
Efficiently Mining Frequent Closed Partial Orders (Extended Abstract)

Jian Pei1 Jian Liu2 Haixun Wang3 Ke Wang1 Philip S. Yu3 Jianyong Wang4
1 Simon Fraser Univ., Canada,{jpei, wangk}@cs.sfu.ca 2 State Univ. of New York at Buffalo, USA, liu8@cse.buffalo.edu

3 IBM T.J. Watson Research Center, USA,{haixun, psyu}@us.ibm.com 4 Tshinghua Univ., China, jianyong@mail.tsinghua.edu.cn

1 Introduction

Mining ordering information from sequence data is an
important data mining task. Sequential pattern mining [1]
can be regarded as mining frequent segments of total orders
from sequence data. However, sequential patterns are often
insufficient to concisely capture the general ordering infor-
mation.

Example 1 (Motivation) Suppose MapleBank in Canada
wants to investigate whether there is some orders which cus-
tomers often follow to open their accounts. A databaseDB
in Table 1 about four customers’ sequences of opening ac-
counts in MapleBank is analyzed.

Given a support thresholdmin sup, a sequential pattern
is a sequences which appears as subsequences of at least
min sup sequences. For example, letmin sup = 3. The
following four sequences are sequential patterns since they
are subsequences of three sequences,1, 2 and4, in DB.

CHK → MMK → MORT→ RESP;
CHK → MMK → MORT→ BROK;
CHK → RRSP→ MORT→ RESP;
CHK → RRSP→ MORT→ BROK

The sequential patterns capture the frequent account
opening patterns shared by customers. However, the four
sequential patterns cannot completely capture the ordering
shared by customers1, 2 and4. It is easy to see that a par-
tial orderR as shown in Figure 1 is shared by the three ac-
count opening sequences. The partial orderR summarizes
the four sequential patterns – the four sequential patterns are
paths in partial orderR. It also provides more information
about the ordering than the sequential patterns.

The knowledge about ordering, especially the frequent
partial orders in string databases, has many applications.
For example, ordering information is often important in
analysis of biological experiment data. To discover patterns
in gene expression matrices, one promising approach [2] is
to look for order-preserving submatrices (OPSMs). That is,
in an n by m gene expression matrix forn genes andm
experiments, each elementvi,j gives the expression level
of a genegi in an experimentej . A submatrix is order-

Account codes and explanation
Account code Account type

CHK Checking account
MMK Money market
RRSP Retirement Savings Plan
MORT Mortgage
RESP Registered Education Savings Plan
BROK Brokerage

Customer Records
Cid Sequence of account opening

1 CHK → MMK → RRSP→ MORT→ RESP→ BROK
2 CHK → RRSP→ MMK → MORT→ RESP→ BROK
3 MMK → CHK → BROK→ RESP→ RRSP
4 CHK → MMK → RRSP→ MORT→ BROK→ RESP

Table 1. A database DB of sequences of ac-
count opening.

preserving if the expression levels of all genes in the sub-
matrix induce the same (linear or partial) ordering of the
experiments. Such a pattern may arise if the experiments
in the order-preserving submatrix represent distinct stages
in the progress of a disease or in a cellular process, and the
expression levels of all genes in the submatrix vary across
the stages in the same way.

The problem of mining partial orders in sequence data
has been studied before from angles different from our
study. Two major categories of previous work exist. The
first batch of studies only look at some specific kinds of fre-
quent partial orders, such as serial and parallel orders [6].
Another category of research is on mining global partial or-
ders [5, 4]. However, very different from the problem stud-
ied here, [5] tried to find one or a (small) set of partial or-
ders that fit thewholedata set as well as possible, which was
modeled as an optimization problem. An implicit assump-
tion is that the whole data set somehow follows a global
trend. For some applications, such as the DNA microarray
data analysis and network packet routing, there is usually
no non-trivial order that can be expected globally. This pa-
per addresses such situations. That is, we want to find the

1

(RESP)
Registered Education Savings Plan

(BROK)
Brokerage account

(MORT)
Mortgage account

(RRSP)
Retirement Savings Plan

(MMK)
Money market account

Checking account
(CHK)

Figure 1. A frequent partial order R in Exam-
ple 1.

complete setof partial orders that are frequent in a database,
but not necessarily dominate the database.

Simultaneously to this study, Casas-Garriga [3] also pro-
posed a similar idea to use closed partial orders to summa-
rize sequential data. However, [3] focuses on the concept
and does not provide an efficient algorithm for the mining.
The method in [3] first mines the complete set of frequent
closed sequential patterns and then derives closed partial or-
ders from closed sequential orders. As shown in our exper-
imental results, the method may not be efficient for large
data sets. Therefore, mining frequent partial orders from
sequence data remains a challenging problem.

2 Problem Definition

A partial order is a binary relation that is reflexive, an-
tisymmetric, and transitive. Atotal order (or called linear
order) is a partial orderR such that for any two itemsx and
y, if x 6= y then eitherR(x, y) or R(y, x) holds.

A partial orderR can be expressed in itstransitive clo-
sureas a directed acyclic graph (DAG for short): the items
are the vertices in the graph andx → y is an edge if and
only if (x, y) ∈ R andx 6= y. We also write an edge(x, y)
asxy or x → y.

A transitive closure may contain redundant edges. Gen-
erally, an edgex → y is redundantif there is a path from
x to y that does not contain the edge. For a partial order
R, the transitive reductionof R can be drawn in aHasse
diagram: for (x, y) ∈ R andx 6= y, x is positioned higher
thany; edgex → y is drawn if and only if the edge is not re-
dundant. The transitive closure may have much more edges
than the transitive reduction.

Let V be a set of items, which serves as the domain of
our string database. Astring defines a global order on a
subset ofV . In this paper, we focus on strings instead of
general sequences, and assume that each item appears in a
string at most once, but every item not necessarily appears
in a string.

A string can be written ass = x1 · · ·xl, wherex1, . . . ,
xl ∈ V . l is called thelengthof strings, i.e., len(s) = l.

For stringss = x1 · · ·xl and s′ = y1 · · · ym, s is said a
super-stringof s′ ands′ a sub-stringof s if (1) m ≤ l and
(2) there exist integers1 ≤ i1 < · · · < im ≤ l such that
xij = yj (1 ≤ j ≤ m). We also says containss′. For
a string databaseSDB, thesupportof a strings, denoted
by sup(s), is the number of strings inSDB that are super-
strings ofs.

The total order defined by strings can also be written in
its transitive closureC(s) = {(xi, xj)|1 ≤ i < j ≤ l}.
Please note that, in a transitive closure, we omit the trivial
pairs(xi, xi).

Theorder containment relationis defined as, for two par-
tial ordersR1 andR2, if R1 ⊂ R2, thenR1 is calledweaker
thanR2 andR2 is strongerthanR1. By intuition, a partially
ordered set (or poset for short) satisfyingR2 will also sat-
isfy R1.

A string databaseSDB is a multiset of strings. For a
partial orderR, a strings is said tosupportR if R ⊆ C(s).
Thesupport ofR in SDB, denoted bysup(R), is the num-
ber of strings inSDB that supportR. Given a minimum
support thresholdmin sup, a partial orderR is calledfre-
quentif sup(R) ≥ min sup.

In a string database, for a minimum support threshold,
there can be many frequent partial orders. To avoid the
triviality, instead of reporting all frequent partial orders, we
can only mine the representative ones.

Example 2 (Frequent closed partial orders)Consider
string databaseDB in Table 1 again. There exists no
another partial orderR′ such thatR′ is stronger thanR in
Figure 1 and is also shared by strings1, 2 and4. In other
words, R is the strongest one among all frequent partial
orders shared by strings1, 2 and4. Thus, the partial order
R is not redundant and can be used as a representative of
the frequent partial orders shared by strings1, 2 and 4.
Technically,R is a frequent closed partial order.

A partial orderR is closedin a string databaseSDB
if there exists no partial orderR′ ⊃ R such thatsup(R) =
sup(R′). A partial orderR is afrequent closed partial order
if it is both frequent and closed.

Problem Definition. The problem ofmining frequent
closed partial orders from stringsis to find the complete
set of frequent closed partial orders in a given string data-
baseSDB with respect to a minimum support threshold
min sup.

3 Algorithm Frecpo

Frecpo(for Frequent closed partial order) searches a set
enumeration tree of transitive reductions of partial orders
in a depth-first manner. In principle, a partial order can be
uniquely represented as the set of edges in its transitive re-
duction. Moreover, all edges in a set can be sorted in the

dictionary order and thus can be written as a list. In fact,
any global order on the edges works. For the sake of con-
venience, we choose dictionary order as an example here.
Therefore, we can enumerate all partial orders in the dictio-
nary order. A set enumeration tree of partial orders can be
formed: for ordersR1 andR2, R1 is an ancestor ofR2 and
R2 is a descendant ofR1 in the tree if and only if the list of
edges inR1 is a prefix of the list of edges inR2.

For example, consider a set of items{a, b, c}. The tran-
sitive reductions of all possible partial orders on the three
items can be enumerated in a set enumeration tree shown in
Figure 2.

By a depth-first search of the set enumeration tree of
transitive reductions of partial orders,Frecpowill not miss
any frequent partial order. The depth-first search instead
of the breadth-first search is used because many previous
studies strongly suggest that a depth-first search with appro-
priate pseudo-projection techniques often achieves a better
performance than a breadth-first search when mining large
databases.

To be efficient and scalable,Frecpo prunes the futile
branches and narrows the search space sharply. Basically,
three types of techniques are used.

Pruning infrequent items, edges and partial orders.If
a partial orderR in the set enumeration tree is infrequent,
then the partial orders in the subtree rooted atR, which is
stronger thanR, cannot be frequent. The subtree can be
pruned. Hence,Frecpooften does not have to search the
complete set enumeration tree. Instead, only the upper part
of the tree which contains all the frequent partial orders is
searched. Moreover, only frequent closed partial orders will
be output.

Pruning forbidden edges.Not every edge can appear in
the transitive reduction of a partial order. For example, if
both edgesab andbc are in a partial orderR, then edgeac
cannot appear in the transitive reduction ofR. In this case,
edgeac is called a forbidden edge. Removing the forbidden
edges can also narrow the search space.

Extracting transitive reductions of frequent partial or-
ders directly.In Frecpo, we develop an efficient method to
identify frequent closed partial orders and also extract their
transitive reductions from various subsets of strings. Thus,
Frecpodoes not need to compute the transitive reductions.

Algorithm Frecpois shown in Figure 3. We explain the
critical details using an example.

Example 3 (Frecpo) Let us consider mining frequent
closed partial orders from the string databaseSDB
in Table 2 with respect to minimum support threshold
min sup = 2.

By scanning the database only once,Frecpo computes
the supports of the items. Infrequent items are pruned, such
asf in our running example (sup(f) = 1).

To prune the infrequent edges and the forbidden edges,

Input: a string databaseSDB and a minimum support
thresholdmin sup;

Output: the complete set of frequent CPOs;
Method:
1: scan database once, find frequent items;
2: scan database again, find global feasible edges;

// Note: if the total number of items inSDB
// is not large, the first two scans can be combined.

3: letR be the set of global feasible edges with support|SDB|;
4: if R 6= ∅ then outputR as a frequent CPO;
5: letL = e1, . . . , en be the list of global feasible edges with

support less than|SDB|;
6: for each edgeei in L do
7: if R ∪ {ei} does not contain any redundant edge and there

exists no FCPOR′ found before such thatR′ ⊃ (R ∪ {ei})
andsup(R′) = sup(ei) then

8: formR ∪ {ei}-projected databaseSDB|R∪{ei};
9: recursively mineSDB|R∪{ei}

Figure 3. The Frecpoalgorithm.

Sid String Transitive closureC(s)
1 abcdef ab, ac, ad, ae, af, bc, bd, be

bf, cd, ce, cf, de, df, ef

2 acbde ac, ab, ad, ae, cb, cd, ce, bd, be, de

3 dabce da, db, dc, de, ab, ac, ae, bc, be, ce

4 dcabe dc, da, db, de, ca, cb, ce, ab, ae, be

Table 2. String database SDB as the running
example.

Frecpo scans the database again and fills in a matrix
{cnt[x, y]}, wherex and y are both frequent items, and
cnt[x, y] registers bothsup(xy) and the list of items that
appear betweenx andy in all strings having been scanned
so far that containxy. The list is called the anchor list. The
matrix is called thedetection matrixas shown below.

a b c d e

a 4, ∅ 3, ∅ 2, {b, c} 4, {b}
b 0, ∅ 2, ∅ 2, ∅ 4, ∅
c 1, ∅ 2, ∅ 2, ∅ 4, ∅
d 2, ∅ 2, {a} 2, ∅ 4, ∅
e 0, ∅ 0, ∅ 0, ∅ 0, ∅

From the detection matrix, we can immediately prune
the infrequent edges (those with support less than2, such
asca). An edge is a forbidden edge if its anchor list is not
empty. Forbidden edgesad, ae anddb can be pruned as
well.

In this example,SDB contains6 different items. There
are6 × 5 = 30 possible different edges.20 different edges
appear in the database. Only11 edges survive from the
pruning.

Only the edgesab, ac, bc, bd, be, cb, cd, ce, da, dc and

{ab, ca} {ab, cb} {ac, ba} {ac, bc} {ac, cb} {ba, bc} {ba, ca} {ba, cb} {bc, ca} {ca, cb}

{ab} {ac} {ba} {bc} {ca} {cb}

{}

{ab, bc}{ab, ac}

Figure 2. The enumeration tree of the transitive reductions of possible partial orders on a, b, c.

de can be used to construct the transitive reduction of a fre-
quent closed partial orders. They are called theglobal fea-
sible edges. Among them,ab, be, ce andde have support4,
i.e., they appear in every string inSDB. The four edges
form a frequent closed partial order. In other words, the set
of global feasible edges that appear in every string forms a
frequent CPO. Interestingly, the set is in fact the transitive
reduction, since any redundant edge in the set is identified
as a forbidden edge by the detection matrix.

Once a frequent closed partial orderR is found,Frecpo
expandsR to its children. Only frequent, non-forbidden
edges in theR-projected database should be used to expand
R to its children in the enumeration tree.

Frequent closed partial orderR1 is the order shared by
all strings. Thus, any other frequent closed partial order will
be stronger thanR1.

The other frequent closed partial orders in transitive re-
duction can be partitioned into the following subsets ac-
cording to the dictionary order of the remaining global fea-
sible edges (i.e.,ac, bc, bd, cb, cd, da, anddc): (1) the ones
having edgeac in their transitive reduction; (2) the ones
having edgebc but noac in their transitive reduction; . . . ;
and (7) the one havingdc but no other edges in its transitive
reduction (if it is a frequent closed partial order). These sub-
sets can be mined one by one in a depth-first search manner.

We first consider the subset of frequent closed partial or-
ders having edgeac in their transitive reductions. They also
containR1. The strings inSDB that are super-strings ofac,
namely strings1, 2 and3, are collected as the(R1 ∪ {ac})-
projected database.

We prune the local infrequent items, infrequent edges
and forbidden edges by scanning the(R1∪{ac})-projected
database once and filling in the local detection matrix. The
feasible edges in this projected database arebc, bd andcd.
Since each feasible edge has support2, which is less than
the number of strings in the projected database, we extract
R2 = R1 ∪ {ac} as the transitive reduction of a frequent
closed partial order. Any frequent partial order havingac
must be stronger thanR2.

Since we have three local feasible edges in the(R1 ∪
{ac})-projected database, the remaining frequent closed
partial orders havingac in their transitive reduction can be
further partitioned into three sub-subsets: the ones having
ac andbc, the ones havingac andbd but nobc, and the ones
havingac andcd but nobc nor bd.

R2 has an edgeab, and any frequent partial order having
ac is a superset ofR2. Clearly, edgesab, ac andbc cannot
stay together in a transitive reduction, sinceac is redundant
in such a case. Thus, we immediately determine that the
first sub-subset is empty without checking the database.

The remaining frequent closed partial orders can be
found by recursive depth-first search. Limited by space, we
omit the details here.

In implementation, we use the pseudo-projection tech-
nique [7]. Instead of producing a physical copy of strings
for every projected database, we use hyperlinks (imple-
mented as pointers) to link the strings in the projected data-
base together. At any time, there is only one copy of the
database. Scanning and deriving projected database are ef-
ficient with the help of hyperlinks.

Frecpo has three distinct advantages. First, the min-
ing in transitive reduction avoids substantial space and I/O
overhead. Second, it directly extracts frequent closed par-
tial orders in transitive reduction. Last, it aggressively and
progressively prunes futile branches in recursive depth-first
search.

We testedFrecpo and some related methods (includ-
ing the one in [3]) extensively on both real and synthetic
data sets. Our experimental results show that the frequent
closed partial order mining is efficient – we can find applica-
tion meaningful patterns from real data sets. Furthermore,
Frecpo is efficient and scalable in mining large data sets.
The experimental results are reported in the full version of
the paper.

References

[1] R. Agrawal and R. Srikant. Mining sequential patterns. In
ICDE’95.

[2] A. Ben-Dor et al. Discovering local structure in gene ex-
pression data: the order-preserving submatrix problem. In
RECOMB’02.

[3] G. Casas-Garriga. Summarizing sequential data with closed
partial orders. InProc. 2005 SIAM Int. Conf. Data Mining.

[4] A. Gionis et al. Fragments of order. InKDD’03.
[5] H. Mannila and C. Meek. Global partial orders from sequen-

tial data. InKDD’00.
[6] H. Mannila et al. Discovery of frequent episodes in event

sequences.Data Mining and Knowledge Discovery, 1:259–
289, 1997.

[7] J. Pei et al. PrefixSpan: Mining sequential patterns efficiently
by prefix-projected pattern growth. InICDE’01.

