
Selecting Features by Vertical Compactness of Data �

Ke Wang and Suman Sundaresh
Department of Information Systems and Computer Science

National University of Singapore
wangk�iscs�nus�edu�sg� sumans�iscs�nus�edu�sg

Abstract

Feature selection is a data preprocessing step for
classi�cation and data mining tasks� Tradition�
ally� feature selection is done by selecting a mini�
mum number of features that determine the class
label� i�e�� by the horizontal compactness of data�
In this paper� we propose a new selection cri�
terion that aims at the vertical compactness of
data� In particular� we select a subset of fea�
tures that yields the least number of projected
instances while determining the class label� A
hybrid search that is partially DFS and partially
BFS is proposed to exploit the pruning potential
of the problem� We compare the result induced
by C��� before and after the feature selection�

Introduction

Traditionally� feature selection is done by selecting
fewest features that determine the class label� See�
for example� Almuallim and Dietterich ����� Schlim�
mer ���	� 
There are other de�nitions of feature selec�
tion� such as Kira and Rendell ����� Koller and Sahami
���
� e�g�� One obvious problem is that in a medi�
cal diagnosis task� the patient�s social security number

SSN� would be identi�ed as one solution because SSN
determines the diagnosis� The rules produced using
only SSN would not be able to predict the diagnosis
for an unseen patient� The poor generalization lies
in the fact that the selection of SSN yields no reduc�
tion in the number of projected instances� Of course�
one could �rst remove SSN before the feature selection
starts because SSN is well known to have poor general�
ization� However� in many other less obvious cases� the
choice of which features to be removed is not always
straightforward� Answering this question is exactly the
task of feature selection�
In this paper� we propose a new feature selection

criterion that aims at the maximum vertical compact�

� Copyright c��		
� American Association for Arti��
cial Intelligence �www�aaai�org�� All rights reserved�

ness of the data� in contrast to the traditional hori�
zontal compactness� For some given tolerance of noise
level �� we select a subset of features that yields fewest
projected instances without exceeding the tolerance ��
This criterion returns the most vertically compact sub�
set for the given tolerance� In fact� the more vertically
compact the subset is� the more duplicates in the se�
lected features map to the same class� therefore� the
more likely the selected features are relevant in describ�
ing the class� In the above medical diagnosis example�
it is obvious that SSN would be among the �rst not to
be selected since it gives no reduction in the number
of projected instances�
The rest of the paper de�nes the new feature selec�

tion criterion� considers issues involved in searching for
a solution� and studies the performance of the criterion�

The MIN INSTANCE Criterion

The user usually has some idea about how much noise
in the dataset can be tolerated when performing fea�
ture selection� Subject to such tolerance� the feature
selection is to select a subset of features that produces
the least number of projected instances� First� let us
de�ne what is meant by the noise of the data�
Two instances are inconsistent if they match except

for the class label� For a set of matching instances�
the inconsistency count is the number of instances in
the set minus the number of instances belonging to a
major class in the set� For example� there are n match�
ing instances� among them� I� instances belong to one
class� I� instances belong to another class� and I� in�
stances belong to the third class� where I��I��I� � n�
If I� is the largest among the three� the inconsistency
count is n � I�� The inconsistency rate is the sum
of all inconsistency counts 
for all matching patterns�
divided by the total number of instances� In other
words� the inconsistency rate measures the misclassi��
cation caused by changing minority classes of matching
instances to a majority class� The data size of a subset
of features refers to the number of distinct instances



A B C D

AB
AC AD BC BD CD

ABC ABD ACD BCD

ABCD

Figure �� A trie�like representation of search space

projected onto the features in the subset�

De�nition � �Feature Selection� Given an incon�
sistency rate �� we select a subset S of features such
that �a� no more than � inconsistency rate is introduced
by projecting onto features in S� where duplicates are
counted� and �b� the data size of S is the smallest over
all subsets of features satisfying �a��

A suboptimal solution refers to a subset of features
that does not exceed the given inconsistency rate �

but whose data size may be larger than that of an
optimal solution� One suboptimal solution is better
than another suboptimal solution if the former has a
smaller data size than the latter� In this paper� we
adapt De�nition � for feature selection�

Search Methods

In search for a solution to the feature selection prob�
lem� a crucial performance issue is to prune useless
search space as much and as early as possible� We now
address this issue� By evaluating a subset of features�
we mean that we check its possibility as a solution�
The problem has the following pruning structures�
Pruning strategies� Let S� and S� be two subsets

of features� Assume that S� is evaluated and S� is not�

Pruning I If S� is a subset of S�� S� need not be
evaluated�

Pruning II If the data size of S� is not more than
that of S�� S� need not be evaluated�

Clearly� Pruning II is more general than Pruning I be�
cause a subset cannot have a larger data size than a su�
perset� We separate Pruning I out for analyzing search
strategies below�
Candidates of search strategies� We borrow the

trie�like enumeration scheme in Schlimmer ���	 to gen�
erate successively larger subsets of features� Initially�
all the features are placed in the �xed order as children
of the root� At the next level� children of a leaf node
are created by unioning features at the leaf node with

features at one sibling node� Figure � illustrates the
enumeration scheme for four features� The e�ective�
ness of search is determined by a search order of nodes
in the tree� First� we analyze two obvious candidates
of the search order�

Breadth First Search �BFS�� BFS evaluates all sub�
sets before their supersets� thus� fully exercises Pruning
I� However� BFS does not allow suboptimal solutions
to be found as quickly as possible� which is essential
for tightening the pruning through data size� Suppose
that in Figure �� ABC has a data size smaller than that
of D� If ABC is evaluated and found to be a suboptimal
solution before D� evaluating D will tag D as pruned
by Pruning II� Consequently� all nodes containing D
need not be evaluated by Pruning I� Unfortunately�
BFS does not explore this pruning potential because
it evaluates D before ABC� As a result� there could be
many �open� nodes to be kept around in BFS� which
prevents the algorithm from �nding a solution using
the available memory�

Depth First Search �DFS�� Unlike BFS� DFS enables
suboptimal solutions to be reached quickly� But DFS
does not well exercise Pruning I� i�e�� evaluating subsets
before supersets� For example� in Figure � DFS will
evaluate ABC before AC� If AC were evaluated �rst
and pruned� ABC and ABCD would not need to be
evaluated using Pruning I�

To avoid the above weakness of BFS and DFS� we
propose a hybrid search�

Hybrid Search �HS�� The Hybrid Search is partially
BFS and partially DFS� Consider the search space
in Figure � for �ve features� Though only physi�
cally connected to A� AB is a �logical� child of B
in that it was spawn by A and B� In general� a
node of form A�A����An has the physical parent of
formA�A� � � �An��An�� and the logical parent of form
A�A����An��An� Note that these two parents must be
siblings in the tree� For example� in Figure � the phys�
ical parent and logical parent of ABCD are ABC and
ABD� The essence of HS is captured by the two prin�
ciples below�

Principle � Evaluate both logical and physical par�
ents before evaluating their child� This is the BFS
component that evaluates subsets before superset�
Pruning I is exercised here�

Principle � Evaluate the child immediately after
both parents are evaluated� This is the DFS com�
ponent that goes down the tree without evaluating
all nodes at the higher level� Pruning II is exercised
here�



A:1 C:4B:2 D:7 E:11

AB:3 AC:5 AD:8 AE:12 BC:21
BD:22 BE:24

CD:28
CE:29

DE:31

ABC:6 ABD:9 ABE:13 ACD:17 ACE:18 ADE:20 BCD:23 BCE:25 BDE:27 CDE:30

ABCD:10 ABCE:14 ABDE:16 ACDE:19 BCDE:26

ABCDE:15

Figure �� Pruning potential

Hybrid Search Algorithm

We present a search algorithm for HS� At the top
level� the search order of HS is guided by DFS� To
enforce Principle �� however� a checking of the logical
parent is interleaved with DFS� On visiting a node v


whose physical parent has obviously been evaluated��
HS checks the status of the logical parent v� of v� which
must be one of pruned� evaluated� unevaluated� If v�
is unevaluated� v� is pushed onto the stack and the
checking goes to the logical parent of v� recursively

note that the physical parent of v� has been evalu�
ated�� This repeats until encountering a logical par�
ent that is either pruned or evaluated� The unwinding
stage of the recursion pops each node from the stack
and evaluates it� When the stack becomes empty� the
computation comes back to v and the DFS resumes
and determines the next node to visit from unpruned
nodes� Instead of presenting the algorithm� we illus�
trate the idea using an example�

Example � Consider Figure �� The number at each
node denotes the order in which the node is visited fol�
lowing Principles � and �� Let us consider how Prun�
ings I and II are exercised� HS starts with A� AB is
the next node to visit in the DFS order� Principle �
requires to evaluate the logical parent of AB 	rst� i�e��
B� and then AB itself� ABC is visited next in the DFS
order� The parent checking at ABC pushs ABC� AC� C
onto the stack� as indicated by the dotted line starting
at ABC� and evaluates C� AC� ABC in the unwinding
stage� Suppose that ABC is the current best subopti�
mal solution� From Pruning I� all nodes under ABC
are pruned� ABD is the next unpruned node to be vis�
ited in the DFS order� The parent checking at ABD
pushes ABD� AD� and D onto the stack� Assume that

the data size of D is larger than the current best size
�i�e�� the data size of ABC�� In the unwinding stage� D�
AD� ABD are simply popped o
 the stack and tagged
as pruned�
ABE is the next unpruned node in the DFS order�

The parent checking at ABE pushes ABE� AE� E onto
the stack� Assume that the data size of E is larger than
the current best size� E� AE� ABE all are tagged as
pruned and popped o
 the stack� ACD is visited next�
Since the logical parent AD was pruned before� ACD is
pruned immediately� ACE is visited next� Similarly�
since its logical parent AE was pruned before� ACE is
pruned immediately� Then BC becomes the next un�
pruned node in the DFS order� This traversal goes on
until no more unpruned can be reached�

The worst case for HS algorithm is when all features
are relevant and no node can be pruned� In this case�
�n � � nodes will be evaluated� where n is the number
of original features� In most cases� however� the class
label depends only on a small number of features and
much fewer nodes are evaluated�

Experiments

We tested the proposed feature selection on a few
datasets in UCI Repository 
Murphy and Aha ������
Our focus is the data size reduction and the quality of
rules induced�

Features selected

Table � shows the features selected and the data size
before and after feature selection� The last three
datasets have continuous features� All datasets use
consistency rate � � �� except Monk	
��� which uses
� � �� because the dataset contains �� noise� If the
training data and testing data are separately speci�ed�
such as all Monks� feature selection is applied to the
training data� otherwise� to the entire dataset�
For the �rst seven datasets for which the relevant

features are known� exactly the relevant features are
selected� as in the table� For all datasets� only a proper
subset of original features is selected� Except for Tic�
Tac�Toe� there is always some reduction in the data
size after feature selection� with Led � having the most
reduction� i�e�� from ���� instances to �� instances� For
Abalone and Pima� though the reduction in data size
is small� three out of the original eight are selected�
reducing the data volume by more than 
���
We have chosen DFS and BFS coupled with Prun�

ings I and Pruning II� denoted DFS
P� and BFS
P�� as
the benchmark for comparison� The last three columns
in Table � give the number of dataset scans performed�
In most cases� HS makes fewer scans than DFS
P� and
BFS
P�� For the three Monks� Parity	�	� and Pima�



Dataset Size 
 of Features Features Selected New Size Scan Scan Scan
Hybrid DFS�P� BFS�P�

Monk� ��� 
 A�A�A� �� �� ��
 	�
Monk� ��	 
 all except the ID ��	 �	 ��� ���
Monk����� ��� 
 A�A�A� �	 �� ��� 	�
CorrAL �� � A�A�B�B� �� �� �� ��
Parity��� ��� �� A�A�A�A�A� �� �

 ��� �
�
Parity��� �� �� A�A�A� � ��� �	
 �	

Tic�Tac�Toe 	�� 	 all but A� 	�� ��� ��� ���
Led 
 ���� 
 A�A�A�A�A� �� ��� ��� ���

Bupa ��� � A�A�A� ��
 �� �� ��
Abalone ��

 � A�A�A� ��
� 
	 �� 	�
Pima 
�� � A�A�A	 
�� ��� ��� ���

Table �� Selected features and cost comparison

the reduction in the number of scans ranges between
��� and ���� and for Tic�Tac�Toe and Led �� the three
methods make the same number of scans� It is ex�
pected that HS will prune more scans on real datasets
where there are more irrelevant features�

E�ectiveness of classi�cation

We run C��� 
Quinlan ���	� on the above datasets
with and without feature selection� Duplicate in�
stances produced by feature selection are kept in run�
ning C���� In practice� duplicates can be represented
by a single copy and a duplication number� For each
dataset� the ���fold cross validation was applied to the
whole dataset projected on the features selected in Ta�
ble �� Table � summarizes the size of pruned decision
trees and the error rate on test data� In general� se�
lected features induce better decision trees than orig�
inal features� For CorrAl 
John� Kohavi and P�eger
������ Bupa� and Abalone� both tree size and error
rate are reduced after feature selection� Without fea�
ture selection the decision tree for CorrAl picks the cor�
related feature C as the root� With feature selection
the correlated feature 
C� and the irrelevant feature 
I�
are removed and the induced rules capture the target
concept� i�e�� 
A� �B�� � 
A� �A���
For the two Parity datasets� a bigger decision tree

is induced� but the error rate is reduced from ��� to
nearly �� Since the error rate is collected on test data�
this improvement is not always achievable by having
a larger tree� In the case of Tic�Tac�Toe� the tree size
has reduced signi�cantly by having a slightly higher er�
ror rate� The feature selection does not a�ect Monk��
Monk	� and Led � because C��� selects exactly same
features� For Monk�� the tree gets slightly bigger but
the error rate drops to �� Unlike discrete features� con�
tinuous features have much fewer repeating values� a
direct feature selection is less e�ective� as shown by the
last three datasets�

Dataset Tree Size Error Rate ���
Bef� FS Aft� FS Bef� FS Aft� FS

Monk� ���� ���� ��� ���
Monk� ��� ��� ���	 ���	
Monk����� �	�� �	�� ��� ���
CorrAL ���� ���� ��� ���
Parity ��� ���� ���� ���� ���
Parity ��� ���� ���� �	�� ���
Tic�Tac�Toe ����� ����� ���� ���

Led 
 �	�� �	�� ��� ���

Bupa 

�� ���� �	�� ���	
Abalone ��
��� ������ 
	�	 
	��
Pima ����� ����� �	�� ����

Table �� Results of C���

References
Almuallim� H�� � Dietterich� T� G� �		�� Learning boolean
concepts in the presence of many irrelevant features� Arti�
�cial Intelligence� �	 ������ �
	�����
John� G� H�� Kohavi� R�� � P�eger� K� �		�� Irrele�

vant features and the subset selection problem� In Proceed�
ings of the Eleventh International Conference on Machine
Learning� ������	�
Kira� K�� � Rendell� L� A� �		�� The feature selection

problem� Traditional methods and a new algorithm� In
Proceedings of Ninth National Conference on AI� ��	�����
Koller� D�� � Sahami� M� �		�� Toward optimal fea�

ture selection� In Machine Learning� Proceedings of the
Thirteenth International Conference�
Murphy� P�� � Aha� D� �		�� Repository of

Machine Learning Databases� http���www�ics�uci�edu�
mlearn�MLRepository�html
Quinlan� J� R� �		�� C��� � Programs for Machine Learn�

ing�
Schlimmer� J� C� �		�� E�ciently Inducing determina�

tions� A complete and systematic search algorithm that
uses optimal pruning� In Proceedings of Tenth Interna�
tional Conference on Machine Learning� �����	��


