M.J. Zaki, “SPADE: An Efficient Algorithm for Mining Frequent
Sequences,” Machine Learning, vol. 42, nos. 1-2, pp. 31-60, 2001.

[33] M.J. Zaki and C.J. Hsiao, “CHARM: An Efficient Algorithm for
Closed Itemset Mining,” Proc. 2002 SIAM Int’l Conf. Data Mining,
pp. 457-473, Apr., 2002.

Jian Pei received the PhD degree in computing
science from Simon Fraser University, Canada,
in 2002. He is currently an assistant professor of
computing science at Simon Fraser University,
Canada. His research interests can be summar-
ized as developing effective and efficient data
analysis techniques for novel data intensive
applications. Particularly, he is currently inter-
ested in various techniques of data mining, data
warehousing, online analytical processing, and

database systems, as well as their applications in bioinformatics, privacy
preservation, and education. His current research is supported in part by
the Natural Sciences and Engineering Research Council of Canada
(NSERC) and the US National Science Foundation (NSF). He has
published prolifically in refereed journals, conferences, and workshops,
has served extensively in the organization committees and the program
committees of many international conferences and workshops, and has
been a reviewer for the leading academic journals in his fields. He is a
member of the ACM, the ACM SIGMOD, and the ACM SIGKDD.

Haixun Wang received the BS and MS degrees,
both in computer science, from Shanghai Jiao
Tong University in 1994 and 1996, respectively,
and the PhD degree in computer science from
the University of California, Los Angeles in 2000.
He is currently a research staff member at the
IBM T.J. Watson Research Center. He has
published more than 60 research papers in
referred international journals and conference
proceedings. He is a member of the ACM, the

ACM SIGMOD, the ACM SIGKDD, and the IEEE Computer Society. He
has served in program committees of international conferences and
workshops, and has been a reviewer for some leading academic
journals in the database field.

Jian Liu received the BS and MS degrees in
computer science from Peking University, Chi-
na, in 2000 and 2003, and the MS degree in
computer science from the State University of
New York at Buffalo in 2005. He is currently a
software engineer at Efficient Frontier Inc. based
in Mountain View, California. He has been
working in the area of data mining since 2003.
His research interests include data mining, data
warehousing, and databases.

Ke Wang received the PhD degree from the
Georgia Institute of Technology. He is currently
a professor in the School of Computing Science,
Simon Fraser University. Before joining Simon
Fraser, he was an associate professor at
National University of Singapore. He has taught
in the areas of database and data mining.
Professor Wang’s research interests include
database technology, data mining and knowl-
edge discovery, machine learning, and emerging

applications, with recent interests focusing on the end use of data
mining. This includes explicitly modeling the business goal (such as
profit mining, bio-mining and Web mining) and exploiting user prior
knowledge (such as extracting unexpected patterns and actionable
knowledge). He is interested in combining the strengths of various fields
such as database, statistics, machine learning and optimization to
provide actionable solutions to real-life problems.

Jianyong Wang received the PhD degree in
computer science in 1999 from the Institute of
Computing Technology, the Chinese Academy
of Sciences. Since then, he has worked as an
assistant professor in the Department of Com-
puter Science and Technology, Peking Univer-
sity, in the areas of distributed systems and Web
search engines, and visited the School of
Computing Science at Simon Fraser University,
the Department of Computer Science at the

University of Illinois at Urbana-Champaign, and the Digital Technology
Center and Department of Computer Science and Engineering at the
University of Minnesota, mainly working in the area of data mining. He is
currently an associate professor in the Department of Computer Science
and Technology, Tsinghua University, Beijing, China. He is a member of
the IEEE Computer Society and the ACM SIGKDD.

Philip S. Yu received the BS degree in electrical
engineering from National Taiwan University,
the MS and PhD degrees in electrical engineer-
ing from Stanford University, and the MBA
degree from New York University. He is with
the IBM T.J. Watson Research Center and
currently manager of the Software Tools and
Techniques group. His research interests in-
clude data mining, Internet applications and
technologies, database systems, multimedia

systems, parallel and distributed processing, and performance model-
ing. Dr. Yu has published more than 450 papers in refereed journals and
conferences. He holds or has applied for more than 250 US patents. He
is a fellow of the ACM and a fellow of the IEEE. He is an associate editor
of the ACM Transactions on the Internet Technology and the ACM
Transactions on Knowledge Discovery in Data. He is a member of the
IEEE Data Engineering steering committee and is also on the steering
committee of the IEEE Conference on Data Mining. He was the editor-
in-chief of the IEEE Transactions on Knowledge and Data Engineering
(2001-2004), an editor, advisory board member, and also a guest co-
editor of the special issue on mining of databases. He had also served
as an associate editor of Knowledge and Information Systems. In
addition to serving as a program committee member on various
conferences, he will be serving as the general chair of the 2006 ACM
Conference on Information and Knowledge Management and the
program chair of the 2006 joint conferences of the Eighth IEEE
Conference on E-Commerce Technology (CEC ’06) and the Third IEEE
Conference on Enterprise Computing, E-Commerce and E-Services
(EEE’ 06). He was the program chair, cochair, general chair, and
general cochair of several conferences and workshops. He has received
several IBM honors including two IBM Outstanding Innovation Awards,
an Outstanding Technical Achievement Award, two Research Division
Awards, and the 86th plateau of Invention Achievement Awards. He
received an Research Contributions Award from the IEEE International
Conference on Data Mining in 2003 and also an IEEE Region 1 Award
for “promoting and perpetuating numerous new electrical engineering
concepts” in 1999. Dr. Yu is an IBM Master Inventor.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

PEI ET AL.: DISCOVERING FREQUENT CLOSED PARTIAL ORDERS FROM STRINGS 1481

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

