
Discovering Patterns from Large and Dynamic Sequential Data

Ke Wang

Department of Information Systems and Computer Science

National University of Singapore

wangk�iscs�nus�sg

Abstract

Most daily and scienti�c data are sequential in nature� Discovering important patterns from

such data can bene�t the user and scientist by predicting coming activities� interpreting recurring

phenomena� extracting outstanding similarities and di�erences for close attention� compressing

data� and detecting intrusion� We consider the following incremental discovery problem for

large and dynamic sequential data� Suppose that patterns were previously discovered and ma�

terialized� An update is made to the sequential database� An incremental discovery will take

advantage of discovered patterns and compute only the change by accessing the a�ected part of

the database and data structures� In addition to patterns� the statistics and position informa�

tion of patterns need to be updated to allow further analysis and processing on patterns� We

present an e�cient algorithm for the incremental discovery problem� The algorithm is applied to

sequential data that honors several sequential patterns modeling weather changes in Singapore�

The algorithm �nds what it is supposed to �nd� Experiments show that for small updates and

large databases� the incremental discovery algorithm runs in time independent of the data size�

Key words� combinatorial pattern matching� data mining� sequential pattern� su�x tree�

update

� Introduction

In the daily and scienti�c life� sequential data� called strings below� are available and used ev�

erywhere� Examples are text� music notes� weather data� satellite data streams� stock prices�

experiment runs� DNA sequences� histories of medical records� log �les� etc� Given a �potentially

large� string S� we are interested in sequential patterns of the form � � �� where �� �� �� are

�

substrings inside S� such that the frequency of �� is not less than some minimum support and

the probability that � is immediately followed by � is not less than some minimum con�dence�

Discovering sequential patterns can bene�t the user or scientist by predicting coming activities�

interpreting recurring phenomena� extracting outstanding similarities and di	erences for close at�

tention� compressing data� detecting intrusion� For example� by discovering the common login

patterns of the authorized user� a security system may be able to detect an foreign intrusion when

login activities in a session are drastically di	erent from what is predicted by the patterns� Since

the underlying database is usually large� dealing with changing data and patterns is a challenge

for research and application in knowledge discovery and data mining� and incremental methods for

updating the patterns are possible solutions
FSS��
�

The problem� We consider the following incremental discovery problem� Suppose that sequen�

tial patterns were previously discovered and materialized� An update is made to the underlying

database� For a simple update� it is expected that most patterns and data structures remain un�

changed and recomputing all patterns is unnecessarily expensive� especially for large and dynamic

databases� The incremental discovery will take advantage of discovered patterns and compute only

the change by accessing the a	ected part of the database and data structures� In addition to pat�

terns� the incremental discovery also maintains the statistics and position information of patterns

to allow further analysis and processing on patterns� Maintaining the position information is also

necessary to locate occurrences of a substring for performing updates on them� In the discovery

process� the user may dynamically re�ne his�her interestingness level by trying several minimum

support and con�dence� A viable incremental solution should allow tuning of patterns according

to di	erent minimum support and con�dence� without recomputing patterns�

The contribution� This paper presents an e�cient algorithm for the incremental discovery

problem� We allow general updates at any speci�ed position of the string database� not necessarily

constrained to the two ends of the string� The su�x tree indexing widely used in the area of

combinatorial pattern matching
B��� GY��� S��
 does not work for such dynamic strings� The

di�culty lies in maintaining the position information that are sensitive to general updates� We

propose a new representation of the su�x tree� called the dynamic su�x tree� to index dynamic

strings� The string database is stored on disks using a structure that supports e�cient updates and

mappings between positions and disk addresses� The dynamic su�x tree maintains disk addresses

rather than positions of substrings� thus eliminating the sensitivity to updates� We present an

algorithm for the incremental discovery problem using the dynamic su�x tree� The discovery

�

framework and incremental discovery algorithm are tested on the sequential data that honors several

sequential patterns modeling weather changes in Singapore� The algorithm has found what it is

supposed to �nd� Experiments show that for small updates and large databases� the incremental

discovery algorithm runs in time independent of the data size�

Discovering sequential patterns is related to �nding all occurrences of a substring in a string

database� called the string searching problem in the area of combinatorial pattern matching �see

B��� GY��� S��
� e�g�� for a survey�� The main di	erence is that the string searching problem �nds

occurrences of a particular substring� whereas the discovery problem �nds all substrings of some

signi�cant statistics� In similarity� both problems require some form of indexing on substrings� Two

famous algorithms for the string searching problem are the Boyer�Moore algorithm
BM��
 and the

Knuth Morris Pratt algorithm
KMP��
� Extensions for this problem have dealt with approximate

matchings� a pattern with �wild cards�or a regular expression� multiple patterns searching� and

multi�dimensional searching� See
B��� BG��� WM��
 for a partial list� For most work in this

area� indexing or preprocessing was primarily used to speed up subsequent searches� The su�x

tree indexing was used in
M��
 to speed up updates for dynamic strings� Since
M��
 adopted

a position numbering scheme in which a position number never changes once assigned� like the

Dewey�Decimal library access code� generated position numbers do not correspond to the logical

ordering of characters and are practically useless� That position numbering scheme also su	ered

from running out of position numbers after some number of updates� More seriously�
M��
 did

not address the problem of dangling references to deleted characters in the su�x tree� See Section

� for elaboration� The problem of discovering sequential patterns was an active research area in

AI �see� for example�
MD��
� and was recently studied in the database area �see� for example�

ALSS��� AS��� W���
�� However� the discovery algorithms in these works have to be rerun if the

data is updated�

Section � de�nes the discovery problem of sequential patterns and the incremental version of the

problem� The su�x tree is introduced as a representation of sequential patterns� Section � brie�y

describes the construction and update algorithms of the su�x tree in the literature� highlighting the

inability of the su�x tree for handling dynamic strings� Section � proposes the dynamic su�x tree

for dynamic strings� Section � presents an incremental discovery algorithm based on the dynamic

su�x tree� Section � extends the discovery framework and incremental discovery algorithm to

multiple strings� Section � evaluates the proposed framework and algorithms� Section � remarks

on future work and concludes the paper�

�

� The Discovery Problem

Sequential data� A string S is a sequence of characters written abcd � � �� where letters a� b� c� � � �

represent characters� The �rst character is at position �� the second at position �� and so on� The

characters in a string may be English characters in a text �le� DNA base pairs� lines or source code�

angles between edges in polygons� machines or machine parts in a production schedule� music notes

and tempo in a musical score� and so forth� For example� a daily weather report can be represented

by a string S in which characters are daily weather of type �sky� temporature�� A substring of S is

a sequence of characters in S that are consecutive in position� The length of substring �� denoted

j�j� is the number of characters in ��

Discovery of sequential patterns� The support of substring � is the ratio of the number

of positions in S at which � starts over jSj� sup��� denotes the support of �� Let � and � be

non�empty substrings of S such that the concatenation �� is a substring of S� A sequential pattern

or simply pattern in S has the form � � �� The support of � � � is sup���� and the con�dence

of � � � is sup�����sup���� For the user�speci�ed minimum support minisup and minimum

con�dence miniconf � a pattern is interesting if its support is at least minisup and its con�dence is

at least miniconf � The discovery problem for string S �nds all interesting patterns in S� Suppose

that all interesting patterns in S were previously discovered and stored� Assume that S � ��� is

updated to ���� With the update and old patterns as the input� the incremental discovery �nds

all interesting patterns in the updated S� We will extend these de�nitions to multiple strings in

Section ��

Example ��� Consider string S � abcebcdbc� where each letter represents a character� sup�bc� �

��jSj and sup�bcdbc� � ��jSj� so the support of bc � dbc is ��jSj and the con�dence of bc � dbc

is ���� The support of b � c is ��jSj and the con�dence of b � c is �� If minisup � ��jSj and

miniconf � ���� b � c is interesting� but bc � dbc is not� In fact� b � c is the only interesting

pattern in S for such minisup and miniconf �

The discovery problem can be decomposed into two subproblems�

�� Find all substrings � of S such that sup��� is at least minisup� Such substrings are called

frequent substrings�

�� Use the frequent substrings to generate patterns� Here is a straightforward algorithm for

this task� For every frequent substring � and every non�empty proper pre�x � of �� output

�

pattern �� ��� if sup����sup��� is at least miniconf � where ��� is obtained by deleting

the pre�x � from ��

Essentially� the discovery problem requires to index substrings together with their support and

position information� Let us review several existing techniques for serving this purpose�

The R�tree
G��
 and R��tree
SRF��
 support operations on multi�dimensional data� They

can be used for strings by treating the position as one dimension and substrings as the second

dimension� However� since the number of possible substrings in a string of length n can be O�n��

and a substring can be scattered all over the string� the performance can be very bad� The

technique of inverted lists
F��� TMS��� ZMD��
 has been used to index a �xed set of �words�

in a text database� For general�purpose strings for which the data processing unit is substrings�

there is no clear cut of �words�� Taking all possible substrings as �words� leads to the blowup of

O�n�� words for a string of length n� The su�x tree indexing
C��� M��� LV��� U��� U��� W��

was previously used to speed up subsequent search of substrings� The update of the su�x tree

was considered in
M��
 for dynamic strings� by assuming that a position number never changes

once assigned� Such position numbers do not correspond to the logical ordering of characters and

are practically useless� However� several properties of the su�x tree is appealing for the discovery

problem� the construction of the su�x tree takes linear time and linear space� the frequency and

position information of substrings are readily available in the su�x tree� the su�x tree serves

a natural and compact representation of sequential patterns� In this paper� we adopt the su�x

tree for indexing substrings� with the focus on updating the su�x tree for solving the incremental

discovery problem� The following brie�y introduces the su�x tree�

The su�x tree
LV��� M��� S��� U��
� Assume that no su�x of S is a pre�x of a di	erent

su�x of S� This can be satis�ed by appending the unique delimiter � at the right extreme of

S� S can be mapped to a tree T in which root�to�leaf paths are su�xes of S and terminal nodes

represent uniquely starting positions of su�xes� Formally� the su�x tree T for S satis�es the

following properties�

T� each arc of T represents a non�empty substring of S�

T� each non�terminal node of T � except the root� must have at least two o	spring arcs�

T� substrings represented by o	spring arcs of the same node must begin with di	erent characters�

T is a multiway Patrica tree and contains at most jSj non�terminal nodes�

�

(a)
(b)

(c)

$
$

A
A

B

A

B
C

A

B C

1 2 3 4 1

2

3 4

5

1

2 5

4

36

1

2 5 6 3

4

7

8 9

$

10

abcebcdbc$

bcebcdbc$ cebcdbc$

ebcdbc$ abcebcdbc$
cebcdbc$

ebcdbc$

bc

ebcdbc$
dbc$

ebcdbc$abcebcdbc$
bc

ebcdbc$ dbc$
dbc$

ebcdbc$

c

(d)

bc cabcebcdbc$

ebcdbc$ dbc$
dbc$

ebcdbc$

ebcdbc$

dbc$

Figure �� Construction of su�x trees

Example ��� Consider the string S � abcebcdbc� in Example ���� We can build the su�x tree T

of S by inserting su�xes into T one at a time� starting from the longest su�x abcebcdbc�� In Figure

�� �a	 shows the tree after the �rst four su�xes are inserted� Since none of these su�xes shares a

pre�x� they all go to di
erent branches� A square box represents a terminal node and contains the

starting position of the corresponding su�x� �b	 shows the tree after the su�x bcdbc� is inserted�

Since bcdbc� shares pre�x bc with bcebcdbc�� the arc for bcebcdbc� is split into two� one for bc and

one for ebcdbc�� so that T� is satis�ed� �c	 is the tree after su�x cdbc� is inserted� in which the

arc for cebcdbc� is split� �d	 is the su�x tree after all su�xes of S are inserted�

In Figure ��d	� for any substring � of S� by following the path from the root that spells out �

we can �nd the subtree containing all starting positions of � in terminal nodes� For example� by

following the path that spells out bc� i�e�� arc �A�B� in this case� we �nd the root B of the subtree

containing starting positions ����
 of bc in its terminal nodes� The number of such terminal nodes

can be stored at B to facilitate counting the occurrence of bc� Because of property T�� the path that

spells out a substring is unique� Note that the implementation of the su�x tree stores the starting

position and length of the substring associated with an arc� not the substring itself�

�

Let v be a non�terminal node in the su�x tree T � subtree�v� denotes the subtree rooted at v�

string�v� denotes the substring spelled out by the path from the root to v� count�v� denotes the

number of terminal nodes within subtree�v�� The locus of substring �� denoted locus���� is the �rst

node in T encountered after � is spelled out by following a path from the root� All starting positions

of � are found in the terminal nodes in subtree�locus����� The number of starting positions of �

in S is given by count�locus����� Therefore� sup��� � count�locus�����jSj� For example� in Figure

��d�� locus�bc� � B and locus�cd� is terminal node �� The starting positions of bc are found in the

terminal nodes within subtree�B�� i�e�� terminal nodes ������ The starting positions of cd are found

in the terminal nodes within subtree���� that is� node ��

From the su�x tree T for S with count�v� stored at every non�terminal node v� we can extract

all interesting sequential patterns from T � For every path from the root that spells out substring

� and for every non�empty proper pre�x � of �� if

count�locus�����jSj � minisup and

count�locus�����count�locus����� miniconf �

we output pattern �� � � � together with the support

count�locus�����jSj

and the con�dence

count�locus�����count�locus�����

where � � � is obtained by deleting the pre�x � from �� For a �xed minisup� only the upper part

of T consisting of all nodes v such that count�v��jSj � minisup is of interest� However� there are

good reasons for materializing the whole su�x tree� As the user tunes minisup� the part of T of

interest will shrink or grow� and by materializing the su�x tree the user can tune the interestingness

level of patterns without su	ering from the delay caused by reconstructing the su�x tree� Most

importantly� the su�x tree is materialized for the incremental discovery of patterns�

� Existing Su�x Tree Algorithms

We review existing su�x tree algorithms and point out their pitfalls for dynamic strings� This

motivates a modi�cation of the su�x tree for solving the incremental discovery problem in the next

section�

�

��� Construction

The naive construction of the su�x tree by descending a path from the root for each su�x� as in

Example ���� immediately leads to the quadratic time complexity� By exploring the relationship

between every two consecutive su�xes� the construction can be reduced to a linear time
M���

W��� U��
� The following is the construction in
M��
� �
M��
 is chosen because it considered the

update problem of the su�x tree and others didn�t�� Consider two non�terminal nodes u and v�

There is a su�x�link from u to u if u is the root� otherwise� there is a su�x�link from u to v if

string�u� � x� and string�v� � �� respectively� where x is a character and � is a substring� Let

sufi denote the su�x of S beginning at position i� If x� is a pre�x of sufi� then � is a pre�x

of sufi��� Therefore� after inserting sufi into the su�x tree� the su�x�link at node u points to a

place to insert the rest of sufi��� i�e�� the part of sufi�� without the pre�x ��

Let Ti denote the su�x tree after suf�� � � � � sufi are inserted� The su�x tree for S is constructed

in the order T�� T�� � � �� where Ti�� is obtained by inserting sufi�� into Ti� Initially� T� contains

only the root� Consider inserting sufi�� into Ti� On the path for sufi� let u denote the lowest

non�terminal node containing a su�x�link and let w denote the lowest non�terminal node� u and w

were visited when inserting sufi� Assume that string�u� � x� and string�w� � x��� respectively�

where x is a character and � and � are substrings of S� Suppose that every non�terminal node

in Ti� except possibly w� contains a su�x�link� This property initially holds for T� and will be

inductively established for Ti���

To insert sufi��� we follow the short�cut provided by the su�x�link at u� From the de�nition�

for the node v pointed by the su�x�link� string�v� is a pre�x of sufi��� Starting from v� we descend

the tree along a sequence of arcs that spells out �� If � does not end exactly at a node� the last

arc descended is split and a new node d is inserted at the end of �� The su�x�link of w is assigned

to point to d if it is not assigned yet� This step is called rescanning in
M��
� which establishes the

su�x�link at w� The search for the rest of sufi�� �i�e�� the part without the pre�x ��� continues

from d deeper into the tree� The search eventually �falls out of the tree� because sufi�� is not a

pre�x of any su�x in the tree� If the search does not fall out exactly at a node� the last searched

arc is split and a new non�terminal node is inserted� which� by the assumption on Ti� is the only

non�terminal node containing no su�x�link� Finally� a new terminal node is inserted for the rest of

sufi�� that falls out of the tree� This step is called scanning in
M��
�

Example ��� Consider Figure ��d	� where the su�x�link at the root points to itself and the su�x�

�

link at B points to C� After inserting su�x suf�� the su�x�link at B provides a short�cut to insert

the part of suf� without pre�x c� i�e�� �� In this case� u � w � B� x � b� � � c� and � � �� Since

� � �� no new non�terminal node is created during rescanning� Also� since suf� falls out of the

tree exactly at node C� no new non�terminal node is created during scanning� For a su�x tree� the

short�cut provided by su�x links will avoid a long traversing from the root�

The detail of the above construction can be found in
M��
�

��� Update

The update of the su�x tree for dynamic strings was considered in
M��
� Assume that the su�x

tree T for S was materialized and that S � ��� is updated to ���� where �� �� �� � are substrings�

To re�ect the update in T �
M��
 determines which su�xes �i�e�� paths� in T are a	ected and

updates such su�xes� On one hand� if a su�x is too short to contain any part of �� the su�x is

not a	ected� On the other hand� if a su�x is so long that � is entirely buried in the terminal arc

of the su�x� the change of the su�x is re�ected by the update in string S� Therefore� for a su�x

to be a	ected� it must contain part of � but does not properly contain �� in its terminal arc� Such

su�xes were called ��splitters in
M��
 and are de�ned formally below�

Let �� be the longest su�x of � that occurs in at least two di	erent positions in S � ����

With respect to the update from ��� to ���� ��splitters are su�xes of the form 	�� where 	 is a

non�empty su�x of ���� See Figure � for an illustration� Consider a su�x sufi� If sufi is longer

than the longest ��splitter ����� sufi will properly contain �� in its terminal arc because its pre�x

proceeding �� does not repeat in S� From the above discussion� sufi is not a	ected by the update�

If sufi is shorter than the shortest ��splitter x�� where x is a single character� sufi does not contain

any part of �� thus� is not a	ected either� Therefore� ��splitters are the only su�xes a	ected by the

update� In testing� sufi is a ��splitter if and only if sufi starts on the left of �� but the terminal

arc of sufi does not properly contain ��� The test requires to compare the starting position of

sufi with that of � and compare the position stored on the terminal arc for sufi with the starting

position of ��� The starting positions of � and �� are known from the update speci�cation� The

other position information needed for the test can be found in the terminal node and terminal arc

for sufi� Therefore� by visiting the terminal node and terminal arc for su�x sufi� we can determine

whether sufi is a ��splitter�

The strategy of replacing � with � suggested by
M��
 is to delete all ��splitters from T and

�

alpha beta gamma

beta gamma

longest beta−splitter

shortest beta−splitter

S

alpha*

x

Figure �� ��splitters

$

A

C
1

6

7

9

$
10

8

$

A

C
1

6

7

9

$
10

(b)

6

4
5

3

2 8

$

abcebcdbc$
bc$

c

dbc$

dbc$

dbc$

dbc$

hcdbc$

fghcdbc$

fghcdbc$

fghcdbc$

c
ghcdbc$

$

A

C
1

6

7

9

$
10

(a)

abcebcdbc$ c

dbc$

dbc$

(c)

8

bc
bc

$

abcfghcdbc$

B

Figure �� Example ���

insert into T all ��splitters of the form
�� where
 is a non�empty su�x of ���� Intuitively� the

��splitters are in lieu of the ��splitters accounting for the replacement of � with �� To �nd all

��splitters� it is assumed that terminal nodes are double chained up in the order of the position�

Let us call this chain the position chain� The deletion proceeds from the shortest ��splitter to the

longest ��splitter� The terminal node for the shortest ��splitter is the node containing position

number k � �� where k is the starting position of �� Deleting a ��splitter corresponds to deleting

its terminal arc and possibly merging two arcs� See Example ��� below� Inserting ��splitters is the

same as inserting su�xes in the construction algorithm� proceeding from the longest ��splitter to

the shortest� The longest ��splitter ���� is obtained from the longest ��splitter ���� by replacing

� with ��

Example ��� Suppose we replace � � eb with � � fgh in S � abcebcdbc�� Then � � abc and

� � cdbc�� Initially� the su�x tree T for S is given in Figure ��d	� The implementation of the

su�x tree stores only the starting position and length of the substring associated with an arc� not

��

the substring itself� The position chain is omitted here because it can be derived from the position

in terminal nodes� The longest repeating su�x of � is �� � bc� There are four ��splitters� bceb��

ceb�� eb�� b�� These ��splitters are found and deleted as follows� First� we �nd the terminal node

for the shortest ��splitter at the node containing position number �� i�e�� one position to the left of

the starting position of �� We follow the position chain towards lower position numbers� Since the

terminal arcs for positions �� �� �� � do not properly contain ��� these terminal nodes represent

��splitters and are deleted� By the time ��splitter bceb� is deleted� as in Figure ��a	� node B is left

with only one o
spring arc� violating property T�� So the two arcs on the path are merged into one

arc� as in Figure ��b	�

The longest ��splitter is obtained from the longest ��splitter by replacing � with �� that is�

bcfgh�� The �ve ��splitters bcfgh�� cfgh�� fgh�� gh�� h� are inserted into the tree in Figure

��b	� proceeding from the longest to the shortest� The tree after inserting all ��splitters is given in

Figure ��c	� The substring associated with terminal arc �A� �� gets updated by default when eb is

replaced with fgh in the string S� The reader may note that there are two terminal nodes in Figure

��c	 containing position number �� We will discuss this problem shortly�

The su�x tree was well studied in the literature� We omit the formal description of its algo�

rithms� which can be found in
B��� M��� S��� U��� W��
� Our concern is whether the su�x tree

can be applied to solve the incremental discovery problem and what modi�cations and extensions

are needed�

��� The pitfalls to handle updates

Unfortunately� the above update algorithm does not work appropriately� First�
M��
 adopted

a position numbering scheme in which a position number never changes once assigned� That

positioning does not correspond to the logical ordering of characters as perceived by the user�

therefore� are practically useless� Second�
M��
 failed to deal with dangling references to deleted

positions in the su�x tree� For example� in Figure ��d� after deleting character c at position ��

the positions on arcs �A�B� and �A�C� will refer to unexpected places� which clearly posts a big

problem for later insertion of su�xes� On the other hand� maintaining the logical position in the

su�x tree is a very expensive operation� In Example ���� replacing eb with fgh requires to change

positions ������� to positions ��������� Making such changes in the su�x tree requires to access

many nodes and arcs� A similar problem exists if substrings instead of positions are stored in

��

the su�x tree� Finally� the above update algorithm does not address the change of support of

substrings� as required by the discovery problem� Therefore� the su�x tree in the literature is not

suitable for indexing dynamic strings� Despite these problems� however� the idea of updating the

su�x tree by deleting ��splitters and inserting ��splitters is appealing because it avoids to rebuild

the whole tree� The dynamic su�x tree to be proposed below will borrow this idea and take care

of the above mentioned problems�

� The Dynamic Su�x Tree

We assume that large string S is stored on a number of disk pages� In such a disk�based environment�

the position does not provide su�cient information to �nd characters because consecutive characters

may not be stored on consecutive disk pages� Instead� characters are accessed through their disk

addresses� The disk address of a character consists of a disk page number and an o	set of the

character within the disk page� Unlike the position� insertion or deletion a	ects only the address

of characters in the disk pages containing inserted or deleted characters� the address of untouched

pages remains unchanged� This motivates a new representation of the su�x tree for dynamic

strings� called the dynamic su�x tree� in which disk addresses rather than positions are stored� Let

us consider the data structures and operations needed for the dynamic su�x tree�

��� The B�tree�P�

First� we need a disk�based structure to store the string S� The storage structure must provide

e�cient mappings between the position and the address� The mapping from addresses to positions

is needed to �nd the position of patterns� and the mapping from positions to addresses is needed

to perform updates on string S at a speci�ed position� We propose a variation of the B�tree� called

the B�tree on position or simply B�tree�P	� for storing S�

The B�tree�P	� An entry in a non�terminal node of the B�tree�P� has the form � c� Pr ��

where Pr is the pointer to a child node� and c� called a c�value� is the number of characters indexed

in the subtree under this entry� In the B�tree�P� of degree �m�M�� the following invariants hold for

a non�terminal node v containing entries � c�� Pr� �� � � � � � cp� Prp ��

P� for � � i � p� exactly ci characters are indexed in the subtree under branch Pri�

P� if v is the root� p � �� otherwise� m � p �M �

��

A

B C

D E F G

H I J K L M N O P Q

abc de fg hij kl mn op qr st uv$

12 11

7 6 5

3 2 2 3 2 2 2 2 2 3

5

Figure �� A B�tree�P� for string S � abcdefghijklmnopqrstuv�

P� all terminal nodes must be at the same level of the tree and characters are contained in

terminal nodes only�

A child node also has a pointer to its parent node� which is needed for mapping addresses to

positions explained later�

Example
�� Consider string S � abcdefghijklmnopqrstuv�� where each letter represents a

character� Figure � shows a B�tree�P	 of degree ��� �� for S� The terminal level of the tree contains

all characters� The c�value � in node C indicates that under the �rst branch of C there are exactly

� characters� It can be veri�ed that every c�value correctly gives the number of characters in the

subtree under the entry containing the c�value�

Mapping positions to addresses� Searching for the address corresponding to position p is

done by descending the B�tree�P� along a root�to�leaf path u�� u�� � � � � uk� As a branch is descended�

c�values on the left of that branch in the current node are accumulated� The di	erence between

p and the current accumulative sum determines which branch to descend at the next level� On

reaching a terminal node uk � the di	erence between p and the accumulative sum gives the o	set

within uk of the character at position p�

For example� suppose we want to �nd character i at position � in string S in Figure �� Initially�

the accumulative sum X � �� The di	erence ��X suggests that the left branch of A be descended�

with X unchanged� At node B� the di	erence ��X � � is more than the �rst c�value� �� but less

than the sum of the �rst and second c�values� so the second branch is descended and X is changed

to �� At node E� since the di	erence � � X � � is less than the �rst c�value� the �rst branch is

��

descended and X � � remains unchanged� Then the address corresponding to position � is given

by node K and o	set ��X � ��

Mapping addresses to positions� To �nd the position corresponding to the address given by

terminal node u and o	set i� we traverse from node u towards the root and accumulate all c�values

on the left of the traversed branch� in a way similar to the descending of the B�tree�P� above� After

reaching the root� the accumulative sum gives the position searched�

For example� suppose we want to �nd the position of the second character in terminal node J

in Figure �� i�e�� character g� Initially� the accumulative sum X is set to �� that is� the given o	set

within J � We visit the parent D and add to X the c�values in D on the left of the branch just

traversed upwards� giving X � �� Next� we visit parent B� and X � � remains unchanged because

the branch traversed is left most� Finally� on reaching the root� we have X � �� Therefore� the

position of the second character in terminal node J is ��

Updating the B�tree�P	� Inserting and deleting a substring at a speci�ed position is per�

formed in two phases� The search phase �nds the terminal nodes to insert or delete the substring�

and the propagation phase inserts or deletes entries for nodes inserted or deleted at lower levels�

The paths descended in the search phase are saved on the stack and used by the propagation

phase� Insertion at one level may cause more than one node to be created� and entries in a node

may be split and redistributed to satisfy property P�� For a deletion speci�ed by starting and

ending positions� the search phase looks for the left and right limits of the deletion by descending

the B�tree�P� along two paths� All characters at the terminal level between the two limits are

deleted� Under�ow nodes are merged and entires may be redistributed to satisfy property P�� In

the propagation phase� the c�value at an entry is computed by summing all c�values in the child

node under the entry� if the child is non�terminal� or by the number of characters in the child node

under the entry� if the child is terminal� Figure � illustrates a	ected nodes for a general update�

where the shaded area denotes the nodes that are inserted or deleted at one level� Importantly� for

both insertion and deletion� addresses of characters contained in untouched terminal nodes are not

a	ected� though their positions may have been changed�

We like to mention that the B�tree�P� has all the nice properties of the B�tree� i�e�� the balanced

height� a large branching factor� localizing the search to a single path� etc� Unlike the B�tree�

however� a number of nodes could be inserted or deleted at a level of the B�tree�P�� depending

on the size of the substring inserted or deleted� but not on the size of the database� We omit

��

left path right path

The left limit of update The right limit of update

Figure �� Nodes a	ected by insertion and deletion

the precise description of these operations on the B�tree�P�� We hope that informal discussion and

examples can better bring out the working idea�

��� The dynamic su	x tree

We consider how to modify the su�x tree for indexing dynamic string S stored in the B�tree�P��

Let p�i denote the address of the character at the o	set i on disk page p� Instead of storing starting

and ending positions of substrings in the su�x tree� we store a reference pair of the form �addr� l�

on each arc� where addr and l are the starting address and length of the substring associated with

the arc� We call such a su�x tree the dynamic su�x tree� The dynamic su�x tree for the su�x

tree in Figure ��d� is shown in Figure ��c�� with the B�tree�P� in Figure ��a�� For convenience�

the starting positions of su�xes are given next to terminal nodes� The length l on a terminal arc

is not used because the substring on a terminal arc always extends to the end of the string� To

apply the dynamic su�x tree to solve the incremental discovery problem� the problems mentioned

in subsection ��� must be addressed� This is the topic of the next section�

� The Incremental Discovery Algorithm

Assume that string S is updated from ��� to ���� The update of S is performed in the B�tree�P�

by deleting � and inserting �� as in Section �� We focus on the update of the dynamic su�x tree

T for S� Let pos�addr� denote the position corresponding to the address addr�

It is important that the change in the dynamic su�x tree is limited to only a	ected paths� that

is� ��splitters and ��splitters� The dynamic su�x tree is updated in two phases� corresponding

��

to deleting ��splitters and inserting ��splitters in Section �� The �rst phase deletes all ��splitters

and adjusts all reference pairs �addr� l� such that the position range
pos�addr�� pos�addr�� l � �

intersets with the position range of �� If there is an intersection� �addr� l� is referring to deleted

characters and is called dangling� A dangling reference pair must be replaced with a non�dangling

reference pair that represents the same substring� The second phase inserts ��splitters and adjusts

the support a	ected by the deletion of ��splitters and insertion of ��splitters� Since inserting

��splitters needs to access substrings associated with arcs� references pairs must be replaced by

non�dangling reference pairs in the �rst phase so that the tree is free of dangling references� The

big question is where to �nd all dangling reference pairs in the su�x tree� The following theorem

gives the answer�

Theorem ��� Suppose that S is updated from ��� to ���� If the reference pair on a non�terminal

arc �u� v� is dangling� �u� v� is on a ��splitter with respect to this update�

From Theorem ���� we can �nd all dangling reference pairs on ��splitters� or equivalently� we can

adjust dangling reference pairs by accessing only ancestor arcs of deleted terminal nodes� To prove

Theorem ���� we say that references pairs �addr�� l��� � � � � �addrk� lk� along a path in the dynamic

su�x tree are continuous if the last position referred to by �addri� li� proceeds immediately the �rst

position referred to by �addri��� li���� that is� pos�addri� � li � pos�addri���� for � � i � k�

Proof of Theorem ���� Consider the su�x tree for ��� constructed by inserting all su�xes of

���� For any non�terminal arc �x� y�� there is at least one arc �y� z� from y such that the reference

pairs on �x� y� and �y� z� are continuous� In fact� we can choose the arc �y� z� such that �x� y�

and �y� z� are produced by splitting a single arc during the construction of the su�x tree� Thus�

there is a path �x� y�� � � � � �x�� y�� in the su�x tree to a terminal node� on which all reference pairs

are continuous� Now we consider the arc �u� v� in the theorem� Let �u� v�� � � � � �u�� v�� be the path

to a terminal node on which all reference pairs are continuous� Since the reference pair on �u� v�

refers to a deleted character in �� the terminal arc �u�� v�� does not properly contain ��� otherwise�

the reference pairs on path �u� v�� � � � � �u�� v�� are not continuous� In other words� the terminal

node v� represents a ��splitter containing arc �u� v�� Then the theorem follows because the update

algorithm below preserves the continuity of reference pairs required� �

The incremental discovery algorithm for string update from ��� to ���� It is assumed

that the dynamic su�x tree for string ��� is stored�

Phase ��

��

Step �a� Delete all ��splitters� as in Section ���� Let � contain the parents of deleted terminal

nodes� �If deleting a ��splitter causes two arcs �u� x� and �x� v� to be merged into one arc

�u� v�� � contains u instead of x�

Step �b� Mark all nodes in �� their ancestors� and connecting arcs� To avoid repeated markings�

we start with nodes in �� walk up the tree and mark nodes and arcs until encountering

either the root or a marked node� From Theorem ���� only reference pairs on marked arcs

are a	ected�

Step �c� Adjust reference pairs on marked arcs� This is done by the postorder traversal of all

marked arcs� For each arc �u� v� being traversed� let �addr�� l� be the reference pair on �u� v�

and let �addr�� m� be the reference pair on any o	spring arc of v� We replace �addr�� l� on

�u� v� with �addr�� l�� where addr� is the address corresponding to position pos�addr��� l�

The address addr� can be found by mapping addr� to pos�addr�� and mapping pos�addr���l

to the corresponding address using the B�tree�P�� We say that addr� is at l�distance from

addr��

By de�nition� �addr�� l� and �addr�� m� are continuous� Let us complete the proof of Theorem

���� Assume that before updating the dynamic su�x tree� every non�terminal node has a path to

a terminal node on which all reference pairs are continuous� An induction on the traversing order

can show that any marked node has a path to a terminal node on which all reference pairs are

continuous� This completes the proof of Theorem ����

The reason that �addr�� l� on �u� v� can be replaced with �addr�� l� in Step �c is because they

refer to the same substring� From the above discussion� for any o	spring arc �v� w� at v there is a

path �v� w�� � � � � �v�� w�� to some terminal node w� on which all reference pairs are continuous� and

addr� is at l�distance from the address on �v� w�� This implies that replacing addr� with addr�

does not change the su�x represented by w�� Thus� �addr�� l� and �addr�� l� represent the same

substring�

Phase �

Step �a� Insert all ��splitters� as in Section ���� Let � contain all parents of inserted terminal

nodes�

Step �b� Mark all nodes in �� their ancestors and connecting arcs� similar to Step �b�

��

Step �c� Adjust count�v� for marked nodes v� This is done by the postorder traversal of all arcs

marked in either Step �b or �b� The change of count�v� at a node v in �� � is the signed

number of terminal nodes deleted and inserted under v� The change of count�v� at a marked

node v not in � � � is the sum of the changes of count�u� for all marked children u of

v� The new count�v� at a marked node v is equal to the old count�v� plus the change of

count�v��

Example ��� Consider string S � abcebcdbc� stored in the B�tree�P	 in Figure ��a	� Figure ��c	

shows the dynamic su�x tree for S with the su�x�links and position chain omitted� A reference

pair �p�i� l� denotes the substring starting at address p�i and having length l� Each terminal node in

the dynamic su�x tree contains the starting address of the represented su�x� For convenience� the

starting position of su�xes are given next to terminal nodes in Figure ��c	� count�v� for a non�

terminal node v is printed inside the node� For example� suf� � bcebcdbc� is represented by path

�F�A�� �A� �� and has the starting address X��� suf� � bcdbc� is represented by path �F�A�� �A� ��

and has the starting address Y��� The reference pairs on path �F�A�� �A� �� are continuous� but the

reference pairs on path �F�A�� �A� �� are not�

Consider the update U from abcebcdbc� to acbdeebcdbc�� that is� replace the �rst bc by cbde�

Thus� � � a� � � bc� � � cbde� � � ebcdbc� in the update from ��� to ���� The following steps

are performed�

First� the B�tree�P	 in Figure ��a	 is descended to search for the left and right limits of �� The

search leads to terminal nodes X and W and all characters in � are deleted� Then � is inserted

into the B�tree�P	� The o
set of characters in W is a
ected by the update� For example� the

character e originally having o
set � in W has o
set � after update U � as in Figure ��b	� To re�ect

this change� the actual update U � performed on the dynamic su�x tree T is ����� to ������ where

�� � bce� �� � cbdee� �� � bcdbc�� That is� U � is U extended to all characters in node W �

Then update U � is performed on the dynamic su�x tree in Figure ��c	� Since character a does

not repeat� �� � �� There are three ���splitters� bce��� ce��� e��� represented by terminal nodes

containing addresses X���W���W��� corresponding to positions ������ There are �ve ���splitters�

cbdee��� bdee� �� dee� �� ee� �� e��� Figure ��d	 shows the su�x tree after Step �a in which the ���

splitters are deleted � � contains nodes A�B� F � the parents of deleted terminal nodes� Marked

arcs are in bold face� Figure ��e	 shows the tree after adjusting reference pairs in Step �c� For

example� �X��� �� in Figure ��d	 is adjusted to �Y��� �� in Figure ��e	� where address Y�� is at

��

4

2 2 2

X W Y Z

2

X W Y Z

(a) (b)

3 3

6

4 4

66

ab ce bc dbc$ acb dee bc dbc$

B−tree(P) before B−tree(P) after

(Z.1,−)

(Z.1,−)(Z.4,−)
(Z.4,−)

Z.2 Y.1
Z.3

Z.1Z.4

X.1

(Z.1,−)

(Z.1,−)

(Z.4,−)

(Z.4,−)

Z.2 Y.1

Z.3

Z.4

X.1

X.2

(Z.1,1) (Z.2,−)

(W.2,−)
Z1

W1

X.3

(W.3,−)

W.2

W.3

(W.2,1)

12

2

3 3 2

2

(Y.1,2)

(Y.2,1)

(Y.1,−)

(Z.4,−)

(Z.4,−)

(Z.1,−)

(X.1,−)

(X.1,−)

(Y.2,1)

(Y.1,1)

1

3

10 7

11 8 2

5

6

4

9

12

A B

Y.2

Y.2

B C

D

(Y.2,1)

3 3

10

(X.2,2)

(W.2,−)

X.2

(Z.1,−)

(Z.1,−)
(Z.4,−)

(Z.4,−)

Z.2 Y.1
Z.3

W.1

W.2

Z.1Z.4

X.1

(Z.1,−)

(Z.1,−)(Z.4,−)
(Z.4,−)

Z.2 Y.1
Z.3

Z.1Z.4

X.1

(Z.4,−) (Z.1,−)

(X.1,−)

(Z.4,−) (Z.1,−)

(X.1,−)

2 8 5
9 6

3

4

710

A B

Y.2 Y.2

(X.2,2) (W.1,1)
(W.1,1)

(W.2,−)

(W.2,−)
1

(Z.1,−)

(Z.1,−)

(Z.4,−)

(Z.4,−)

Z.2 Y.1

Z.3

Z.4

X.1

X.2

(Z.1,1) (Z.2,−)

(W.2,−)
Z1

W1

X.3

(W.3,−)

W.2

W.3

(W.2,1)
(Y.2,1)

(Y.1,−)

(Z.4,−)

(X.1,−) (Y.1,1)

Y.2

B C

D

(Y.2,1)(W.1,−)
(W.1,−)

10

3 3

10

3 3

10

3

A B

3

E

A

E

A

F F F

F
F

(c) (d) (e)

(f) (g)

(X.3,−)

(X.3,−)

Figure �� Example ���

��

��distance from address Z��� Similarly� �W��� �� on �F�B� is adjusted to �Y��� ���

Figure ��f	 shows the tree after inserting the ���splitters in Step �a� From Figure ��b	� the �ve

���splitters cbdee��� bdee� �� dee� �� ee��� e�� start at addresses X��� X���W���W���W��� respectively�

and they are represented in Figure ��f	 by terminal nodes containing these addresses� In descending

an arc� the substring associated with the arc is retrieved using the reference pair on the arc� Since

new terminal nodes are inserted under B�C�D�E� � contains B�C�D�E� All arcs marked in

Step �b and �b are in bold face in Figure ��f	� Finally� Step �c traverses all marked arcs in the

postorder to compute the change of count�v� for ancestors v of nodes in � � �� Figure ��g	

shows the dynamic su�x tree after the update U ��

� Extension to Multiple Strings

We extend the discovery framework and algorithms to multiple strings�

�� The problems

Consider a set S � fS�� � � � � Skg of strings� Each string Si is identi�ed by an unique identi�er i and

is delimited by an unique symbol �i� Let jSj � jS�j � � � �� jSkj� In the case of multiple strings�

there are two ways to de�ne the support of sequential patterns� The ��support of substring � is

the ratio m�jSj� where m is the total number of occurrences of � in S�� � � � � Sk� The ��support of

substring � is the ratio n�k� where n is the number of strings in S in which � occurs� Let sup����

and sup���� denote the ��support and ��support of �� respectively� For i � �� �� the i�support of

sequential pattern � � � is supi����� and the i�con�dence of sequential pattern � � � is the

ratio supi�����supi���� With respect to the user�speci�ed minisup and miniconf � the i�discovery

problem is to �nd all i�interesting sequential patterns� i�e�� sequential patterns with i�support not

less than minisup and i�con�dence not less than miniconf � Given a set S of strings� the set of

i�interesting sequential patterns for S� and an update that either adds a new string to S or removes

an old string from S� the i�incremental discovery problem is to �nd the set of i�interesting sequential

patterns for the updated S� The problems de�ned in Section � are the ��discovery problem and

��incremental discovery problem for the special case of a single string�

��

�� The algorithms

The dynamic su�x tree and the incremental discovery algorithm can be extended to multiple strings

S � fS�� � � � � Skg� A straightforward extension is to maintain a separate dynamic su�x tree for

each string Si� This wastes storage because no path can be shared among di	erent strings� In

addition� it needs to traverse every su�x tree to determine the support of a substring� The same is

true of �nding all positions of a substring� Another approach is to represent all strings in a single

dynamic su�x tree� based on the generalized su�x tree �GST	
H��
 designed for a set of static

strings� In the following� we extend the GST to dynamic strings to solve the incremental discovery

problems for multiple strings�

In the case of multiple strings� the position of a character in a string consists of a string identi�er

and a position number within that string� First� the B�tree�P� in Section � is extended to multiple

strings fS�� � � � � Skg as follows� The concatenation �S��S� � � � kSk is stored at the terminal level of

the B�tree�P� for S� where i is the identi�er of Si� In an entry of the B�tree�P�� the c�value has the

form i�c� where i is the identi�er for Si and c is the number of characters in Si in the subtree under

the entry� When searching or updating the B�tree�P�� the accumulative sum and comparison of

c�values are performed only for those carrying the same identi�er i� The mapping from addresses

to positions returns both a string identi�er and a position number within the string� With these

modi�cations� the generalization of search and update algorithms of the B�tree�P� is routine�

Now we extend the dynamic su�x�tree T to multiple strings fS�� � � � � Skg� T is constructed by

inserting all su�xes of Si� i � �� � � � � k� Since Si has an unique delimiter �i� su�xes of di	erent Si

are represented by di	erent terminal nodes in T � All terminal nodes for su�xes in the same string

Si are chained up by the position chain to facilitate deletion of ��splitters� Note that each terminal

node is on exactly one position chain�

A string Si is deleted by deleting all su�xes of Si from T � To �nd the su�xes of Si� a B�tree

on string identi�ers i is maintained� For every identi�er i� there is a pointer headi at the terminal

level of the B�tree that points to the beginning of the position chain for Si� The su�xes of Si are

found by searching the B�tree using the search key i� entering the position chain pointed by headi�

and scanning the position chain� The end of the position chain is marked by a special symbol�

See Figure �� All su�xes of Si are deleted as ��splitters are in Section �� As for a single string

case� dangling reference pairs caused by deletion must be adjusted� A reference pair �addr� l� is

dangling if it refers to a character of the deleted Si� which can be found out by mapping address

��

1

2

n1
1

2

n2
nk

head

suffix tree for S

........

B−tree on string identifiers

position chain for S1

position chain for S2

Figure �� Locating su�xes of a string

addr to position through the generalized B�tree�P� for multiple strings� A new string Si is inserted

by inserting all its su�xes into the su�x tree and chaining up new terminal nodes in the position

chain for Si� An entry for identi�er i is inserted into the B�tree with pointer headi pointing to the

beginning of the new position chain�

The update of count�v� at a non�terminal node v depends the type of the incremental discovery

problem� For the ��incremental discovery problem� count�v� is equal to the number of terminal

nodes in subtree�v� and the update of count�v� is the same as in Section �� For the ��incremental

discovery problem� count�v� is equal to the number of distinct string identi�ers contained in terminal

nodes in subtree�v�� Hence� if subtree�v� contains a terminal node for the inserted or deleted string�

count�v� is increased or decreased by one� respectively� Therefore� count�v� can be updated by the

postorder traversal of arcs on splitters as in Section �� With these modi�cations� the algorithm in

Section � provides a solution to the incremental discovery problem for multiple strings�

� Evaluation

This section evaluates the performance and discovery power of the proposed framework and algo�

rithm� We report the study only for the case of a single string� We didn�t �nd much di	erence for

the case of multiple strings�

��

��� Cost analysis

We measure the cost of the update by the number of tree node access� This is reasonable because

trees are stored on the disk and accessing tree nodes is the dominating activity performed by the

algorithm� Let j�j denote the number of characters in substring �� Consider the update ��� to

���� From
M��
� the number of node access to delete a ��splitter is no more than � and the average

number of node access to insert a ��splitter is no more than �� Therefore� deletion and insertion of

splitters in Step �a and Step �a can be done in ��j���j� j���j� on average� where j���j� j���j is

equal to the number of ��splitters and ��splitters� In Steps �b��c��b��c� each node on splitters is

accessed at most four times�

Another part of the cost comes from accessing the B�tree�P�� In Step �c� adjusting the reference

pair on an arc requires to map an address to the corresponding position and map a position to

the corresponding address� Also� the update ��� to ��� requires to delete � and insert � in

the B�tree�P�� These costs depend on the height of the B�tree�P� and the length of the substring

updated� not on the data size� It is commonly known that the height of a balanced B�tree with a

large branching factor is very small� even for a very large database� Therefore� the total cost of an

update is the number of distinct nodes on splitters with a small constant factor� For a large string

and a local update� which is a scenario assumed for most dynamic environments� it is expected

that only a small number of su�xes �i�e�� paths� are a	ected compared to the whole su�x tree�

therefore� the incremental approach is more e�cient than the naive approach in most cases� as

veri�ed by the experiment below� Of course� if most characters of the string database are updated�

the incremental approach could be worse than the naive computation� However� such cases do not

occur often�

��� Experiments

One way to evaluate the e�ectiveness of a discovery algorithm is to apply it to a real data set and see what

it �nds� But sometimes it may be di�cult to judge the quality of the �ndings� without knowing a prior

what the algorithm is supposed to �nd� Thus� to evaluate our algorithms� we generated data sets that honor

several patterns modeling the weather change in Singapore� Figure �	a
 gives the set of characters encoding

the weather conditions on sky and temperature� Figure �	b
 gives the patterns used to generate the data

and Figure �	c
 is the graphical representation of these patterns in which a node is either a left side or a

right side of a pattern� For example� the three patterns with left side ab say that if the �rst and second days

are 	Sunny� High
 and 	Sunny� Normal
 in sequence� the third day will be 	Cloudy� High
� 	Sunny� High
�

��

Characters 	Sky� Temperature�

a 	Sunny�High

b 	Sunny�Normal

c 	Cloudy�High

d 	Cloudy�Normal

e 	Rainy�High

f 	Rainy�Normal

	a
 The encoding of weather conditions

a
�
� b ab

���
� f c

����
� d cd

���
� c cf

���
� b ef

���
� c

ab
���
� a bf

���
� a c

��	�
� f cd

���
� e e

�
� f fb

����
� a

ab
���
� c bf

���
� c cd

���
� a cf

���
� a ef

���
� a fb

����
� c

	b
 Patterns used to generate the string

0.7

0.4

0.3

0.35

0.3

0.7

1

0.1

0.2

0.2

1

0.2

0.8

0.65

0.45

0.7
0.4

0.55

ab

bf

c

fb

a

cf

cd e

ef

Figure �� �c� Diagram for patterns

��

	Rainy� Normal
 with con�dence ���� ��
 and ���� respectively� To generate a string� we apply patterns with

left sides matching the last few characters of the partial string to extend the string� The con�dence of a

pattern determines the probability of picking up the pattern� To start with� the initial string contains the

left side of a randomly chosen pattern�

Discovered patterns� We generated a string of length
���k� The dynamic su�x tree has �������

nodes and depth of ��� We choose minisup to be ���� Therefore� a node is �infrequent� if its count	v
 is

less than
��k� Figure �	a
 shows the dynamic su�x tree after pruning infrequent nodes� except the �rst

infrequent node each path 	to indicate no more frequent nodes deeper in the path
� Figure �	b
 shows the

patterns obtained from the pruned su�x tree� as described in Section
� of which three are among those used

to generate the data and three are new� In a sense� the new patterns are those that �follow� from the original

patterns� On the other hand� by reducing minisup to ��
��� the algorithm actually discovered all patterns

used to generate the data� as in Figure �	c
� 	Much more patterns were discovered for minisup � ��
�� and

we have to omit them due to the space limit�
 The discovered con�dences of these patterns are very close to

their original con�dences� What is more interesting is that the experiment also discovered the importance

of these patterns which was not originally known at all� For example� the small support of cd � e� e � f �

ef � a� and ef � c suggests that these patterns are insigni�cant and can be ignored� Of course� it is up to

the user to decide the interestingness of patterns by specifying or tuning minisup and miniconf �

Performance study� To verify the above cost analysis� we run the incremental method and the non�

incremental method on same sets of data and updates� We simulated the disk in the memory and compared

tree node accesses� which corresponds to disk accesses� for updating or constructing the su�x tree by the

two methods� The storage used by both methods is the same and is ignored in the comparison� The data

sets were generated using the above weather patterns with the size ranging from ��k to ����k at the interval

of ���k� For each data set� we considered four groups of updates� with each group containing �� updates of

the same size� The size of an update ��� to ��� is de�ned as j�j � j�j� The size of updates for the four

groups are �������������� respectively� An update ��� to ��� was generated by determining � and � in a

random manner� with j�j� j�j being equal to the speci�ed update size� We averaged the cost of performing

the �� updates in each update group� Figure ��	b
 shows the cost of the incremental method for di�erent

data size� The update cost is almost not a�ected by the scale up of the data size beyond ���k�

To compare with the non�incremental method� Figure ��	a
 shows the size of the su�x tree 	the vertical

axis
 created by the construction algorithm for di�erent data size� The size of the su�x tree grows linearly

with the data size� The cost of the non�incremental method is at least double the size of the su�x tree

because it needs to traverse the su�x tree to compute count	v
 for non�terminal nodes v� The comparison

of Figure ��	a
 and Figure ��	b
 shows a clear edge of the incremental method over the non�incremental

method�

��

2000000

404536
14120 607047 142225 396740 435331

262311 142225 195061

253087

158344 158899 79479

210307

172924 52099

115668 94639164314 88773
210307 52004

115670 94637

c
ef b d ab f

f d ab c f c f ab b ab c

b ab f d a c

a c

158899

�a� The su�x tree pruned by minisup � ���

pattern con�dence ��� support ��� original patterns

a � b ������ �	�
� yes

b � c ����	 �
��� no

c � f ���
� ����
 yes

c � fb ���		 ����� no

cf � b
���� ����� yes

f � b �
��� ����� no

�b� Discovered patterns having minisup � ���

pattern con�dence ��� support ���

ab � a
���� ��	�

ab � c �	�	� ��	

ab � f ����� ��	�

bf � a ����� ����

bf � c
	�		
��

c � d ����� ����

cd � a
���� ���

cd � c �	�		 ��	

cd � e ����� ����

cf � a �	�
�
���

e � f ������ ����

ef � a �	�	� ���	

ef � c ����
 ��
�

fb � a ����� ���

fb � c ���		 ����

�c� Discovered support and con�dence of original patterns

Figure �� Discovered patterns

��

�

�����

����

�����

�����

�����

�����

�����

�����

�����

������

� �� ��� ���
��
�� ��� ��� ��� ��� ���

nodes

data size 	unit������� characters

�

�

�

�

�

�

�

	a
 The size of the su�x tree

�

���

����

����

����

�����

�� ��� ���
��
�� ��� ��� ��� ��� ���

nodes
accessed

data size 	unit������� characters

update size �� �

� � � � � � �

update size �� �

� � � � � � �

update size ��� �

�
� � � � � �

update size ��� �

�

�
�

� � � �

	b
 The update cost of the dynamic su�x tree

Figure ��� Performance study

	 Conclusion

We proposed a framework of discovering sequential patterns from sequential data� Though suitable for

discovering and representing sequential patterns for static strings� the su�x tree is very expensive for dynamic

strings because of the sensitivity of the position to the update operation� The existing update algorithm �M���

failed to address this ine�ciency� We proposed a new representation of the su�x tree for dynamic strings�

called the dynamic su�x tree� in which substrings are referenced by addresses rather than positions� The

address reference restricts the impact of updates to a small part of the dynamic su�x tree� making e�cient

update of the dynamic su�x tree possible� Based on the dynamic su�x tree� we presented an algorithm

for incrementally discovering sequential patterns from large and dynamic sequential data� Experiments

showed that the proposed framework �nds important patterns and that the incremental method performs

��

substantially better than the non�incremental one for large and dynamic databases�

The following areas need further investigation in the future� 	a
 Handling numeric values such as tem�

perature� Discretization is a possible approach� but its e�ect on the discovery quality needs to be studied�

	b
 Discovering patterns from multi�dimensional data� with the �exibility of allowing the user to specify the

dimensions for discovery� For example� in one case the user may be interested in sky patterns� in another case

may be interested in temperature patterns� and in a third case in combined patterns of sky and temperature�

Simply performing discovery for individual dimensions does not work� nor does performing discovery for a

�xed set of dimensions� 	c
 Approximate patterns that allow some degree of errors or mismatches� 	d
 Dis�

covery within a user�speci�ed range of positions� 	e
 Discovery of periodic patterns such as �if the stock price

goes up on Monday� it will drop on the next day�� 	f
 Incremental discovery for these extensions� Solutions

to these problems can generally bene�t from the work in the areas of AI� combinatorial pattern matching�

time series� and spatial databases� textual databases� We believe that the discovery of sequential patterns

covers a major domain of knowledge discovery applications and that a viable solution to this problem is

crucial to turning huge data stores into accessible and actionable knowledge�

References

�ALSS��� R� Agrawal� K�I� Lin� H�S� Sawhney� K� Shim� � Fast similarity search in the presence of noise�

scaling� and translation in time�series databases�� VLDB ����� �������

�AS��� R� Agrawal and R� Srikant� �Mining sequential patterns�� IEEE Conference on Data Engineering

����� ����

�B�
� R� Baeza�Yates� �Text retrieval� theory and practice�� Algorithms� software� architecture� in�

formation processing �
� Vol� �� �������

�BG�
� R� Baeza�Yates and G�H� Gonnet� �A new approach to text searching�� CACM� Vol� ��� No� ���

Oct� ���
� ����

�BM��� R�S� Boyer and J�S� Moore� �A fast string searching algorithm�� CACM
�� ��� Oct� �����

��
���

�C��� A� L� Cobbs� �Fast approximate matching using su�x trees�� in proc� Combinatorial pattern

matching ����� Lecture Notes in Computer Science ���� ������ Springer�Verlag

�F��� C� Faloutsos� �Access methods for text�� ACM computing Surveys� ��� ����� �����

�FSS��� U� Fayyad� G�P� Shapiro� P� Smyth� �Knowledge discovery and data mining� towards a unifying

framework�� KDD ����� �
���

�G��� A� Guttman� �R�trees� A dynamic index structure for spatial searching�� ACM SIGMOD �����

�����

��

�GY��� G�H� Gonnet and R� Baeza�Yates� Handbook of algorithms and data structures in Pascal and

C� Second Edition� ����

�H�
� L�C�K� Hui� �Color set size problem with applications to string matching�� in A� Apostolico�

M� Crochemore� Z� Galil� and U� Manber� editors� Combinatorial Patterns Matching� Lecture

Notes in Computer Science ����
���
��� Springer�Verlag� ���

�KMP��� D�E� Knuth� J�H� Morris� V�R� Pratt� �Fast pattern matching in strings�� SIAM J� Comput� ��

June ����� �
�����

�LV��� G�M� Landau and U� Vishkin� �Fast parallel and serial approximate string matching�� Journal

of Algorithms� Vol� ��� No�
� �������� ����

�M��� E�M� McCreight� �A space�economical su�x tree construction algorithm�� JACM� Vol�
�� No�

� April �����
�
�
�

�MD��� T�G� Dietterich and R�S� Michalski� �Discovering patterns in strings of events�� Arti�cial Intel�

ligence� Vol�
�� ����
�
� ����

�S��� G�A� Stephen� �String searching algorithms�� Lectures Notes Series on Computing� Vol� �� �����

World Scienti�c

�SRF��� T� Sellis� N� Roussopoulos� and C� Faloutsos� �The R��tree� A dynamic index for multi�

dimensional objects�� VLDB ����� �������

�TMS��� A� Tomasic� H� Garcia�Molina� and K� Shoens� �Incremental updates of inverted lists for text

document retrievals�� ACM SIGMOD� �����

�U�
� E� Ukkonen� �Constructing su�x�trees on�line in linear time�� Algorithms� Software� Architec�

ture� Information Processing �
� Vol� �� ������
� Elsevier� Amsterdam

�U��� E� Ukkonen� �Approximate matching over su�x trees�� in proc� Combinatorial pattern match�

ing� Vol� ��

��
�
� Springer�Verlag� June ����

�W��� P� Weiner� �Linear pattern matching algorithms�� Conf� Record� IEEE ��th Annual Symposium

on Switching and Automata Theory ����� ����

�W���� J�T� L� Wang� G�W� Chirn� T�G� Marr� B� Shapiro� D� Shasha� and K� Zhang� �Combinatorial

pattern discovery for scienti�c data� some preliminary results�� ACM SIGMOD ����� �����
�

�WM�
� S� Wu and U� Manber� �Fast text searching allowing errors�� CACM� Vol� ��� No� ��� Oct� ���
�

�����

�ZMD��� J� Zobel� A� Mo�at� and R� Sacks�Davis� �Searching large lexicons for partially speci�ed terms

using compressed inverted �les�� VLDB �����
������

��

