Selecting Features by Vertical Compactness of Data *

Ke Wang and Suman Sundaresh
Department of Information Systems and Computer Science
National University of Singapore
wangk@iscs.nus.edu.sg, sumans@iscs.nus.edu.sg

Abstract

Feature selection is a data preprocessing step for
classification and data mining tasks. Tradition-
ally, feature selection is done by selecting a mini-
mum number of features that determine the class
label, i.e., by the horizontal compactness of data.
In this paper, we propose a new selection cri-
terion that aims at the wvertical compactness of
data. In particular, we select a subset of fea-
tures that yields the least number of projected
instances while determining the class label. A
hybrid search that is partially DFS and partially
BFS is proposed to exploit the pruning potential
of the problem. We compare the result induced
by C4.5 before and after the feature selection.

Introduction

Traditionally, feature selection is done by selecting
fewest features that determine the class label. See,
for example, Almuallim and Dietterich 1994, Schlim-
mer 1993. (There are other definitions of feature selec-
tion, such as Kira and Rendell 1992, Koller and Sahami
1996, e.g.) Ome obvious problem is that in a medi-
cal diagnosis task, the patient’s social security number
(SSN) would be identified as one solution because SSN
determines the diagnosis. The rules produced using
only SSN would not be able to predict the diagnosis
for an unseen patient. The poor generalization lies
in the fact that the selection of SSN yields no reduc-
tion in the number of projected instances. Of course,
one could first remove SSN before the feature selection
starts because SSN is well known to have poor general-
ization. However, in many other less obvious cases, the
choice of which features to be removed is not always
straightforward. Answering this question is exactly the
task of feature selection.

In this paper, we propose a new feature selection
criterion that aims at the maximum vertical compact-

* Copyright ©1997, American Association for Artifi-
cial Intelligence (www.aaai.org). All rights reserved.

ness of the data, in contrast to the traditional hori-
zontal compactness. For some given tolerance of noise
level v, we select a subset of features that yields fewest
projected instances without exceeding the tolerance ~.
This criterion returns the most vertically compact sub-
set for the given tolerance. In fact, the more vertically
compact the subset is, the more duplicates in the se-
lected features map to the same class, therefore, the
more likely the selected features are relevant in describ-
ing the class. In the above medical diagnosis example,
it is obvious that SSN would be among the first not to
be selected since it gives no reduction in the number
of projected instances.

The rest of the paper defines the new feature selec-
tion criterion, considers issues involved in searching for
a solution, and studies the performance of the criterion.

The MIN_INSTANCE Criterion

The user usually has some idea about how much noise
in the dataset can be tolerated when performing fea-
ture selection. Subject to such tolerance, the feature
selection is to select a subset of features that produces
the least number of projected instances. First, let us
define what is meant by the noise of the data.

Two instances are inconsistent if they match except
for the class label. For a set of matching instances,
the inconsistency count is the number of instances in
the set minus the number of instances belonging to a
major class in the set. For example, there are n match-
ing instances, among them, /; instances belong to one
class, I instances belong to another class, and I3 in-
stances belong to the third class, where I1 + 1+ 13 = n.
If I3 is the largest among the three, the inconsistency
count i8 n — Iz. The inconsistency rate is the sum
of all inconsistency counts (for all matching patterns)
divided by the total number of instances. In other
words, the inconsistency rate measures the misclassifi-
cation caused by changing minority classes of matching
instances to a majority class. The data size of a subset
of features refers to the number of distinct instances

A

B \
AB \K o BC BD

ABC ABD ACD BCD

cD

ABCD

Figure 1: A trie-like representation of search space

projected onto the features in the subset.

Definition 1 (Feature Selection) Given an incon-
sistency rate vy, we select a subset S of features such
that (a) no more than v inconsistency rate is introduced
by projecting onto features in S, where duplicates are
counted, and (b) the data size of S is the smallest over
all subsets of features satisfying (a).

A suboptimal solution refers to a subset of features
that does not exceed the given inconsistency rate 5
but whose data size may be larger than that of an
optimal solution. One suboptimal solution is better
than another suboptimal solution if the former has a
smaller data size than the latter. In this paper, we
adapt Definition 1 for feature selection.

Search Methods

In search for a solution to the feature selection prob-
lem, a crucial performance issue is to prune useless
search space as much and as early as possible. We now
address this issue. By evaluating a subset of features,
we mean that we check its possibility as a solution.
The problem has the following pruning structures.
Pruning strategies. Let S1 and S2 be two subsets
of features. Assume that S1 is evaluated and S2 is not.

Pruning I If S1 is a subset of 52, S2 need not be
evaluated.

Pruning II If the data size of S1 is not more than
that of S2, S2 need not be evaluated.

Clearly, Pruning II is more general than Pruning I be-
cause a subset cannot have a larger data size than a su-
perset. We separate Pruning I out for analyzing search
strategies below.

Candidates of search strategies. We borrow the
trie-like enumeration scheme in Schlimmer 1993 to gen-
erate successively larger subsets of features. Initially,
all the features are placed in the fixed order as children
of the root. At the next level, children of a leaf node
are created by unioning features at the leaf node with

features at one sibling node. Figure 1 illustrates the
enumeration scheme for four features. The effective-
ness of search 1s determined by a search order of nodes
in the tree. First, we analyze two obvious candidates
of the search order.

Breadth First Search (BFS). BFS evaluates all sub-
sets before their supersets, thus, fully exercises Pruning
I. However, BFS does not allow suboptimal solutions
to be found as quickly as possible, which is essential
for tightening the pruning through data size. Suppose
that in Figure 1, ABC has a data size smaller than that
of D. If ABC is evaluated and found to be a suboptimal
solution before D, evaluating D will tag D as pruned
by Pruning II. Consequently, all nodes containing D
need not be evaluated by Pruning I. Unfortunately,
BFS does not explore this pruning potential because
it evaluates D before ABC. As a result, there could be
many “open” nodes to be kept around in BFS, which
prevents the algorithm from finding a solution using
the available memory.

Depth First Search (DFS). Unlike BFS, DFS enables
suboptimal solutions to be reached quickly. But DFS
does not well exercise Pruning I, i.e., evaluating subsets
before supersets. For example, in Figure 1 DFS will
evaluate ABC before AC. If AC were evaluated first
and pruned, ABC and ABCD would not need to be
evaluated using Pruning I.

To avoid the above weakness of BFS and DFS, we
propose a hybrid search.

Hybrid Search (HS). The Hybrid Search is partially
BFS and partially DFS. Consider the search space
in Figure 2 for five features. Though only physi-
cally connected to A, AB is a “logical” child of B
in that it was spawn by A and B. In general, a
node of form Aj;As...A,; has the physical parent of
form A1 As ... A,_2A,_1 and the logical parent of form
A1As.. A, _2A,,. Note that these two parents must be
siblings in the tree. For example, in Figure 1 the phys-
ical parent and logical parent of ABCD are ABC and
ABD. The essence of HS 1s captured by the two prin-
ciples below:

Principle 1 Evaluate both logical and physical par-
ents before evaluating their child. This is the BFS
component that evaluates subsets before superset.
Pruning I is exercised here.

Principle 2 Evaluate the child immediately after
both parents are evaluated. This is the DFS com-
ponent that goes down the tree without evaluating
all nodes at the higher level. Pruning II is exercised
here.

/’CA\E:M
— =

AT B:2 _7 -~ D7

—~ < -
- — -
N -
- — .
/= BD22 BE24 _ ~CE29
7

AB:3 “ACS5 AD:g AE:12 BC21 2 DE:31

CcD:28
NI 5T
7
A2
//// e
ABC'S “ABD:9 ABE:3 ACD:17 ACE:8 ADE20 BCD:23 BCE25 “BDE:27 CDE:30

)

ABCD:10 ABCE:14 ABDE:16 ~ ACDE19 BCDE:26

ABCDE:15

Figure 2: Pruning potential

Hybrid Search Algorithm

We present a search algorithm for HS. At the top
level, the search order of HS is guided by DFS. To
enforce Principle 1, however, a checking of the logical
parent is interleaved with DFS. On visiting a node v
(whose physical parent has obviously been evaluated),
HS checks the status of the logical parent v1 of v, which
must be one of pruned, evaluated, unevaluated. If vl
is unevaluated, vl is pushed onto the stack and the
checking goes to the logical parent of vl recursively
(note that the physical parent of v1 has been evalu-
ated). This repeats until encountering a logical par-
ent that is either pruned or evaluated. The unwinding
stage of the recursion pops each node from the stack
and evaluates it. When the stack becomes empty, the
computation comes back to v and the DFS resumes
and determines the next node to visit from unpruned
nodes. Instead of presenting the algorithm, we illus-
trate the idea using an example.

Example 1 Consider Figure 2. The number at each
node denotes the order in which the node is visited fol-
lowing Principles 1 and 2. Let us consider how Prun-
wings I and II are evercised. HS starts with A. AB 1s
the next node to wisit in the DFS order. Principle 1
requires to evaluate the logical parent of AB first, 1.e.,
B, and then AB itself. ABC is visited next in the DFS
order. The parent checking at ABC pushs ABC, AC, C
onto the stack, as indicated by the dotted line starting
at ABC, and evaluates C, AC, ABC n the unwinding
stage. Suppose that ABC 1is the current best subopti-
mal solution. From Pruning I, all nodes under ABC
are pruned. ABD is the next unpruned node to be vis-
ited in the DFS order. The parent checking at ABD
pushes ABD, AD, and D onto the stack. Assume that

the data size of D 1is larger than the current best size
(i.e., the data size of ABC). In the unwinding stage, D,
AD, ABD are simply popped off the stack and tagged
as pruned.

ABE s the next unpruned node in the DFS order.
The parent checking at ABE pushes ABE, AE, E onto
the stack. Assume that the data size of I is larger than
the current best size, B, AE, ABE all are tagged as
pruned and popped off the stack. ACD is visited next.
Since the logical parent AD was pruned before, ACD is
pruned immediately. ACE is visited next. Similarly,
swnce its logical parent AE was pruned before, ACFE is
pruned immediately. Then BC becomes the next un-
pruned node in the DFS order. This traversal goes on
until no more unpruned can be reached.

The worst case for HS algorithm is when all features
are relevant and no node can be pruned. In this case,
2" — 1 nodes will be evaluated, where n is the number
of original features. In most cases, however, the class
label depends only on a small number of features and
much fewer nodes are evaluated.

Experiments

We tested the proposed feature selection on a few
datasets in UCI Repository (Murphy and Aha 1994).
Our focus is the data size reduction and the quality of
rules induced.

Features selected

Table 1 shows the features selected and the data size
The last three
datasets have continuous features. All datasets use
consistency rate v = 0, except Monk3(5%) which uses
v = 5% because the dataset contains 5% noise. If the
training data and testing data are separately specified,
such as all Monks, feature selection is applied to the
training data; otherwise, to the entire dataset.

For the first seven datasets for which the relevant
features are known, exactly the relevant features are
selected, as in the table. For all datasets, only a proper
subset of original features is selected. Except for Tic-
Tac-Toe, there is always some reduction in the data
size after feature selection, with Led 7 having the most
reduction, i.e., from 2000 instances to 10 instances. For
Abalone and Pima, though the reduction in data size
is small, three out of the original eight are selected,
reducing the data volume by more than 60%.

We have chosen DFS and BFS coupled with Prun-
ings I and Pruning II, denoted DFS(P) and BFS(P), as
the benchmark for comparison. The last three columns
in Table 1 give the number of dataset scans performed.
In most cases, HS makes fewer scans than DFS(P) and
BFS(P). For the three Monks, Parity3+3, and Pima,

before and after feature selection.

Dataset Size | # of Features || Features Selected | New Size || Scan Scan Scan
Hybrid | DFS(P) | BFS(P)
Monk1 124 7 A1 Az As 35 66 107 94
Monk?2 169 7 all except the ID | 169 69 126 126
Monk3(5%) 133 7 A2 A4 As 39 54 101 92
CorrAL 64 6 AoA1Bo By 16 61 61 60
Parity5+5 200 10 A1 A2 A3 A4 As 32 677 683 672
Parity3+3 64 12 A1 Az As 8 320 397 397
Tic-Tac-Toe | 958 9 all but As 958 510 510 510
Led 7 2000 | 7 A1 A2 A3 A4 As 10 124 124 124
Bupa 345 6 Az AsAs 337 43 51 51
Abalone 4177 | 8 Az AgAs 4175 79 81 95
Pima 768 8 A1 A4 A7 764 121 164 156
Table 1: Selected features and cost comparison
the reduction in the number of scans ranges between Datasct Tree Size Error Rate (%)
19% and 45%, and for Tic-Tac-Toe and Led 7, the three Bef. FS | Aft. FS | Bef. FS | Aft. FS
methods make the same number of scans. It is ex- Monk1 38.6 41.0 1.1 0.0
pected that HS will prune more scans on real datasets Monk? 1.0 1.0 32.9 32.9
where there are more irrelevant features. Monk3(5%) | 19.0 19.0 0.0 0.0
CorrAL 14.6 13.0 6.0 0.0
. . . Parity 5+5 41.8 62.4 45.0 2.0
Effectiveness of classification Parity 313 134 =0 5= 00
We run C4.5 (Quinlan 1993) on the above datasets Tic-Tac-Toe | 133.0 116.2 13.8 14.7
with and without feature selection. Duplicate in- Led 7 19.0 19.0 0.0 0.0
stances produced by feature selection are kept in run- Bupa 77.6 55.8 39.1 35.9
ning C4.5. In practice, duplicates can be represented Abalone 2174.5 1882.2 79.9 79.0
b ingl d a duplication number. For each Pima 1254 136.2 29.5 38.1
y a single copy an p

dataset, the 10-fold cross validation was applied to the
whole dataset projected on the features selected in Ta-
ble 1. Table 2 summarizes the size of pruned decision
trees and the error rate on test data. In general, se-
lected features induce better decision trees than orig-
inal features. For CorrAl (John, Kohavi and Pfleger
1994), Bupa, and Abalone, both tree size and error
rate are reduced after feature selection. Without fea-
ture selection the decision tree for CorrAl picks the cor-
related feature C as the root. With feature selection
the correlated feature (C) and the irrelevant feature (1)
are removed and the induced rules capture the target
concept, i.e., (Ag A By) V (A1 A As).

For the two Parity datasets, a bigger decision tree
is induced, but the error rate is reduced from 40% to
nearly 0. Since the error rate is collected on test data,
this improvement is not always achievable by having
a larger tree. In the case of Tic-Tac-Toe, the tree size
has reduced significantly by having a slightly higher er-
ror rate. The feature selection does not affect Monk2,
Monk3, and Led 7 because C4.5 selects exactly same
features. For Monkl, the tree gets slightly bigger but
the error rate drops to 0. Unlike discrete features, con-
tinuous features have much fewer repeating values, a
direct feature selection is less effective, as shown by the
last three datasets.

Table 2: Results of C4.5

References

Almuallim, H.; & Dietterich, T. G. 1994. Learning boolean
concepts in the presence of many irrelevant features. Arti-
ficial Intelligence, 69 (1-2), 279-305.

John, G. H.; Kohavi, R.; & Pfleger, K. 1994. Irrele-
vant features and the subset selection problem. In Proceed-
ings of the Eleventh International Conference on Machine
Learning, 121-129.

Kira, K.; & Rendell, L. A. 1992. The feature selection
problem: Traditional methods and a new algorithm. In
Proceedings of Ninth National Conference on Al, 129-134.

Koller, D.; & Sahami, M. 1996. Toward optimal fea-
ture selection. In Machine Learning: Proceedings of the
Thirteenth International Conference.

Murphy, P.; & Aha, D. 1994. Repository of
Machine Learning Databases. http://www.ics.uci.edu/
mlearn/MLRepository.html

Quinlan, J. R. 1993. C4.5: Programs for Machine Learn-
ing.

Schlimmer, J. C. 1993. Efficiently Inducing determina-
tions: A complete and systematic search algorithm that
uses optimal pruning. In Proceedings of Tenth Interna-
tional Conference on Machine Learning, 284-290.

