
Mining Unexpected Rules by Pushing User Dynamics ∗

Ke Wang
Simon Fraser University

wangk@cs.sfu.ca

Yuelong Jiang
Simon Fraser University

yjiang@cs.sfu.ca

Laks V.S. Lakshmanan
University of British Columbia

laks@cs.ubc.ca

ABSTRACT
Unexpected rules are interesting because they are either pre-
viously unknown or deviate from what prior user knowledge
would suggest. In this paper, we study three important is-
sues that have been previously ignored in mining unexpected
rules. First, the unexpectedness of a rule depends on how
the user prefers to apply the prior knowledge to a given sce-
nario, in addition to the knowledge itself. Second, the prior
knowledge should be considered right from the start to focus
the search on unexpected rules. Third, the unexpectedness
of a rule depends on what other rules the user has seen so
far. Thus, only rules that remain unexpected given what
the user has seen should be considered interesting. We de-
velop an approach that addresses all three problems above
and evaluate it by means of experiments focusing on finding
interesting rules.

1. INTRODUCTION
Data mining aims at finding previously unknown and in-

teresting rules for the user. Most data mining algorithms use
objective measures of interestingness, such as statistical sig-
nificance [14, 15], Chi-square test [6] and support/confidence
[2]. Often, rules that satisfy such measures are known and
uninteresting to the human user [7, 8, 11]. For example, a
relationship between two items is deemed interesting by the
Chi-square test if it is significantly stronger than expected
when items are assumed to be independent, but not inter-
esting to the human user who knows such or similar relation-
ships. On the other hand, interesting rules may not satisfy
an objective measure. For example, the minimum support
requirement in [2] tends to prune unknown association rules
that often do not have a large support.

To find interesting rules, subjective measures taking into

∗Research was supported in part by a research grant from
the Networks of Centres of Excellence/Institute for Robotics
and Intelligent Systems, and in part by a research grant
from the Natural Science and Engineering Research Council
of Canada

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGKDD ’03, August 24-27, 2003, Washington, DC, USA.
Copyright 2003 ACM 1-58113-737-0/03/0008 ...$5.00.

account what the user knows have been suggested [15, 17,
18]. One subjective measure is unexpectedness, where a rule
is unexpected if it “surprises” the user. Another subjective
measure is actionability, where a rule is actionable if the
user can act upon it to her advantage. Due to the diffi-
culty of modeling the user knowledge, works on subjective
measures are much fewer [8, 9, 11, 13, 16, 15]. This pa-
per focuses on the unexpectedness measure. Two previous
approaches, the syntax based [8, 9] and the logic based [12],
follow the paradigm of pairwise comparison: compare a rule
r found in the data against a single rule representing the
user knowledge. If the comparison reveals a syntax distance
(i.e., a similar body but a dissimilar head) or a logical con-
tradiction (i.e., a specialized body but a negated head), r is
considered unexpected.

In this paper, we examine three important issues that have

been previously ignored in mining unexpected rules.

Knowledge dynamics: Whether a rule is unexpected
depends on how the user intends to apply the prior
knowledge to a given scenario, in addition to the prior
knowledge itself. To realistically model the user inten-
tion and her intuition of unexpectedness, it is critical
to consider this dynamic aspect.

Knowledge push: The prior knowledge should be con-
sidered right from the start of search to prune unin-
teresting rules as early as possible. This has the twin
advantage of (a) making the algorithms scale better
and (b) presenting the user with a much smaller set
of rules to examine, where many candidates are more
likely to be unexpected.

Unexpectedness dynamics: The unexpectedness of a
rule depends on what other rules have been previously
presented to the user. In fact, a rule seen earlier could
render some remaining rules no longer unexpected. It
is important to consider these dynamics if we want to
be faithful to the notion of what is truly unexpected.

1.1 The motivating example
The following example motivates our approach.

Example 1.1 (Unexpected rules). Consider finding
unexpected rules about how people make donation in a fund
raising campaign. Suppose that the user believes, based on
past experience, that movie stars tend to donate more than
$500 and well paid people tend to donate more than $200,
represented as the “knowledge rules”:

R1 : Salary = high→ Donation = Above 200,
R2 : Job = movie star→ Donation = Above 500.

Suppose that the following “data rule” is found from the
data:

r : Loc = BH,House = yes→ Donation = Below 50,

which says that people owning houses in Beverly Hills tend
to donate less than $50. r would not be identified as unex-
pected by the syntax based approach [8, 9] because it is not
related in syntax to the knowledge rules. Neither would r
be identified as unexpected by the logic based approach [11]
because it does not logically contradict the knowledge rules.

However, suppose the user knows that Beverly Hills is an
expensive place and the home of movie stars, thus decides it
makes sense to apply rules R1 and R2 to the subpopulation
summarized by r, viz., people owning a house in Beverly
Hills. Her rationale might be these rules describe donation
patterns by wealthy people and rule r concerns that as well.
Thus, she prefers to compare r with rules R1 and R2, to
judge if the former is unexpected. This comparison reveals
that r is indeed unexpected, since its conclusion is signifi-
cantly different from that of R1, R2 with respect to expected
donation levels.

The above example illustrates several interesting points
that motivate our work.

1. Given a data rule r, often the human user has her own
“best knowledge rules” for the subpopulation summa-
rized by r and judges the unexpectedness of r based
on such best knowledge rules. The specification of
best knowledge rules is essentially a preference model
that, given a scenario (e.g., a tuple), triggers a men-
tal search for best knowledge rules about the scenario.
The essence of the preference model is to link a given
data rule to relevant user knowledge, possibly consist-
ing of more than one rule.

2. To simulate the above user process of determining the
unexpectedness of a given data rule r, we can ask the
user to specify the preference model for identifying
best knowledge rules, called covering knowledge, for a
given tuple. Each tuple that satisfies r but “violates”
its covering knowledge provides an evidence that r is
unexpected with respect to the user knowledge. We
can then measure the unexpectedness of r by aggre-
gating such evidences over all tuples satisfying r.

3. The above approach emphasizes two important aspects
of unexpectedness: the user-initiated knowledge pref-
erence and the data-evidenced knowledge violation.
These aspects capture more closely the intention of
unexpectedness in real life situations. For example, a
data rule can now be unexpected on the basis of sum-
marizing a subpopulation that violates several knowl-
edge rules preferred by the user. This is not possible in
the previous approaches [8, 9, 12] that must choose a
single knowledge rule to compare against a rule found
in the data.

Remarks. One may argue that the syntax and logic based
approaches [8, 9, 12] might identify the specialized rules of r
as unexpected, obtained by adding the conditions of R1 and
R2 to r. However, these specialized rules may not be found

in the first place because they may not pass the objective
measures required (such as the minimum support) in those
approaches (say, if movie stars are paid by contract, not by
salary). Also, these rules are less desirable than the simple
structure r because they fragment a single large violating
subpopulation into several small violating subpopulations.

1.2 The proposed approach
We present a new approach to the problem of mining

unexpected rules. First, we propose a new notion of un-
expectedness by incorporating a preference model specified
by the user. The preference model is either a defining cri-
terion or an enumeration of the covering knowledge. Sec-
ond, we present an algorithm for mining all unexpected rules
that satisfy user-specified minimum “unexpectedness signif-
icance” and minimum “unexpectedness strength”. The al-
gorithm pushes the significance requirement and examines
only those rules that satisfy this requirement. Finally, we
present a method for selecting a specified number of most
unexpected rules, taking into account the unexpectedness
dynamics discussed earlier.

The rest of the paper is organized as follows. Section 2
reviews related works. Section 3 presents our representation
of user knowledge. Section 4 defines the problem of mining
unexpected rules and the problem of selecting unexpected
rules. Section 5 presents an algorithm for mining unexpected
rules, and Section 6 presents an algorithm for selecting un-
expected rules. Section 7 evaluates the effectiveness of the
proposed methods. Section 8 concludes the paper.

2. RELATED WORK
Interestingness measures have been studied in the field of

data mining [3, 6, 7, 8, 13, 20, 16, 15, 17, 18], with most
works on objective measures [20]. Mining unexpected rules
was studied in [8, 9, 11, 13, 16, 15]. None of these works con-
siders the user preference in applying knowledge rules. The
second difference is that we consider the user knowledge at
the beginning of search. In contrast, the post-analysis ap-
proach [8, 9, 16] considers the user knowledge at the end
of search, as one additional filter to the result found by an
objective measure method. In this respect, our approach
is similar to [11], but the different notion of unexpected-
ness makes the two studies very different. Finally, we con-
sider the unexpectedness dynamics discussed earlier. This is
quite different from the work on eliminating redundant rules
within the framework of objective measures (e.g., [23]).

The work on mining association rules [2] searches for rules
of support above a given threshold. The support measures
the frequency of a rule in the data, which does not con-
sider the novelty with respect to the user knowledge. Con-
sequently, if the support threshold is too high, unexpected
rules may not pass the threshold, and if the support thresh-
old is too low, many rules known to the user are returned.
The correlation approach such as [6] measures the support
relative to the independence assumption, which makes sense
only if the user knows nothing about the domain. Our no-
tion of unexpectedness significance captures the part of sup-
port that is responsible for violating the user knowledge. In
this sense, it addresses the novelty of rules.

The work on constrained data mining [4, 10, 19, 21, 22]
considers what the user wants, i.e., constraints, and searches
for rules that satisfy the specified constraints. The un-
expected rule mining considers what the user knows, i.e.,

knowledge, and searches for rules that surprise the user
with new information. Unexpected rules may not satisfy
the specified constraints, and satisfying rules may not be
unexpected. Indeed, it is a rather difficult task for the user
to specify what she wants for something that she wishes to
be a surprise.

3. USER KNOWLEDGE
We describe our representation of user knowledge. Con-

sider a relational table T of tuples over several attributes.
Mining in such data is typically targeted at a specific at-
tribute because the user normally wants to know how other
attributes are related to this target attribute. Our objective
is to find data rules of the form

A1 = a1, . . . , Ak = ak → C = c,

where Ai is a non-target attribute, ai is a domain value for
Ai, C is the target attribute, c is a domain value for C. We
refer to c as the class. A1 = a1, . . . , Ak = ak is the body and
C = c is the head of the rule. For a data rule r, b(r) denotes
the body of r and h(r) denotes the head of r.

A tuple matches a data rule r if b(r) holds on the tuple.
A tuple satisfies a data rule r if both b(r) and h(r) hold on
the tuple. MAT (r) denotes the set of tuples that match r
and SAT (r) denotes the set of tuples that satisfy r. sup(r),
called support of r, denotes the fraction of tuples that satisfy
r, i.e., sup(r) = |SAT (r)|/|T |. sup(b(r)) denotes the frac-
tion of tuples that match r, i.e., sup(b(r)) = |MAT (r)|/|T |.
conf(r), called confidence of r, denotes the fraction of tu-
ples that satisfy r given that they match r, i.e., conf(r) =
sup(r)/sup(b(r)).

We represent the user knowledge K in two parts, the
knowledge rules and the preference model.

3.1 Knowledge rules
While data rules are of the form above, we allow for

slightly more general form for the rules capturing user’s prior
knowledge, called knowledge rules and denoted K, by allow-
ing fuzzy terms like ”high”, ”low”, etc., as suggested in [8,
9]. It will then be necessary to define a degree of match
between domain values appearing in data rules and in data
tuples on the one hand and these fuzzy terms appearing in
knowledge rules on the other. We use the upper case letter
R for a knowledge rule, and use the lower case letter r for
a data rule. Like for a data rule, b(R) and h(R) denote the
body and head of a knowledge rule R. m(v, v′) measures
the match degree between a domain value v and a user value
v′ (for the same attribute), which can be either specified by
the user or chosen from a pre-determined list. The match
degree is in the range [0,1], with a larger value corresponding
to a better match. The following is an example of knowledge
rules involving fuzzy terms.

Example 3.1 (Degree of match). Suppose that the
domain of the attribute Education is

{Primary, Secondary,University, Graduate}.

A fuzzy term Low (serving a user value) could be described
by a fuzzy set

{(Primary, 1), (Secondary, 0.5)}.

1 and 0.5 are the match degrees between the domain values
Primary, Secondary and the fuzzy term Low. So, Primary

perfectly matches Low, and Secondary partly matches Low.
Since the domain values University and Graduate are not
listed in the fuzzy set, they do not match Low, i.e., the
match degree is 0. Suppose that a knowledge rule r has the
form Education = Low → Loan = No. A tuple t containing
Education = Secondary and Loan = Y es will have a body
match degree of 0.5 and head match degree of 0.

The purpose of the match degree measure m is to de-
fine the notions of match and violation between a tuple
and a knowledge rule. First, consider two bags of values:
V = {v1, · · · , vd} and V ′ = {v′

1, · · · , v
′

d}, where vi and v′

i

are in the range [0,1]. We write V ≤ V ′ if for 1 ≤ j ≤ d,
there is a distinct ij such that vj ≤ v′

ij
. An aggregate func-

tion agg is well-behaved if (1) min(V) ≤ agg(V) ≤ max(V),
and (2) for V ≤ V ′, agg(V) ≤ agg(V ′). For example,
avg,max,min, medium are well-behaved, but not sum be-
cause it is not in the range [0,1].

Definition 3.1 (Rule match). Consider a tuple t, a
knowledge rule R and a well-behaved aggregate function
agg. bm(t,R) = agg({m(v, v′)}) measures the body match
degree of t with R, where v and v′ are the values in t and
R over the attributes in b(R). hm(t, R) measures the head
match degree of t with R, defined as the match degree m of
the class of t and h(r). bm(t,R) and hm(t, R) are in the
range [0,1], with a larger value corresponding to a better
match. Let hm(t, R) = 1− hm(t, R). For a given threshold
σ, we say that t matches R if bm(t,R) ≥ σ.

The intuition is that the more the body matches degree
and the less the head matches degree, the more the violation.
This is formalized below.

Definition 3.2 (Single knowledge rule violation).
The violation of R by t, denoted v(t, R), is defined as

v(t,R) =

hm(t, R)× bm(t,R) if bm(t,R) ≥ σ

∧hm(t,R) ≥ σ′

0 otherwise

Other functions are possible, such as
√

hm(t, R)× bm(t,R),

as long as they capture the intuition of violation. We leave
the choice to the application. v(t, R) essentially depends on
the measure of match degree m, of which we also leave the
choice to the application. Importantly, our discussion below
does not depend on these choices.

3.2 The preference model
The preference model specifies the user’s knowledge about

how to apply knowledge rules to a given scenario or a tu-
ple. This is done by specifying the “covering knowledge” for
each tuple. For a given tuple, the covering knowledge refers
to one or more knowledge rules that match the tuple and
the user prefers to apply to the tuple. The covering depth
d refers to the number of knowledge rules in the covering
knowledge, usually a small integer such as 1, 2, or 3. The
reason for allowing the covering depth d greater than 1 is
simple: the user sometimes has several (preferred) knowl-
edge rules about a scenario and want to factor in all of them
in the unexpectedness measure. This does not mean that the
total number of knowledge rules will be |T |× d, because the
covering knowledge for different tuples is not required to be

disjoint. Here are several examples of specifying the cover-
ing knowledge: (1) enumerating the covering knowledge for
each tuple by the user, (2) ranking knowledge rules so that
the covering knowledge is the first d matching knowledge
rules in the list, (3) specifying a preference measure, such as
maximum strength preference (e.g, belief degree, confidence,
etc.), best match preference (i.e,, maximizing m(t, R)), or
minimum violation preference (i.e,, minimizing v(t,R)). (1)
is not scalable for large databases, whereas (2) and (3) are
because they can be automated.

Example 3.2. Suppose that a banker has the following
knowledge rules about loan approval, ranked in this order:

Own house = yes→ Loan = yes,
Job = no→ Loan = no.

For an applicant who owns a house but has no job, the
first knowledge rule will serve the covering knowledge (of
covering depth 1), which implies the application is expected
to be approved. If the rank is reversed, Job = no→ Loan =
no will be the covering knowledge of the applicant instead,
which implies the different expectation that the application
should be rejected. This example shows how the user applies
knowledge rules will affect the user’s expectation, and hence
the unexpectedness of the rules mined from the data.

The above has assumed that at least d knowledge rules
match a given tuple, where d is the covering depth. In gen-
eral, we can add d duplicates of the default rule, denoted
NULL, to the user knowledge K, with bm(t,NULL) = 1
and hm(t,NULL) = 0 for any tuple t. The default rules
are used only if there are not enough matching knowledge
rules, therefore, are least preferred in any preference model.
The choice of bm(t, NULL) = 1 and hm(t, NULL) = 0 im-
plies v(t,NULL) = 1 for any tuple t. Hence, with the lowest
preference, the default rules implement the unexpectedness
presumption in the absence of knowledge.

4. PROBLEM STATEMENTS

4.1 Unexpected rule mining problem
With the notion of covering knowledge, we can now mea-

sure the violation of user knowledge K by a data tuple t.

Definition 4.1 (Violation of user knowledge). Let
Ct be the covering knowledge of a tuple t with respect to K.
The violation of t with respect to K is defined by

vK(t) = agg({v(t,R) | R ∈ Ct})

for some well-behaved aggregate function agg.

To define the notion of unexpectedness of a data rule r, we
consider each tuple t that satisfies r but violates the covering
knowledge of the tuple as an evidence that r is unexpected
with respect to K. This evidence is quantitatively measured
by vK(t). For r to be considered as unexpected, there must
be “sufficient” evidence in the data as formalized by several
measures defined below.

Definition 4.2 (Unexpectedness measures). Consider
a database T , a data rule r, and the user knowledge K. The
unexpectedness support of r with respect to K is defined by

Usup(r) = Σ{vK(t) | t ∈ SAT (r)}/|T |.

The unexpectedness confidence of r with respect to K is de-
fined by

Uconf(r) = Usup(r)/sup(b(r)).

The unexpectedness of r with respect to K is defined by

Unexp(r) = Usup(r)/sup(r).

(Note that Usup(r), Uconf(r), Unexp(r) are in the range
[0,1].)

Remarks:

1. Usup(r) measures the unexpectedness significance in
terms of the violation in the whole database. Since the
violation is measured using the tuples that satisfy r,
Usup(r) captures the part of the support sup(r) re-
sponsible for violating the user knowledge. Usup(r) =
sup(r) if each tuple that satisfies r has a perfect vio-
lation (i.e., vK(t) = 1).

2. Uconf(r) measures the unexpectedness strength in terms
of the violation in a tuple that matches r. A high
Uconf(r) implies that a matching tuple tends to sat-
isfy r and a satisfying tuple tends to violate the user
knowledge. Uconf(r) = conf(r) if each tuple that
satisfies r has a perfect violation.

3. Unexp(r) measures the unexpectedness strength in terms
of the violation in a tuple that satisfies r. A high
Unexp(r) implies that a satisfying tuple of r tends to
violate the user knowledge. Unlike Uconf(r), Unexp(r)
does not factor in the likelihood that a matching tuple
satisfies r. Unexp(r) = 1 if each tuple that satisfies r
has a perfect violation.

We use the notation Ustr(r) to denote Uconf(r) or Unexp(r),
when we don’t want to distinguish between them.

Definition 4.3 (Unexpected rule mining problem).
Given a database T , the user knowledge K and thresh-
olds σ1, σ2 (in the range [0,1]), the unexpected rule min-
ing is to find all data rules r such that Usup(r) ≥ σ1 and
Ustr(r) ≥ σ2.

Two points are worth noting. First, if the user has no prior
knowledge, the covering knowledge of each tuple t is the
NULL rule and vK(t) = 1. In this case, Usup(r) = sup(r),
Unexp(r) = 1 and Uconf(r) = conf(r). Therefore, the clas-
sic association rule mining [2] is the degenerate case of the
unexpected rule mining where every satisfying tuple serves
as a perfect violation. From this standpoint, it makes much
sense to discriminate among the satisfying tuples in terms
of their degree of confirming or violating the user knowl-
edge and use those with a large violation to characterize
which rules are unexpected. Second, this approach depends
on the functions bm, hm, vK(t) and a preference model,
but does not depend on how they are specified, therefore,
affords a great deal of flexibility for incorporating domain
specific knowledge through particular specifications of these
functions.

An algorithm for mining unexpected rules is given in Sec-
tion 5.

4.2 Unexpected rule selection problem
Using unexpectedness in place of mere numerical thresh-

olds like support/confidence already is a huge value-add.
Still, the number of unexpected rules found can be too large
for a human user. In the rule selection problem, we would
like to select a specified (usually small) number of rules from
a set of rules found so that they are as unexpected as possi-
ble. Simply ranking all rules by a criterion based on Usup(r)
and Ustr(r) does not serve this purpose because several sim-
ilar rules could be ranked high but may not provide new
insights. Our approach is to model the unexpectedness of
remaining rules in the presence of the rules already pre-
sented to the user. Consider the user knowledge K and a
set of data rules R found. Suppose that we have selected
Ri = {r1, . . . , ri−1} from R, where i ≥ 1. We want to select
the next most unexpected rule ri from R − Ri, assuming
that the user has seen Ri. The implication of having the
rules in Ri is stated in the following assumption.

The See-and-Know assumption: After seeing Ri, the
user is aware of the rules in Ri, therefore, is interested
in only those rules that are unexpected with respect to Ri.
Therefore, if ri is “similar” to any rule in Ri, ri is not unex-
pected to the user. We can model this semantics by treat-
ing Ri as new knowledge rules with the minimum violation
preference (see subsection 3.2): the covering knowledge of a
tuple t is defined by the least violated (i.e., closest) match-
ing rules in Ri, denoted by Ci

t. Let Ct denote the (usual)
covering knowledge with respect to K. Whenever ri is unex-
pected with respect to either of K and Ri, ri is unexpected
with respect to < K,Ri > as a whole. Therefore, we define
the covering knowledge of t with respect to < K,Ri > as
the d least violated rules in Ct ∪ C

i
t, where d is the cover-

ing depth. This preference model is called See-and-Know
preference for < K,Ri >.

Definition 4.4 (Rule selection problem). Let Usup(ri)
and Ustr(ri) be defined wrt < K,Ri >. Given a database
T , the user knowledge K, a set of data rules R, thresholds
σ1, an integer k, and a selection criterion f(Usup, Ustr) (for
a single rule), the unexpected rule selection is to find k data
rules r1, . . . , rk from R such that, for 1 ≤ i ≤ k,

1. Usup(ri) ≥ σ1, and

2. f(Usup(ri), Ustr(ri)) is maximum in R − Ri, where
Ri = {r1, . . . , ri−1}.

In words, r1, . . . , rk are the list of rules from R such that,
for 1 ≤ i ≤ k, ri has sufficient unexpectedness support and
is most unexpected (as per the selection criterion f) with re-
spect to the knowledge K plus the previously selected rules
r1, . . . , ri−1. The selection criterion f(Usup, Ustr) provides
a way for the user to weigh between Usup and Ustr. For ex-
ample, f can correspond to the ranking criterion using the
key (Usup, Ustr) (or (Ustr, Usup)) where Usup and Ustr
are the primary and secondary keys, respectively, or in gen-
eral, f can be some weighed sum or combination of Usup
and Ustr. f is a criterion for individual rules ri, not for
a collection of selected rules. The latter has the disadvan-
tage of high complexity of finding an optimal collection of
rules. We address the interaction among selected rules by
dynamically updating the knowledge < K,Ri > wrt which
Usup(ri) and Ustr(ri) are defined.

An algorithm for selecting unexpected rules is given in
Section 6.

Algorithm 1 UMINE: the unexpected rule mining

Input: a database T , user knowledge K, thresholds σ1 and
σ2

Output: data rules r such that Usup(r) ≥ σ1 and
Ustr(r) ≥ σ2

1: /* The violation computing phase */
2: T ′ = ∅;
3: for all tuple t in T do

4: compute vK(t);
5: if vK(t) > 0 then

6: add < t, vK(t) > to T ′;
7: end if ;
8: end for;
9: /* The rule generating phase */

10: U1 ← all rules r of length 1 with Usup(r) ≥ σ1;
11: k = 1;
12: while Uk 6= ∅ do

13: generate candidate rules Ck+1 using Uk;
14: for all tuple < t, vK(t) > in T ′ do

15: for all rule r ∈ Ck+1 such that t ∈ SAT (r) do

16: Usup(r) = Usup(r) + vK(t)/|T |;
17: end for;
18: end for;
19: Uk+1 ← all rules r in Ck+1 with Usup(r) ≥ σ1;
20: k + +;
21: end while;
22: /* The final phase */
23: for all tuple t in T do

24: for all rule r ∈ ∪Uk such that t ∈ SAT (r) do

25: sup(r) + +;
26: sup(b(r)) + +;
27: end for;
28: end for;
29: output the rules r in ∪Uk such that Ustr(r) ≥ σ2.

5. THE MINING ALGORITHM
We present the algorithm for mining unexpected rules,

called UMINE, in Algorithm 1. There are three phases: the
violation phase, the rule phase, and the final phase.

5.1 The violation phase
The violation phase computes and stores vK(t) for all tu-

ples t in the database T . < t, vK(t) > denotes the tuple t
with stored vK(t). An important optimization is to prune
all tuples t with vK(t) = 0 because such tuples have no
contribution to Usup(r). This is established below and im-
plemented in lines 1-8 by storing only < t, vK(t) > with
vK(t) > 0 in T ′.

Theorem 5.1. Let T ′ = {< t, vK(t) >| t ∈ T ∧ vK(t) >
0}. Then for any data rule r, Usup(r) is the same with
respect to T as well as T ′.

In words, we can replace T with T ′ without affecting
Usup(r). Note that vK(t) = 0 if, for every covering knowl-
edge rule R of t, hm(t, R) < σ′ in Definition 3.2 (note that
bm(t,R) ≥ σ for such R). In this case, t is consistent with
the user knowledge. This pruning strategy makes much
sense: if the data is largely consistent with or confirming
the user knowledge, the confirming tuples have no value for
mining unexpected rules.

5.2 The rule phase
The rule phase (lines 9-21) generates all rules with Usup(r) ≥

σ1 using T ′. Simply enumerating all possible rules r is pro-
hibitive. We are interested in a method that generates only
promising rules. First, we show a property about Usup(r)
that forms the basis of this method.

Theorem 5.2. Usup(r) is anti-monotone with respect to
b(r), in that Usup(r) decreases as the body b(r) grows. Fur-
ther, this property is independent of the choice of the pref-
erence model and violation function vK(t).

Proof: Consider two data rules r and r′ such that the body
of r′ has a superset of conditions compared to the body of r.
A tuple t in SAT (r′) is also in SAT (r). Since vK(t) is non-
negative, Σ{vK(t) | t ∈ SAT (r′)} ≤ Σ{vK(t) | t ∈ SAT (r)}.
Thus, the anti-monotonicity follows. To complete the proof,
note that vK(t) on both sides of ≤ is the same for the same
tuple t, independently of how the covering knowledge of t is
specified and how vK(t) is defined.

Following Theorem 5.2, we need to examine a longer rule
x1, . . . , xk−1, xk, xk+1 → c only if both shorter rules

x1, . . . , xk−1xk → c and x1, . . . , xk−1, xk+1 → c

pass the threshold σ1 for Usup(r), where xk and xk+1 are
domain values for different attributes. Thus, we can search
for all rules r with Usup(r) ≥ σ1 as follows. In the first
iteration, we generate all rules r of length 1 of the form
x1 → c such that Usup(r) ≥ σ1. These rules are stored
in U1. Subsequently, in the (k + 1)th iteration (k > 0),
we generate all candidate rules r of length k + 1, denoted
by Ck+1, of the form x1, . . . , xk−1, xk, xk+1 → c using two
rules in Uk of the above form. From Theorem 5.2, Ck+1

contains all rules r with k + 1 conditions in the body such
that Usup(r) ≥ σ1. We compute Usup(r) for all r in Ck+1

in one scan of T ′ while accumulating vK(t) over the tuples
< t, vK(t) >∈ T ′ such that t ∈ SAT (r). Uk+1 contains
those rules r in Ck+1 with Usup(r) ≥ σ1. These steps are
described in line 9-21 in Algorithm 1.

The above pruning strategy was first suggested by Agrawal
et al. [2] for mining association rules of sufficient support
sup. However, the notion of support does not take into ac-
count the “novelty” of a rule with respect to the user knowl-
edge: rules of sufficient support may not be unexpected, and
unexpected rules may not have sufficient support. We ad-
dress this problem using the notion of unexpectedness sup-
port to capture the part of support that is responsible for
violating the user knowledge. In this sense, our pruning is
based on the “novelty” of rules.

5.3 The final phase
The final phase (line 22-29) computes sup(r) and sup(b(r))

for rules r in ∪Uk produced in the rule phase, and outputs
the rules r with Ustr(r) ≥ σ2. This time, we scan T instead
of T ′, and for each tuple t, we update sup(r) and sup(b(r))
for all rules r such that t ∈ SAT (r) and t ∈MAT (r), respec-
tively. After computing sup(r) and sup(b(r)) for all rules r
in ∪Uk, we output those rules r such that Ustr(r) ≥ σ2.

A note on implementation. First, at lines 15 and 24,
for every tuple t in T ′ or T , we need to find all rules r such
that t ∈ SAT (r). We can borrow the subset function [2] for
these operations. Second, currently we compute Usup(r)
using the pruned database T ′ in one phase, compute sup(r)

Algorithm 2 USELECT: the unexpected rule selection al-
gorithm

Input: a database T , a set of data rules R, user knowledge
K, threshold σ1, an integer k, and f(Usup, Ustr)
Output: as in Definition 4.4

1: /* initialization */
2: R1 = ∅; i = 1; s = |T |;
3: for all tuple t in T do

4: compute Ct = {R1, · · · , Rd} and replace t with <
t, v(t, R1), · · · , v(t, Rd) > in T ;

5: for all rule r in R such that t ∈ SAT (r) do

6: Usup(r) = Usup(r) + v<K,R1>(t)/s;
7: sup(r) + +;
8: sup(b(r)) + +;
9: end for

10: end for

11: while i ≤ k and R 6= ∅ do

12: /* select the next most unexpected rule */
13: select the rule ri from R such that Usup(ri) ≥ σ1 and

f(Usup(ri), Ustr(ri)) is maximum;
14: /* update the information */
15: for all tuple < t, v(t, R1), · · · , v(t, Rd) > in T such

that t ∈MAT (ri) do

16: update the tuple with v(t, ri);
17: compute ∆v<K,Ri>(t) due to the update;
18: for all r in R− {ri} such that t ∈ SAT (r) do

19: Usup(r) = Usup(r) + ∆v<K,Ri>(t)/s;
20: if Usup(r) < σ1 then

21: delete r from R
22: end if ;
23: end for;
24: if v<K,Ri>(t) = 0 then

25: delete t from T
26: end if ;
27: end for;
28: output ri;
29: Ri = Ri ∪ {ri};
30: R = R− {ri};
31: end while;
32: output the rules in Ri in the order added;

and sup(b(r)) using the unpruned database T in another
phase. Alternatively, we can compute all three using the
unpruned T in a single phase. We distinguish these strate-
gies by UMINE-Pruned and UMINE-Unpruned. Third, the
above description of the rule generating phase is based on
the Apriori-like breadth-first generation of rules [2]. What
is essentially required is just the anti-monotonicity of the
measure pushed, which in our case is Usup. Therefore, any
implementation based on the anti-monotonicity, such as the
depth-first generation, can be adopted as well.

6. THE SELECTION ALGORITHM
We present the algorithm for selecting a specified num-

ber of unexpected rules, called USELECT, in Algorithm 2.
First, the initialization (line 1-9) computes Usup(r), sup(r),
sup(b(r)) for all rules r in R in one database scan. It also
computes the violation bag Vt = {v(t, R1), · · · , v(t, Rd)} and
stores it with each tuple t, denoted by < t, Vt >, where
Ct = {R1, · · · , Rd} is the covering knowledge of t with re-

spect to < K,Ri >. d is usually a small number like 1 or
2 or 3. Note that v<K,Ri>(t) = agg(Vt). The reason for
keeping the violation bag Vt rather than v<K,Ri>(t) is for
updating the covering knowledge Ct when rules are added to
Ri. See below.

In the iterative part (lines 11-31), each iteration selects
the most unexpected rule ri from remaining rules R and
adds it to Ri, until either k rules are selected or there is
no rule to select. Also, we update the violation bag Vt for
affected tuples t to account for the new rule ri added to Ri.
The See-and-Know preference implies that if ri matches a
tuple t and v(t, ri) < max(Vt), v(t, ri) should replace one oc-
currence of max(Vt) in Vt. This is done at line 16 with the
detail omitted. The induced (negative) change ∆v<K,Ri>(t)
is propagated to Usup(r) for the remaining rules r such that
t ∈ SAT (r) at lines 17-19. At lines 20-21 we prune any re-
maining rule r with Usup(r) < σ1, and at lines 24-25 we
prune any tuple t with v<K,Ri>(t) = 0 from the database.
These pruning optimizations follow from the following the-
orem.

Theorem 6.1. (1) v<K,Ri>(t) is anti-monotone with re-
spect to Ri, (2) Usup(r,< K,Ri >) is anti-monotone with
respect to Ri.

Proof: By adding a rule ri to Ri, the See-and-Know pref-
erence prefers ri if v(t, ri) is smaller than max(Vt). There-
fore, V ′

t ≤ Vt, where Vt is the violation bag before adding
ri to Ri and V ′

t is the violation bag after adding ri to Ri.
So we have agg(V ′

t) ≤ agg(Vt) for well-behaved agg. This
shows that v<K,Ri>(t) is anti-monotone with respect to Ri.
(2) follows from this anti-monotonicity and the definition of
Usup(r, < K,Ri >).

Two pruning strategies follow from Theorem 6.1. First,
if v<K,Ri>(t) = 0 for some iteration i, then v<K,Rj>(t) = 0
for all subsequent iterations j because Rj is a superset of
Ri. Therefore, such tuples t can be pruned in subsequent
iterations without affecting the result. This is done at lines
24-25. Second, for any remaining rule r, Usup(r, < K,Rj >
) ≤ Usup(r,< K,Ri >) for j ≥ i because Rj is a superset of
Ri. Therefore, if Usup(r,< K,Ri >) < σ1, r can be pruned
immediately. This is done at lines 20-21.

A note on implementation. The search of all tuples
that match a given rule at line 15 requires the superset func-
tion instead of the subset function. This can be done by
reversing the roles of tuples and rules in the subset func-
tion implementation discussed earlier, that is, storing tuples
t, instead of rules, in a hash-tree and using the given rule
to descend the hash-tree. The subset/superset function im-
plementations and pruning rules and tuples at lines 20-21
and 24-25 make the algorithm much more efficient than its
worst-case complexity. Typically, the selection algorithm is
applied to the unexpected rules R found by the algorithm in
Section 5. Hence, the number of rules in R is much smaller
than the number of rules found without pushing user knowl-
edge.

7. EVALUATION
In this section, we evaluated UMINE and USELECT with

two objectives. The first is to evaluate the effectiveness of
dealing with the computational bottleneck by pushing the
user knowledge. The second objective is to evaluate the
effectiveness of finding interesting rules in terms of unex-
pectedness.

7.1 The KDD-CUP-98 dataset
The experiments were conducted on the well known KDD-

CUP-98 dataset [1] about the result of the 1997 Paralyzed
Veterans of America fund raising mailing campaign. We
chose this dataset mainly for the consideration of obtaining
the user knowledge based on common sense in this applica-
tion. The dataset contains 191,778 tuples over 482 attributes
about donors’ demographic information and donation his-
tory. We picked NK97 as the target attribute, which rep-
resents the donation amount (in dollars) in response to the
1997 mailing campaign. We discretized the dollar amount
of NK97 into five donation scales: c0 = 0, c1 = (0, 5], c2 =
(5, 10], c3 = (10, 20], c4 = (20,∞) (note that most donations
are small). We picked up the following 23 non-target at-
tributes, as they seem to be related to the target attribute
and their meanings are easier to understand than most of
the other attributes.

A1 NOEXCH: whether it can be exchanged for list rental
A2 RECINHSE: whether donor has given to PVA’s in

house program
A3 RECP3: whether donor has given to PVA’s P3 program
A4 RECPGVG: whether it is a planned giving record
A5 RECSWEEP: whether it is a Sweepstakes record

MDMAUD: RFA status for donors who have given a $100+
gift at any time in their giving history:
A6 Recency of Giving;
A7 Frequency of Giving;
A8 Amount of Giving;
A9 Blank/ meaningless/filler

DOMAIN:
A10 Urbanicity level of donor’s neighborhood;
A11 Socio-Economic status of neighborhood

A12 AGE: Overlay Age
A13 HOMEOWNR: Home Owner Flag
A14 NUMCHLD: Number of Children
A15 INCOME: Household Income
A16 GENDER: Gender
A17 MAJOR: Major ($$) Donor Flag
A18 WEALTH2: Wealth Rating
A19 Percent Households with Income, replaced with the

majority income as obtained from IC6 to IC14
A20 Percent Families with Income, replaced with the

majority income as obtained from IC15 to IC23

ADATE 2: RFA status as of 97NK promotion date:
A21 Recency based on date of the last gift;
A22 Frequency based on the period of recency;
A23 Amount of the last gift

We need to have some user knowledge about how donors
would respond (in donation) to the 1997 mailing campaign
in terms of non-target attributes. This information is not
available from the dataset, nor is it easily available else-
where. Our approach is to “simulate” the user knowledge us-
ing some rules found in the data, which is reasonable because
in real applications often the user knowledge does come from
the analysis of the data. In particular, we simulated the fol-
lowing user knowledge.

The user knowledge: People tend to remain unchanged
in donation behaviors, that is, those who were active/inactive

in the past are likely to remain so this time (i.e., for NK97).
This knowledge is represented by the 4 rules R1 to R4 be-
low that were extracted from the data. We have included
the support and confidence of these rules, which shows their
strong existence in the data.

• R1 : A17 = Not major donor → NK97 = Non donor:
a non-major donor is unlikely to donate this time. The
user value Non donor corresponds to c0. (sup=78.09%
and conf=86.90%)

• R2 : A21 = Lapsing donor → NK97 = Non donor:
a lapsing donor (i.e., “a donor who made their last
donation between 13-24 months ago”) is unlikely to
donate this time. (sup=73.25% and conf=97.35%)

• R3 : A21 = Active donor → NK97 = Donor: an ac-
tive donor (i.e., “a donor who made their first donation
more than 12 months ago and has made a donation in
the last 12 months”) is likely to donate this time. The
user value Donor corresponds to any one of the non-
zero donation scales c1, c2, c3, c4. In implementation,
we replicated R3 into four knowledge rules with Donor
instantiated to each of c1, c2, c3, c4, and they are called
R3 collectively. (sup=9.52% and conf=67.67%)

• R4 : A21 = Star donor → NK97 = Donor: a star
donor (i.e, “a donor who has given to 3 consecutive
card mailings”) is likely to donate this time. We repli-
cated R4 into four knowledge rules with Donor in-
stantiated to each of c1, c2, c3, c4. (sup=3.07% and
conf=68.58%)

For non-target attributes, we use the binary match degree
measure m(v, v′): m(v, v′) = 1 if v = v′, or m(v, v′) = 0
otherwise. For the target attribute, we use the distance
based measure m(ci, cj) = 1 − |i − j|/4, i.e., the further
away the two scales ci and cj , the less the match degree
between them. We use the average avg for the aggregate in
Definition 3.1, and consider the covering depth of 1.

7.2 Efficiency of the unexpectedness mining
UMINE was implemented based on an adoption of the

depth-first based BUC for mining frequent itemsets [5]. We
compared UMINE with the method of not using user knowl-
edge, denoted by UMINE(NULL), which we implemented as
UMINE with only the default rule as the user knowledge.
UMINE-Pruned denotes UMINE exactly as described in Al-
gorithm 1, and UMINE-Unpruned denotes UMINE that merges
the rule phase and the final phase into one phase but scans
the unpruned database.

Figure 1(a) and (b) shows the execution time versus the
unexpectedness support threshold, for the minimum vio-
lation preference and the maximum confidence preference,
respectively. After the unexpectedness support threshold
is reduced to 10%, we have to abort UMINE(NULL) be-
cause the execution time is too long. UMINE-Pruned and
UMINE-Unpruned, however, can go to a much lower thresh-
old thanks to the focus on unexpectedness support. This
indicates that, without pushing the user knowledge, the
threshold has to be set very high, in which case many un-
expected rules will not pass the threshold, therefore, will
not be found by the post-analysis approach. Figure 1(a’)
and (b’) shows that the number of rules generated, which
measures the search space explored, is much smaller after

a

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

80 50 10 1 0.5 0.2 0.1

Min USup (%)

T
im

e
 (

s
e

c
o

n
d

)

Umine(NULL)
Umine-Unpruned
Umine-Pruned

a'

0

5000

10000

15000

20000

25000

30000

80 50 10 1 0.5 0.2 0.1

Min USup (%)

R
u

le
 N

u
m

b
e

r

Umine(NULL)
Umine

b

0

1000

2000

3000

4000

5000

6000

80 50 10 1 0.5 0.2 0.1

Min USup (%)

T
im

e
 (

S
e

c
o

n
d

)

Umine(NULL)
Umine-Unpruned
Umine-Pruned

 b'

0

5000

10000

15000

20000

25000

30000

80 50 10 1 0.5 0.2 0.1

Min USup (%)

R
u

le
 N

u
m

b
e

r

Umine(NULL)
Umine

Figure 1: Efficiency

pushing the user knowledge. This suggests that, as far as
the unexpected rule mining is concerned, many useless rules
are generated if the user knowledge is not pushed. UMINE-
Pruned is more efficient than UMINE-Unpruned, due to the
pre-pruning of up to 85% of the database. This experiment
clearly demonstrated the effectiveness of the proposed meth-
ods in focusing search effort.

In the rest of the experiment, the minimum violation pref-
erence is used as the preference model, and the covering
depth is 1.

7.3 Effectiveness of the unexpectedness min-
ing

Instead of listing all rules found, which are too many, we
examine a few top rules to convey the idea about the effec-
tiveness. We consider each rule independently. The inter-
action between rules will be considered in Subsection 7.4.
We applied UMINE at the minimum unexpectedness sup-
port of 0.2% and found 11,722 rules. The 20 rules of highest
Unexp are presented below. For each rule r presented, we
also present the violation distribution Ri = (x, y), where the
knowledge rule Ri covers x tuples satisfying r, with y being
the total violation by these tuples.

1. A21 = Lapsing donor → NK97 = c4 (Usup=0.38%;
Unexp=100%). R1 = (724, 724), R2 = (11, 11).

2. A1 = Can be exchanged→ NK97 = c4 (Usup=0.38%;
Unexp=100%). R1 = (722, 722), R2 = (11, 11).

3. A4 = Not planned giving → NK97 = c4 (Usup =
0.38%; Unexp =100%). R1 = (723, 723), R2 = (10, 10).

4. A17 = Not major donor→ NK97 = c4 (Usup=0.38%;
Unexp=100%). R1 = (724, 724).

5. A5 = Not sweepstakes→ NK97 = c4 (Usup = 0.38%;
Unexp=100%). R1 = (713, 713), R2 = (11, 11).

6. A9 = Not major donor → NK97 = c4 (Usup=0.38%;
Unexp=100%) R1 = (724, 724).

7. A3 = Not P3 → NK97 = c4 (Usup=0.37%; Un-
exp=100%). R1 = (697, 697), R2 = (9, 9).

8. A2 = Not in house → NK97 = c4 (Usup = 0.35%;
Unexp = 100%). R1 = (673, 673).

9. A13 = Home owner → NK97 = c4 (Usup=0.26%;
Unexp=100%). R1 = (485, 485), R2 = (8, 8).

10. A22 = One gift in theperiod of recency → NK97 =
c4 (Usup=0.24%; Unexp=100%). R1 = (460, 460), R2 =
(8, 8).

11. A23 = $25.00 and above → NK97 = c4 (Usup =
0.21%; Unexp = 1) R1 = (396, 396), R2 = (11, 11).

12. A1 = Can be exchanged,A21 = Lapsing donor →
NK97 = c4 (Usup= 0.38%; Unexp=100%). R1 =
(722, 722), R2 = (11, 11).

13. A4 = Not planned giving, A21 = Lapsing donor →
NK97 = c4 (Usup= 0.38%; Unexp=100%). R1 =
(723, 723), R2 = (10, 10).

14. A1 = Can be exchanged,A4 = Not planned giving →
NK97 = c4 (Usup= 0.38%; Unexp=100%). R1 =
(721, 721), R2 = (10, 10).

15. A9 = Not major donor, A21 = Lapsing donor → NK97 =
c4 (Usup= 0.38%; Unexp=100%). R1 = (724, 724).

16. A9 = Not major donor, A17 = Not major donor →
NK97 = c4 (Usup= 0.38%; Unexp=100%). R1 =
(724, 724).

17. A17 = Not major donor, A21 = Lapsing donor →
NK97 = c4 (Usup= 0.38%; Unexp=100%). R1 =
(724, 724).

18. A5 = Not sweepstakes,A21 = Lapsing donor → NK97 =
c4 (Usup= 0.38%; Unexp=100%). R1 = (713, 713),
R2 = (11, 11).

19. A4 = Not planned giving, A9 = Not major donor →
NK97 = c4 (Usup= 0.38%; Unexp=100%). R1 =
(723, 723).

20. A4 = Not planned giving,A17 = Not major donor →
NK97 = c4 (Usup= 0.38%; Unexp=100%). R1 =
(723, 723).

Generally speaking, these rules are found because their
bodies are either the same as or correlated with the bod-
ies of R1 or R2, but their heads say very different things
from the heads of R1 or R2. For example, the body of
rule No 3, A4 = Not planned giving, tends to be correlated
with a non-major donor (i.e., A17 = Not major donor), and
that is why the minimum violation preference (which acts
on behalf of the user) chose R1 to cover 723 tuples satisfy-
ing this rule. Rule No 3 is unexpected to the extent that
it summarizes many tuples that violate the user preferred
knowledge on them. This example also illustrates that our
method finds not only “directly unexpected rules” that use
attributes used by the user, such as rule No 1, but also “indi-
rectly unexpected rules” that use attributes correlated with
those used by the user, such as rule No 3. Since correlation
does not require syntax similarity, “indirectly unexpected
rules” cannot be found by the syntax based [8, 9] or the

logic based [12]. If the user knows these correlations, the
unexpectedness of “indirectly unexpected rules” is immedi-
ate to the user. Otherwise, “indirectly unexpected rules”
together with the violated knowledge rules (i.e., R1 here)
provides new information to the user.

If we go further down the list, some rules violate two or
more knowledge rules. Here is an example:

• A4 = Not planned giving, A17 = Not major donor →
NK97 = c1 (Usup = 1.05%, Unexp = 10%). R1 =
(7510, 1877.5), R2 = (555, 138.75), R3 = (9633, 0),
R4 = (1695, 0).

The subpopulation that satisfies this rule violates two knowl-
edge rules, R1 and R2. This is different from previous ap-
proaches where the unexpectedness is always measured with
respect to a single knowledge rule.

7.4 Effectiveness of the selection problem
In the above experiment, many rules were found because

of some conditions correlated with the bodies of knowledge
rules. Such rules are related in the sense of capturing the
same or similar violating subpopulation, i.e., Usup(r) com-
ing from the same or similar violating subpopulation. We
can treat all such rules as one cluster and present only one
representative of the cluster to the user. The other rules in
a cluster can still be computed, but will not be presented
to the user, unless the user requests them. This strategy is
implemented in the selection algorithm USELECT by prun-
ing all satisfying tuples once a data rule is selected. This
pruning is also a consequent optimization of the See-and-
Know preference dealing with the unexpectedness dynamics,
as shown in Section 6.

To evaluate the effectiveness of the selection algorithm, we
applied USELECT to the 11,722 rules found in Subsection
7.3 to select 5 most unexpected rules, with f(Usup, Ustr) =
Unexp as the selection criterion. The following 5 rules1 are
found in that order (recall that the minimum unexpected-
ness support is 0.2%):

• R5 : A21 = Lapsing donor → NK97 = c4 (Usup
= 0.38%; Unexp = 100%). R1 = (724, 724), R2 =
(11, 11).

• R6 : A21 = First time donor → NK97 = c1 (Usup =
0.50%; Unexp=26%). R1 = (3641, 910.25), NULL =
(39, 39).

• R7 : A21 = New donor → NK97 = c1 (Usup =
0.35%; Unexp=25%). R1 = (2589, 647.25), NULL =
(16, 16).

• R8 : A21 = Star donor→ NK97 = c0 (Usup = 0.25%;
Unexp=18%). R4 = (1900, 475).

• R9 : A21 = Active donor,
A22 = One gift in the period of recency → NK97 =
c0 (Usup = 0.35%; Unexp=13%). R3 = (2656, 664).

As discussed in Section 6, each time a data rule is selected,
it is made a new knowledge denoted Ri (5 ≤ i ≤ 9) in the
subsequent selection to prevent similar rules from being se-
lected again. As we can see, the above 5 rules selected this

1Despite their syntactic similarity, rules R6 and R7 summa-
rize disjoint subpopulations in the data!

way provide more insights than simply reporting the top 5
unexpected rules in Subsection 7.3. For example, from R8

and R9, the user learns unexpected rules about star and ac-
tive donors not donating this time. Many of the top 20 rules
in Subsection 7.3 are not in this list, therefore, not presented
to the user (who only wants to see 5 rules in our exam-
ple!). However, as mentioned above, each presented rule Ri

(5 ≤ i ≤ 9) in fact represents a cluster of rules whose Usup
mainly comes from the satisfying subpopulation of Ri and
which are not presented because of the pruning of this sub-
population. USELECT can be modified without difficulty
to compute this cluster for each selected rule. Therefore, the
user still has the choice of knowing the rules not presented
if she wishes to do so.

In summary, our evaluation indicated that the proposed
methods show a promise in addressing the three issues raised
in the introduction. Ultimately, whether a rule is interesting
is up to the end user to judge. This is because often the user
knowledge specified is incomplete and certain knowledge is
not easy to model. It would be unrealistic to expect every
rule found to be a surprise to the user. A more realistic
goal of our work is to take into account the user knowledge
that can be modeled so that a large number of obvious rules
can be pruned. However, the user still needs to examine
the surviving (but much fewer) rules to identify interesting
ones.

8. CONCLUSION
The user knowledge plays a crucial role in determining

what is interesting to the user. However, most data mining
algorithms do not consider such knowledge and merely let
the user choose some parameters and thresholds required
by the algorithms. The consequences are that: (1) a large
number of rules are found, while a human user can only
comprehend a small number; (2) many uninterested rules
are found, but many interesting rules are not. These conse-
quences are major obstacles to today’s data mining applica-
tions. In this paper, we addressed these issues by examining
the fundamental question of how the user knowledge should
be represented and modeled in mining unexpected rules. An
additional novel contribution is that we recognized the hu-
man user as a dynamic entity in applying her knowledge to
have a say in what is most unexpected to her. Modeling
these dynamics can better help capture the intuition that
what is unexpected can change as the user starts seeing dis-
covered rules. Another contribution is a general framework
for pushing the user knowledge into the search process. Our
experiments support our claim that the proposed approach
is not only efficient in mining rules, but it is also effective
in terms of the quality (i.e., unexpectedness) of the rules
produced.

9. REFERENCES
[1] Kdd-cup-98 dataset.

http://kdd.ics.uci.edu/databases/kddcup98/kddcup98.html.

[2] R. Agrawal and R. Srikant. Fast algorithm for mining
association rules. In VLDB, pages 487–499, September
1994.

[3] R. Bayardo and R. Agrawal. Mining the most
interesting rules. In SIGKDD. SIGKDD, 1999.

[4] R. Bayardo, R. Agrawal, and D. Gunopulos.
Constraint-based rule mining in large, dense

databases. In ICDE. IEEE, 1999.

[5] K. Beyer and R. Ramakrishnan. Bottom-up
computation of sparse and iceberg cubes. In
SIGMOD, pages 359–370, 1999.

[6] S. Brin, R. Motwani, and C. Silverstein. Beyond
market baskets: Generalizing association rules to
correlations. In SIGMOD, pages 265–276, 1997.

[7] M. Klemettinen, H. Mannila, P. Ronkainen,
H. Toivonene, and A. Verkamo. Finding interesting
rules from large sets of discovered association rules. In
CIKM 94, 1994.

[8] B. Liu and W. Hsu. Post-analysis of learned rules. In
Proceedings of the Thirteenth National Conference on
Artificial Intelligence (AAAI-96), pages 828–834.
AAAI, Aug 1996.

[9] B. Liu, W. Hsu, and S. Chen. Using general
impressions to analyze discovered classification rules.
In KDD, 1997.

[10] R. Ng, L. V. Lakshmanan, J. Han, and A. Pang.
Exploratory mining and pruning optimizations of
constrained associations rules. In SIGMOD, pages
13–24, 1998.

[11] B. Padmanabhan and A. Tuzhilin. A belief-drievn
method for discovering unexpected patterns. In
KDD-98. SIGKDD, 1998.

[12] B. Padmanabhan and A. Tuzhilin. Unexpectedness as
a measure of interestingness in knowledge discovery. In
KDD-98. SIGKDD, 1998.

[13] B. Padmanabhan and A. Tuzhilin. Small is beautiful:
Discovering the minimal set of unexpected patterns.
In SIGKDD, pages 54–63. SIGKDD, 2000.

[14] G. Piatesky-Shapiro. Discovery, analysis and
presentation of strong rules. In Knowledge Discovery
in Databases, pages 229–248. MIT Press, 1991.

[15] G. Piatesky-Shapiro and C. Matheus. The
interestingness of deviations. In KDD-94. SIGKDD,
1994.

[16] S. Sahar. Interestingnes via what is not interesting. In
SIGKDD, pages 332–336. SIGKDD, 1999.

[17] A. Silberschatz and A. Tuzhilin. On subjective
measures of interestingnessin in knowledge discovery.
In KDD, pages 275–281. KDD, 1995.

[18] A. Silberschatz and A. Tuzhilin. What makes patterns
interesting in knowledge discovery systems. In IEEE
Transactions on Knowledge and Data Engineering,
1996.

[19] R. Srikant, Q. Vu, and R. Agrawal. Mining association
rules with item constraints. In KDD, pages 67–73.
SIGKDD, 1997.

[20] P.-N. Tan and V. Kumar. Interestingness measures for
association patterns: A perspectives. In KDD-2000
Workshop on Post-Processing in Machine Learning
and Data Mining, 2000.

[21] K. Wang, Y. He, and J. Han. Pushing support
constraints into frequent itemset mining. In VLDB,
2000.

[22] K. Wang, Y. Jiang, J. Yu, G. Dong, and J. Han.
Pushing aggregate constraints by
divide-and-approximate. In ICDE. IEEE, 2003.

[23] M. Zaki. Generating non-redundant association rules.
In SIGKDD 2000. SIGKDD, 2000.

