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Abstract

Most daily and scientific data are sequential in nature. Discovering important patterns from
such data can benefit the user and scientist by predicting coming activities, interpreting recurring
phenomena, extracting outstanding similarities and differences for close attention, compressing
data, and detecting intrusion. We consider the following incremental discovery problem for
large and dynamic sequential data. Suppose that patterns were previously discovered and ma-
terialized. An update is made to the sequential database. An incremental discovery will take
advantage of discovered patterns and compute only the change by accessing the affected part of
the database and data structures. In addition to patterns, the statistics and position informa-
tion of patterns need to be updated to allow further analysis and processing on patterns. We
present an efficient algorithm for the incremental discovery problem. The algorithm is applied to
sequential data that honors several sequential patterns modeling weather changes in Singapore.
The algorithm finds what it is supposed to find. Experiments show that for small updates and

large databases, the incremental discovery algorithm runs in time independent of the data size.
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1 Introduction

In the daily and scientific life, sequential data, called strings below, are available and used ev-

erywhere.

Examples are text, music notes, weather data, satellite data streams, stock prices,

experiment runs, DNA sequences, histories of medical records, log files, etc. Given a (potentially

large) string S, we are interested in sequential patterns of the form a — 3, where a, 8, af are



substrings inside S, such that the frequency of «f is not less than some minimum support and
the probability that « is immediately followed by ( is not less than some minimum confidence.
Discovering sequential patterns can benefit the user or scientist by predicting coming activities,
interpreting recurring phenomena, extracting outstanding similarities and differences for close at-
tention, compressing data, detecting intrusion. For example, by discovering the common login
patterns of the authorized user, a security system may be able to detect an foreign intrusion when
login activities in a session are drastically different from what is predicted by the patterns. Since
the underlying database is usually large, dealing with changing data and patterns is a challenge
for research and application in knowledge discovery and data mining, and incremental methods for

updating the patterns are possible solutions [F'SS96].

The problem. We consider the following incremental discovery problem. Suppose that sequen-
tial patterns were previously discovered and materialized. An update is made to the underlying
database. For a simple update, it is expected that most patterns and data structures remain un-
changed and recomputing all patterns is unnecessarily expensive, especially for large and dynamic
databases. The incremental discovery will take advantage of discovered patterns and compute only
the change by accessing the affected part of the database and data structures. In addition to pat-
terns, the incremental discovery also maintains the statistics and position information of patterns
to allow further analysis and processing on patterns. Maintaining the position information is also
necessary to locate occurrences of a substring for performing updates on them. In the discovery
process, the user may dynamically refine his/her interestingness level by trying several minimum
support and confidence. A viable incremental solution should allow tuning of patterns according

to different minimum support and confidence, without recomputing patterns.

The contribution. This paper presents an efficient algorithm for the incremental discovery
problem. We allow general updates at any specified position of the string database, not necessarily
constrained to the two ends of the string. The suffix tree indexing widely used in the area of
combinatorial pattern matching [B92, GY91, S94] does not work for such dynamic strings. The
difficulty lies in maintaining the position information that are sensitive to general updates. We
propose a new representation of the suffix tree, called the dynamic suffiz tree, to index dynamic
strings. The string database is stored on disks using a structure that supports efficient updates and
mappings between positions and disk addresses. The dynamic sufflix tree maintains disk addresses
rather than positions of substrings, thus eliminating the sensitivity to updates. We present an

algorithm for the incremental discovery problem using the dynamic suffix tree. The discovery



framework and incremental discovery algorithm are tested on the sequential data that honors several
sequential patterns modeling weather changes in Singapore. The algorithm has found what it is
supposed to find. Experiments show that for small updates and large databases, the incremental

discovery algorithm runs in time independent of the data size.

Discovering sequential patterns is related to finding all occurrences of a substring in a string
database, called the string searching problem in the area of combinatorial pattern matching (see
[B92, GY91, S94], e.g., for a survey). The main difference is that the string searching problem finds
occurrences of a particular substring, whereas the discovery problem finds all substrings of some
significant statistics. In similarity, both problems require some form of indexing on substrings. Two
famous algorithms for the string searching problem are the Boyer-Moore algorithm [BM77] and the
Knuth Morris Pratt algorithm [KMP77]. Extensions for this problem have dealt with approximate
matchings, a pattern with “wild cards”or a regular expression, multiple patterns searching, and
multi-dimensional searching. See [B92, BG92, WM92] for a partial list. For most work in this
area, indexing or preprocessing was primarily used to speed up subsequent searches. The suffix
tree indexing was used in [M76] to speed up updates for dynamic strings. Since [M76] adopted
a position numbering scheme in which a position number never changes once assigned, like the
Dewey-Decimal library access code, generated position numbers do not correspond to the logical
ordering of characters and are practically useless. That position numbering scheme also suffered
from running out of position numbers after some number of updates. More seriously, [M76] did
not address the problem of dangling references to deleted characters in the suffix tree. See Section
3 for elaboration. The problem of discovering sequential patterns was an active research area in
Al (see, for example, [MD85]) and was recently studied in the database area (see, for example,
[ALSS95, AS95, W*94]). However, the discovery algorithms in these works have to be rerun if the

data is updated.

Section 2 defines the discovery problem of sequential patterns and the incremental version of the
problem. The suffix tree is introduced as a representation of sequential patterns. Section 3 briefly
describes the construction and update algorithms of the suffix tree in the literature, highlighting the
inability of the suffix tree for handling dynamic strings. Section 4 proposes the dynamic suffiz tree
for dynamic strings. Section 5 presents an incremental discovery algorithm based on the dynamic
suffix tree. Section 6 extends the discovery framework and incremental discovery algorithm to
multiple strings. Section 7 evaluates the proposed framework and algorithms. Section 8 remarks

on future work and concludes the paper.



2 The Discovery Problem

Sequential data. A string S is a sequence of characters written abed ..., where letters a,b, ¢, ...
represent characters. The first character is at position 1, the second at position 2, and so on. The
characters in a string may be English characters in a text file, DNA base pairs, lines or source code,
angles between edges in polygons, machines or machine parts in a production schedule, music notes
and tempo in a musical score, and so forth. For example, a daily weather report can be represented
by a string S in which characters are daily weather of type (sky, temporature). A substring of S is
a sequence of characters in S that are consecutive in position. The length of substring «, denoted
||, is the number of characters in «.

Discovery of sequential patterns. The support of substring « is the ratio of the number
of positions in S at which « starts over |S|. sup(a) denotes the support of . Let a and [ be
non-empty substrings of S such that the concatenation a3 is a substring of S. A sequential pattern
or simply pattern in S has the form o — 8. The support of o — § is sup(af) and the confidence
of a« — fis sup(af)/sup(a). For the user-specified minimum support minisup and minimum
confidence minicon f, a pattern is interesting if its support is at least menisup and its confidence is
at least minicon f. The discovery problem for string S finds all interesting patterns in 5. Suppose
that all interesting patterns in S were previously discovered and stored. Assume that S = a8y is
updated to ady. With the update and old patterns as the input, the incremental discovery finds
all interesting patterns in the updated S. We will extend these definitions to multiple strings in

Section 6.

Example 2.1 Consider string S = abcebedbe, where each letter represents a character. sup(bc) =
3/|S| and sup(bedbe) = 1/|S|, so the support of bc — dbc is 1/]S| and the confidence of be — dbe
is 1/3. The support of b — ¢ is 3/|S| and the confidence of b — ¢ is 1. If minisup = 2/|S| and
miniconf = 1/3, b — ¢ is interesting, but bc — dbc is not. In fact, b — c¢ is the only interesting

pattern in S for such minisup and miniconf.

The discovery problem can be decomposed into two subproblems:

1. Find all substrings a of S such that sup(«) is at least minisup. Such substrings are called

[frequent substrings.

2. Use the frequent substrings to generate patterns. Here is a straightforward algorithm for

this task. For every frequent substring f and every non-empty proper prefix « of 3, output



pattern o« — 3 — v if sup(f)/sup(«) is at least minicon f, where 3 — «v is obtained by deleting

the prefix « from g.

Essentially, the discovery problem requires to index substrings together with their support and
position information. Let us review several existing techniques for serving this purpose.

The R-tree [G84] and R+-tree [SRF8T7] support operations on multi-dimensional data. They
can be used for strings by treating the position as one dimension and substrings as the second
dimension. However, since the number of possible substrings in a string of length n can be O(n?)
and a substring can be scattered all over the string, the performance can be very bad. The
technique of inverted lists [F85, TMS94, ZMD93] has been used to index a fixed set of “words”
in a text database. For general-purpose strings for which the data processing unit is substrings,
there is no clear cut of “words”. Taking all possible substrings as “words” leads to the blowup of
O(n?) words for a string of length n. The suffix tree indexing [C95, M76, LV89, U92, U93, W73]
was previously used to speed up subsequent search of substrings. The update of the suffix tree
was considered in [M76] for dynamic strings, by assuming that a position number never changes
once assigned. Such position numbers do not correspond to the logical ordering of characters and
are practically useless. However, several properties of the suffix tree is appealing for the discovery
problem: the construction of the suffix tree takes linear time and linear space; the frequency and
position information of substrings are readily available in the suffix tree; the suffix tree serves
a natural and compact representation of sequential patterns. In this paper, we adopt the suffix
tree for indexing substrings, with the focus on updating the suffix tree for solving the incremental
discovery problem. The following briefly introduces the sufflix tree.

The suffix tree [LV89, M76, S94, U92]. Assume that no suffix of S is a prefix of a different
suffix of S. This can be satisfied by appending the unique delimiter $ at the right extreme of
S. S can be mapped to a tree T in which root-to-leaf paths are suflixes of S and terminal nodes
represent uniquely starting positions of suffixes. Formally, the suffiz tree T for S satisfies the

following properties:

T1 each arc of T represents a non-empty substring of 5,
T2 each non-terminal node of T, except the root, must have at least two offspring arcs,

T3 substrings represented by offspring arcs of the same node must begin with different characters.

T is a multiway Patrica tree and contains at most |.S| non-terminal nodes.
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Figure 1: Construction of suffix trees

Example 2.2 Consider the string S = abcebedbe$ in Frample 2.1. We can build the suffix tree T
of S by inserting suffizes into T one at a time, starting from the longest suffiz abcebedbc$. In Figure
1, (a) shows the tree after the first four suffizes are inserted. Since none of these suffizes shares a
prefix, they all go to different branches. A square box represents a terminal node and contains the
starting position of the corresponding suffiz. (b) shows the tree after the suffiz bedbe$ is inserted.
Since bedbe$ shares prefix be with beebedbe$, the arc for beebedbe$ is split into two, one for be and
one for ebedbe$, so that T3 is satisfied. (c) is the tree after suffiz cdbc$ is inserted, in which the
arc for cebedbce$ is split. (d) is the suffiz tree after all suffizves of S are inserted.

In Figure 1(d), for any substring o of S, by following the path from the root that spells out «
we can find the subtree containing all starting positions of « in terminal nodes. For example, by
following the path that spells out be, i.e., arc (A, B) in this case, we find the root B of the subtree
containing starting positions 2,5,8 of be in its terminal nodes. The number of such terminal nodes
can be stored at B to facilitate counting the occurrence of be. Because of property T3, the path that
spells out a substring is unique. Note that the implementation of the suffix tree stores the starting

position and length of the substring associated with an arc, not the substring itself.



Let v be a non-terminal node in the suffix tree T'. subtree(v) denotes the subtree rooted at v.
string(v) denotes the substring spelled out by the path from the root to v. count(v) denotes the
number of terminal nodes within subtree(v). The locus of substring «, denoted locus(«), is the first
node in T encountered after « is spelled out by following a path from the root. All starting positions
of « are found in the terminal nodes in subtree(locus(a)). The number of starting positions of «
in S is given by count(locus(a)). Therefore, sup(a) = count(locus(a))/|S|. For example, in Figure
1(d), locus(bc) = B and locus(cd) is terminal node 6. The starting positions of be are found in the
terminal nodes within subtree(B), i.e., terminal nodes 2,5,8. The starting positions of ¢d are found

in the terminal nodes within subtree(6), that is, node 6.

From the suffix tree T" for S with count(v) stored at every non-terminal node v, we can extract
all interesting sequential patterns from 7. For every path from the root that spells out substring
0 and for every non-empty proper prefix « of 3, if

count(locus(3))/]S| > minisup and

count(locus([3))/count(locus(a)) > miniconf,

we output pattern o — 3 — o together with the support
count(locus(a))/|S|

and the confidence

count(locus(3))/count(locus(a)),
where 3 — « is obtained by deleting the prefix o from . For a fixed minisup, only the upper part
of T' consisting of all nodes v such that count(v)/|S| > minisup is of interest. However, there are
good reasons for materializing the whole suffix tree. As the user tunes mintsup, the part of T of
interest will shrink or grow, and by materializing the suffix tree the user can tune the interestingness
level of patterns without suffering from the delay caused by reconstructing the suffix tree. Most

importantly, the suffix tree is materialized for the incremental discovery of patterns.

3 Existing Suffix Tree Algorithms

We review existing suffix tree algorithms and point out their pitfalls for dynamic strings. This
motivates a modification of the suffix tree for solving the incremental discovery problem in the next

section.



3.1 Construction

The naive construction of the suffix tree by descending a path from the root for each suffix, as in
Example 2.2, immediately leads to the quadratic time complexity. By exploring the relationship
between every two consecutive suffixes, the construction can be reduced to a linear time [M76,
W73, U92]. The following is the construction in [M76]. ([M76] is chosen because it considered the
update problem of the suffix tree and others didn’t.) Consider two non-terminal nodes u and wv.
There is a suffiz-link from u to w if u is the root; otherwise, there is a suffiz-link from w» to v if
string(u) = za and string(v) = «, respectively, where z is a character and « is a substring. Let
suf; denote the suffix of S beginning at position ¢. If z« is a prefix of suf;, then « is a prefix
of suf;y1. Therefore, after inserting suf; into the suffix tree, the suffix-link at node u points to a

place to insert the rest of suf;y1, i.e., the part of suf;1; without the prefix «.

Let T; denote the suffix tree after sufy, ..., suf; are inserted. The suffix tree for S is constructed
in the order 11,75, ..., where T;;1 is obtained by inserting suf;41 into 7T;. Initially, 7 contains
only the root. Consider inserting suf;y1 into T;. On the path for suf;, let u denote the lowest
non-terminal node containing a suffix-link and let w denote the lowest non-terminal node. « and w
were visited when inserting suf;. Assume that string(u) = za and string(w) = zaf, respectively,
where z is a character and « and § are substrings of S. Suppose that every non-terminal node
in T;, except possibly w, contains a suffix-link. This property initially holds for Ty and will be

inductively established for T;4.

To insert suf;y1, we follow the short-cut provided by the suffix-link at u. From the definition,
for the node v pointed by the suffix-link, string(v) is a prefix of suf;11. Starting from v, we descend
the tree along a sequence of arcs that spells out 5. If 3 does not end exactly at a node, the last
arc descended is split and a new node d is inserted at the end of 3. The suffix-link of w is assigned
to point to d if it is not assigned yet. This step is called rescanningin [M76], which establishes the
suffix-link at w. The search for the rest of suf;41 (i.e., the part without the prefix a3) continues
from d deeper into the tree. The search eventually “falls out of the tree” because suf;+1 is not a
prefix of any suffix in the tree. If the search does not fall out exactly at a node, the last searched
arc is split and a new non-terminal node is inserted, which, by the assumption on 7}, is the only
non-terminal node containing no suffix-link. Finally, a new terminal node is inserted for the rest of

sufiy1 that falls out of the tree. This step is called scanningin [M76].

Example 3.1 Consider Figure 1(d), where the suffiz-link at the root points to itself and the suffiz-



link at B points to C. After inserting suffiz sufs, the suffiz-link at B provides a short-cut to insert
the part of sufg without prefix c, i.e., $. In this case, u = w =B, v = b, « = ¢, and f = (). Since
3 = 0, no new non-terminal node is created during rescanning. Also, since sufy falls out of the
tree exactly at node C', no new non-terminal node is created during scanning. For a suffix tree, the

short-cut provided by suffiz links will avoid a long traversing from the root.

The detail of the above construction can be found in [M76].

3.2 Update

The update of the suffix tree for dynamic strings was considered in [M76]. Assume that the suffix
tree T' for S was materialized and that S = af¥y is updated to ady, where «, 3, 8, v are substrings.
To reflect the update in 7, [M76] determines which suffixes (i.e., paths) in T are affected and
updates such suffixes. On one hand, if a suffix is too short to contain any part of 3, the suffix is
not affected. On the other hand, if a suffix is so long that 3 is entirely buried in the terminal arc
of the suffix, the change of the suffix is reflected by the update in string S. Therefore, for a suffix
to be affected, it must contain part of g but does not properly contain 3+ in its terminal arc. Such

suffixes were called f-splitters in [M76] and are defined formally below.

Let o be the longest suffix of « that occurs in at least two different positions in S = afy.
With respect to the update from afy to ad~y, [-splitters are suffixes of the form ey, where ¢ is a
non-empty suffix of a*3. See Figure 2 for an illustration. Consider a suflix suf;. If suf; is longer
than the longest g-splitter o3y, su f; will properly contain 8+ in its terminal arc because its prefix
proceeding 3+ does not repeat in S. From the above discussion, su f; is not affected by the update.
If suf; is shorter than the shortest 3-splitter 27, where x is a single character, su f; does not contain
any part of 3, thus, is not affected either. Therefore, f-splitters are the only suffixes affected by the
update. In testing, suf; is a S-splitter if and only if suf; starts on the left of ~, but the terminal
arc of suf; does not properly contain f+. The test requires to compare the starting position of
su f; with that of v and compare the position stored on the terminal arc for suf; with the starting
position of . The starting positions of v and #v are known from the update specification. The
other position information needed for the test can be found in the terminal node and terminal arc
for suf;. Therefore, by visiting the terminal node and terminal arc for suffix suf;, we can determine

whether suf; is a g-splitter.

The strategy of replacing 8 with ¢ suggested by [M76] is to delete all §-splitters from 7" and
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Figure 3: Example 3.2

insert into T all §-splitters of the form w+, where w is a non-empty suffix of o*§. Intuitively, the
d-splitters are in lieu of the g-splitters accounting for the replacement of 5 with §. To find all
O-splitters, it is assumed that terminal nodes are double chained up in the order of the position.
Let us call this chain the position chain. The deletion proceeds from the shortest F-splitter to the
longest 3-splitter. The terminal node for the shortest g-splitter is the node containing position
number k — 1, where k is the starting position of 7. Deleting a S-splitter corresponds to deleting
its terminal arc and possibly merging two arcs. See Example 3.2 below. Inserting d-splitters is the
same as inserting suffixes in the construction algorithm, proceeding from the longest §-splitter to
the shortest. The longest §-splitter a*d+v is obtained from the longest G-splitter o3y by replacing
G with 6.

Example 3.2 Suppose we replace 3 = eb with 6 = fgh in S = abcebedbe$. Then o = abe and
v = cdbe$. Initially, the suffiz tree T' for S is given in Figure 1(d). The implementation of the

suffiz tree stores only the starting position and length of the substring associated with an arc, not

10



the substring itself. The position chain is omitted here because it can be derived from the position
in terminal nodes. The longest repeating suffiz of o is o = be. There are four B-splitters: beeby,
ceby, eby, by. These 3-splitters are found and deleted as follows. First, we find the terminal node
for the shortest 3-splitter at the node containing position number 5, i.e., one position to the left of
the starting position of v. We follow the position chain towards lower position numbers. Since the
terminal arcs for positions 5, 4, 3, 2 do not properly contain B, these terminal nodes represent
B-splitters and are deleted. By the time [-splitter beeby is deleted, as in Figure 3(a), node B is left
with only one offspring arc, violating property T2. So the two arcs on the path are merged into one
arc, as in Figure 3(b).

The longest §-splitter is obtained from the longest (G-splitter by replacing 8 with &, that is,
befghy. The five §-splitters befghy, cfghy, fghy, ghy, hy are inserted into the tree in Figure
3(b), proceeding from the longest to the shortest. The tree after inserting all §-splitters is given in
Figure 3(c). The substring associated with terminal arc (A, 1) gets updated by default when eb is
replaced with fgh in the string S. The reader may note that there are two terminal nodes in Figure

3(c) containing position number 6. We will discuss this problem shortly.

The suffix tree was well studied in the literature. We omit the formal description of its algo-
rithms, which can be found in [B92, M76, S94, U92, W73]. Our concern is whether the suffix tree
can be applied to solve the incremental discovery problem and what modifications and extensions

are needed.

3.3 The pitfalls to handle updates

Unfortunately, the above update algorithm does not work appropriately. First, [M76] adopted
a position numbering scheme in which a position number never changes once assigned. That
positioning does not correspond to the logical ordering of characters as perceived by the user,
therefore, are practically useless. Second, [M76] failed to deal with dangling references to deleted
positions in the suffix tree. For example, in Figure 1(d) after deleting character ¢ at position 3,
the positions on arcs (A, B) and (A, C) will refer to unexpected places, which clearly posts a big
problem for later insertion of suffixes. On the other hand, maintaining the logical position in the
suffix tree is a very expensive operation. In Example 3.2, replacing eb with fgh requires to change
positions 6,7,8,9 to positions 7,8,9,10. Making such changes in the suffix tree requires to access

many nodes and arcs. A similar problem exists if substrings instead of positions are stored in

11



the suffix tree. Finally, the above update algorithm does not address the change of support of
substrings, as required by the discovery problem. Therefore, the sufflix tree in the literature is not
suitable for indexing dynamic strings. Despite these problems, however, the idea of updating the
suffix tree by deleting G-splitters and inserting §-splitters is appealing because it avoids to rebuild
the whole tree. The dynamic suffix tree to be proposed below will borrow this idea and take care

of the above mentioned problems.

4 The Dynamic Suffix Tree

We assume that large string S is stored on a number of disk pages. In such a disk-based environment,
the position does not provide sufficient information to find characters because consecutive characters
may not be stored on consecutive disk pages. Instead, characters are accessed through their disk
addresses. The disk address of a character consists of a disk page number and an offset of the
character within the disk page. Unlike the position, insertion or deletion affects only the address
of characters in the disk pages containing inserted or deleted characters; the address of untouched
pages remains unchanged. This motivates a new representation of the suffix tree for dynamic
strings, called the dynamic suffix tree, in which disk addresses rather than positions are stored. Let

us consider the data structures and operations needed for the dynamic suffix tree.

4.1 The B-tree(P)

First, we need a disk-based structure to store the string .S. The storage structure must provide
efficient mappings between the position and the address. The mapping from addresses to positions
is needed to find the position of patterns, and the mapping from positions to addresses is needed
to perform updates on string S at a specified position. We propose a variation of the B-tree, called
the B-tree on position or simply B-tree(P), for storing S.

The B-tree(P). An entry in a non-terminal node of the B-tree(P) has the form < ¢, Pr >,
where Pr is the pointer to a child node, and ¢, called a c-value, is the number of characters indexed
in the subtree under this entry. In the B-tree(P) of degree (m, M), the following invariants hold for

a non-terminal node v containing entries < ¢y, Prqy >,..., < ¢, Prp, >:

P1 for 1 < i< p, exactly ¢; characters are indexed in the subtree under branch Pr;,

P2 if v is the root, p > 2; otherwise, m < p < M.

12
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Figure 4: A B-tree(P) for string S = abede fghijkimnopqrstuv$

P3 all terminal nodes must be at the same level of the tree and characters are contained in

terminal nodes only.

A child node also has a pointer to its parent node, which is needed for mapping addresses to

positions explained later.

Example 4.1 Consider string S = abcedefghijklmnopgrstuv$, where each letier represents a
character. Figure | shows a B-tree(P) of degree (2,4) for S. The terminal level of the tree contains
all characters. The c-value 6 in node C' indicates that under the first branch of C' there are exactly
6 characters. It can be verified that every c-value correctly gives the number of characters in the

subtree under the entry containing the c-value.

Mapping positions to addresses. Searching for the address corresponding to position p is
done by descending the B-tree(P) along a root-to-leaf path uy, ug, ..., ux. As a branch is descended,
c-values on the left of that branch in the current node are accumulated. The difference between
p and the current accumulative sum determines which branch to descend at the next level. On
reaching a terminal node wug, the difference between p and the accumulative sum gives the offset
within wu of the character at position p.

For example, suppose we want to find character ¢ at position 9 in string S in Figure 4. Initially,
the accumulative sum X = 0. The difference 9 — X suggests that the left branch of A be descended,
with X unchanged. At node B, the difference 9 — X = 9 is more than the first c-value, 7, but less
than the sum of the first and second c-values, so the second branch is descended and X is changed

to 7. At node F|, since the difference 9 — X = 2 is less than the first c-value, the first branch is

13



descended and X = 7 remains unchanged. Then the address corresponding to position 9 is given

by node K and offset 9 — X = 2.

Mapping addresses to positions. To find the position corresponding to the address given by
terminal node u and offset 7, we traverse from node u towards the root and accumulate all ¢-values
on the left of the traversed branch, in a way similar to the descending of the B-tree(P) above. After

reaching the root, the accumulative sum gives the position searched.

For example, suppose we want to find the position of the second character in terminal node .J
in Figure 4, i.e., character g. Initially, the accumulative sum X is set to 2, that is, the given offset
within J. We visit the parent D and add to X the ¢-values in D on the left of the branch just
traversed upwards, giving X = 7. Next, we visit parent B, and X = 7 remains unchanged because
the branch traversed is left most. Finally, on reaching the root, we have X = 7. Therefore, the

position of the second character in terminal node J is 7.

Updating the B-tree(P). Inserting and deleting a substring at a specified position is per-
formed in two phases. The search phase finds the terminal nodes to insert or delete the substring,
and the propagation phase inserts or deletes entries for nodes inserted or deleted at lower levels.
The paths descended in the search phase are saved on the stack and used by the propagation
phase. Insertion at one level may cause more than one node to be created, and entries in a node
may be split and redistributed to satisfy property P2. For a deletion specified by starting and
ending positions, the search phase looks for the left and right limits of the deletion by descending
the B-tree(P) along two paths. All characters at the terminal level between the two limits are
deleted. Underflow nodes are merged and entires may be redistributed to satisfy property P2. In
the propagation phase, the c-value at an entry is computed by summing all ¢-values in the child
node under the entry, if the child is non-terminal, or by the number of characters in the child node
under the entry, if the child is terminal. Figure 5 illustrates affected nodes for a general update,
where the shaded area denotes the nodes that are inserted or deleted at one level. Importantly, for
both insertion and deletion, addresses of characters contained in untouched terminal nodes are not
affected, though their positions may have been changed.

We like to mention that the B-tree(P) has all the nice properties of the B-tree, i.e., the balanced
height, a large branching factor, localizing the search to a single path, etc. Unlike the B-tree,
however, a number of nodes could be inserted or deleted at a level of the B-tree(P), depending

on the size of the substring inserted or deleted, but not on the size of the database. We omit
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Figure 5: Nodes affected by insertion and deletion

the precise description of these operations on the B-tree(P). We hope that informal discussion and

examples can better bring out the working idea.

4.2 The dynamic suffix tree

We consider how to modify the suffix tree for indexing dynamic string .S stored in the B-tree(P).
Let p.t denote the address of the character at the offset ¢ on disk page p. Instead of storing starting
and ending positions of substrings in the suffix tree, we store a reference pair of the form (addr,!)
on each arc, where addr and [ are the starting address and length of the substring associated with
the arc. We call such a suffix tree the dynamic suffiz tree. The dynamic suffix tree for the suffix
tree in Figure 1(d) is shown in Figure 6(c), with the B-tree(P) in Figure 6(a). For convenience,
the starting positions of suffixes are given next to terminal nodes. The length [ on a terminal arc
is not used because the substring on a terminal arc always extends to the end of the string. To
apply the dynamic suffix tree to solve the incremental discovery problem, the problems mentioned

in subsection 3.3 must be addressed. This is the topic of the next section.

5 The Incremental Discovery Algorithm

Assume that string S is updated from a7y to advy. The update of S is performed in the B-tree(P)
by deleting # and inserting 4, as in Section 4. We focus on the update of the dynamic suffix tree
T for S. Let pos(addr) denote the position corresponding to the address addr.

It is important that the change in the dynamic suffix tree is limited to only affected paths, that

is, [(-splitters and §-splitters. The dynamic suffix tree is updated in two phases, corresponding
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to deleting (G-splitters and inserting é-splitters in Section 3. The first phase deletes all G-splitters
and adjusts all reference pairs (addr,l) such that the position range [pos(addr), pos(addr)+ 1 — 1]
intersets with the position range of 3. If there is an intersection, (addr,l) is referring to deleted
characters and is called dangling. A dangling reference pair must be replaced with a non-dangling
reference pair that represents the same substring. The second phase inserts é-splitters and adjusts
the support affected by the deletion of G-splitters and insertion of d-splitters. Since inserting
d-splitters needs to access substrings associated with arcs, references pairs must be replaced by
non-dangling reference pairs in the first phase so that the tree is free of dangling references. The
big question is where to find all dangling reference pairs in the suffix tree. The following theorem

gives the answer.

Theorem 5.1 Suppose that S is updated from afy to ad~y. If the reference pair on a non-terminal

arc (u,v) is dangling, (u,v) is on a f-splitter with respect to this update.

From Theorem 5.1, we can find all dangling reference pairs on g-splitters, or equivalently, we can
adjust dangling reference pairs by accessing only ancestor arcs of deleted terminal nodes. To prove
Theorem 5.1, we say that references pairs (addry,ly), ..., (addrg, ) along a path in the dynamic
suffix tree are continuous if the last position referred to by (addr;,l;) proceeds immediately the first
position referred to by (addr;41,l;4+1), that is, pos(addr;) + l; = pos(addri;q1), for 1 <i < k.

Proof of Theorem 5.1: Consider the suflix tree for a3y constructed by inserting all suffixes of
af3y. For any non-terminal arc (z,y), there is at least one arc (y, z) from y such that the reference
pairs on (z,y) and (y, z) are continuous. In fact, we can choose the arc (y,z) such that (z,y)
and (y, z) are produced by splitting a single arc during the construction of the suffix tree. Thus,
there is a path (2,y),..., (2, y') in the suffix tree to a terminal node, on which all reference pairs
are continuous. Now we consider the arc (u,v) in the theorem. Let (u,v),..., (u,v') be the path
to a terminal node on which all reference pairs are continuous. Since the reference pair on (u,v)
refers to a deleted character in [, the terminal arc (u/, v') does not properly contain 87, otherwise,
the reference pairs on path (w,v),...,(u,v’) are not continuous. In other words, the terminal
node v’ represents a (-splitter containing arc (u,v). Then the theorem follows because the update

algorithm below preserves the continuity of reference pairs required. O

The incremental discovery algorithm for string update from a8y to ady. It is assumed

that the dynamic suffix tree for string a7 is stored.

Phase 1.
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Step la. Delete all -splitters, as in Section 3.2. Let A~ contain the parents of deleted terminal
nodes. (If deleting a f-splitter causes two arcs (u, ) and (z,v) to be merged into one arc

(u,v), A~ contains u instead of z.

Step 1b. Mark all nodes in A™, their ancestors, and connecting arcs. To avoid repeated markings,
we start with nodes in A7, walk up the tree and mark nodes and arcs until encountering
either the root or a marked node. From Theorem 5.1, only reference pairs on marked arcs

are affected.

Step 1c. Adjust reference pairs on marked arcs. This is done by the postorder traversal of all
marked arcs. For each arc (u, v) being traversed, let (addrl,[) be the reference pair on (u,v)
and let (addr2,m) be the reference pair on any offspring arc of v. We replace (addrl,l) on
(u,v) with (addr3,l), where addr3 is the address corresponding to position pos(addr2) — .
The address addr3 can be found by mapping addr2 to pos(addr2) and mapping pos(addr2)—1
to the corresponding address using the B-tree(P). We say that addr3 is at [-distance from
addr?.

By definition, (addr3,l) and (addr2, m) are continuous. Let us complete the proof of Theorem
5.1. Assume that before updating the dynamic suffix tree, every non-terminal node has a path to
a terminal node on which all reference pairs are continuous. An induction on the traversing order
can show that any marked node has a path to a terminal node on which all reference pairs are
continuous. This completes the proof of Theorem 5.1.

The reason that (addrl,l) on (u,v) can be replaced with (addr3,!) in Step lc is because they
refer to the same substring. From the above discussion, for any offspring arc (v, w) at v there is a
path (v, w),..., (v, w’) to some terminal node w’ on which all reference pairs are continuous, and
addr3 is at [-distance from the address on (v, w). This implies that replacing addrl with addr3
does not change the suffix represented by w’. Thus, (addrl,!) and (addr3,!l) represent the same

substring.

Phase 2

Step 2a. Insert all d-splitters, as in Section 3.2. Let A" contain all parents of inserted terminal

nodes.

Step 2b. Mark all nodes in AT, their ancestors and connecting arcs, similar to Step 1b.
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Step 2c. Adjust count(v) for marked nodes v. This is done by the postorder traversal of all arcs
marked in either Step 1b or 2b. The change of count(v) at a node v in A~ UA™ is the signed
number of terminal nodes deleted and inserted under v. The change of count(v) at a marked
node v not in A~ U A™ is the sum of the changes of count(u) for all marked children u of
v. The new count(v) at a marked node v is equal to the old count(v) plus the change of

count(v).

Example 5.1 Consider string S = abcebedbc$ stored in the B-tree(P) in Figure 6(a). Figure 6(c)
shows the dynamic suffiz tree for S with the suffiz-links and position chain omitted. A reference
pair (p.i,l) denotes the substring starting at address p.i and having length . Each terminal node in
the dynamic suffix tree contains the starting address of the represented suffix. For convenience, the
starting position of suffizes are given next to terminal nodes in Figure 6(c). count(v) for a non-
terminal node v is printed inside the node. For example, sufy = beebedbc$ is represented by path
(I, A), (A,2) and has the starting address X .2, sufs = bedbe$ is represented by path (F, A), (A,5)
and has the starting address Y.1. The reference pairs on path (I, A), (A,2) are continuous, but the
reference pairs on path (F, A), (A, 5) are not.

Consider the update U from abcebedbe$ to acbdeebedbe$, that is, replace the first be by cbde.
Thus, o = a, 8 = be, § = cbde, v = ebedbe$ in the update from af~y to ady. The following steps
are performed.

First, the B-tree(P) in Figure 6(a) is descended to search for the left and right limits of 3. The
search leads to terminal nodes X and W and all characters in 3 are deleted. Then § is inserted
into the B-tree(P). The offset of characters in W is affected by the update. For example, the
character e originally having offset 2 in W has offset 3 after update U, as in Figure 6(b). To reflect
this change, the actual update U’ performed on the dynamic suffiv tree T is o'y’ to ad'y', where
B = bce, &' = cbdee, v' = bedbe$. That is, U' is U extended to all characters in node W.

Then update U’ is performed on the dynamic suffix tree in Figure 6(c). Since character a does
not repeat, o* = 0. There are three [('-splitters: beey’, cev’, ey', represented by terminal nodes
containing addresses X.2, W.1,W.2, corresponding to positions 2,3,4. There are five §'-splitters:
cbdeey’, bdeey’, deev', eey’, ey'. Figure 6(d) shows the suffiz tree after Step la in which the (3'-
splitters are deleted . A~ contains nodes A, B, F, the parents of deleted terminal nodes. Marked
arcs are in bold face. Figure 6(e) shows the tree after adjusting reference pairs in Step lc. For

example, (X.2,2) in Figure 6(d) is adjusted to (Y.1,2) in Figure 6(e), where address Y.1 is at
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Figure 6: Example 5.1
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2-distance from address Z.1. Similarly, (W.1,1) on (F, B) is adjusted to (Y.2,1).

Figure 6(f) shows the tree after inserting the &' -splitters in Step 2a. From Figure 6(b), the five
&' -splitters cbdeey’, bdeey’, deevy’, eev’, ey’ start at addresses X.2, X.3, W.1,W.2, W.3, respectively,
and they are represented in Figure 6(f) by terminal nodes containing these addresses. In descending
an arc, the substring assoctated with the arc is retrieved using the reference pair on the arc. Since
new terminal nodes are inserted under B,C, D, E, AT contains B,C,D,E. All arcs marked in
Step 1b and 2b are in bold face in Figure 6(f). Finally, Step 2c¢ traverses all marked arcs in the
postorder to compute the change of count(v) for ancestors v of nodes in A~ U AT. Figure 6(g)

shows the dynamic suffiz tree after the update U’.

6 Extension to Multiple Strings

We extend the discovery framework and algorithms to multiple strings.

6.1 The problems

Consider a set S = {57, ..., 5k} of strings. Each string S; is identified by an unique identifier 7 and
is delimited by an unique symbol $;. Let |S| = |S1| 4 ...+ |Sk|. In the case of multiple strings,
there are two ways to define the support of sequential patterns. The I-support of substring « is
the ratio m/|S|, where m is the total number of occurrences of o in Sy, ..., Sk. The 2-support of
substring « is the ratio n/k, where n is the number of strings in .S in which a occurs. Let sup; (o)
and supy(«) denote the l-support and 2-support of «, respectively. For i = 1,2, the i-support of
sequential pattern o« — [ is sup;(af), and the i-confidence of sequential pattern @ — [ is the
ratio sup;(af)/sup;(a). With respect to the user-specified minisup and miniconf, the i-discovery
problem is to find all i-interesting sequential patterns, i.e., sequential patterns with i-support not
less than menisup and i-confidence not less than meniconf. Given a set S of strings, the set of
i-interesting sequential patterns for 5, and an update that either adds a new string to .S or removes
an old string from 5, the i-incremental discovery problem is to find the set of i-interesting sequential
patterns for the updated S. The problems defined in Section 2 are the 2-discovery problem and

2-incremental discovery problem for the special case of a single string.
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6.2 The algorithms

The dynamic suffix tree and the incremental discovery algorithm can be extended to multiple strings
S = {51,...,5c}. A straightforward extension is to maintain a separate dynamic suffix tree for
each string S;. This wastes storage because no path can be shared among different strings. In
addition, it needs to traverse every suffix tree to determine the support of a substring. The same is
true of finding all positions of a substring. Another approach is to represent all strings in a single
dynamic suffix tree, based on the generalized suffiz tree (GST) [H92] designed for a set of static
strings. In the following, we extend the GST to dynamic strings to solve the incremental discovery

problems for multiple strings.

In the case of multiple strings, the position of a character in a string consists of a string identifier
and a position number within that string. First, the B-tree(P) in Section 4 is extended to multiple
strings {Sy,..., Sk} as follows. The concatenation 151255 ...kSy is stored at the terminal level of
the B-tree(P) for S, where ¢ is the identifier of 5;. In an entry of the B-tree(P), the c-value has the
form i.c, where 7 is the identifier for S; and ¢ is the number of characters in \S; in the subtree under
the entry. When searching or updating the B-tree(P), the accumulative sum and comparison of
c-values are performed only for those carrying the same identifier ¢. The mapping from addresses
to positions returns both a string identifier and a position number within the string. With these
modifications, the generalization of search and update algorithms of the B-tree(P) is routine.

Now we extend the dynamic suffix-tree 7' to multiple strings {Sy, ..., Sg}. T is constructed by
inserting all suffixes of S;, i = 1,..., k. Since S; has an unique delimiter $;, suffixes of different S;
are represented by different terminal nodes in 7T'. All terminal nodes for suffixes in the same string
S; are chained up by the position chain to facilitate deletion of F-splitters. Note that each terminal

node is on exactly one position chain.

A string 5; is deleted by deleting all suffixes of .5; from T'. To find the suffixes of .5;, a B-tree
on string identifiers ¢ is maintained. For every identifier ¢, there is a pointer head; at the terminal
level of the B-tree that points to the beginning of the position chain for S;. The suffixes of S; are
found by searching the B-tree using the search key i, entering the position chain pointed by head;,
and scanning the position chain. The end of the position chain is marked by a special symbol.
See Figure 7. All suffixes of .S; are deleted as S-splitters are in Section 3. As for a single string
case, dangling reference pairs caused by deletion must be adjusted. A reference pair (addr,l) is

dangling if it refers to a character of the deleted S;, which can be found out by mapping address
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Figure 7: Locating suffixes of a string

addr to position through the generalized B-tree(P) for multiple strings. A new string S; is inserted
by inserting all its suffixes into the suffix tree and chaining up new terminal nodes in the position
chain for S;. An entry for identifier ¢ is inserted into the B-tree with pointer head; pointing to the
beginning of the new position chain.

The update of count(v) at a non-terminal node v depends the type of the incremental discovery
problem. For the l-incremental discovery problem, count(v) is equal to the number of terminal
nodes in subtree(v) and the update of count(v) is the same as in Section 5. For the 2-incremental
discovery problem, count(v) is equal to the number of distinct string identifiers contained in terminal
nodes in subtree(v). Hence, if subtree(v) contains a terminal node for the inserted or deleted string,
count(v) is increased or decreased by one, respectively. Therefore, count(v) can be updated by the
postorder traversal of arcs on splitters as in Section 5. With these modifications, the algorithm in

Section 5 provides a solution to the incremental discovery problem for multiple strings.

7 Evaluation

This section evaluates the performance and discovery power of the proposed framework and algo-
rithm. We report the study only for the case of a single string. We didn’t find much difference for

the case of multiple strings.
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7.1 Cost analysis

We measure the cost of the update by the number of tree node access. This is reasonable because
trees are stored on the disk and accessing tree nodes is the dominating activity performed by the
algorithm. Let || denote the number of characters in substring a. Consider the update afy to
ad~y. From [M76], the number of node access to delete a F-splitter is no more than 3 and the average
number of node access to insert a d-splitter is no more than 3. Therefore, deletion and insertion of
splitters in Step la and Step 2a can be done in 3(|a*3| + |a*d|) on average, where |a* 3| + |a*d] is
equal to the number of a-splitters and G-splitters. In Steps 1b,1c¢,2b,2¢, each node on splitters is

accessed at most four times.

Another part of the cost comes from accessing the B-tree(P). In Step lc, adjusting the reference
pair on an arc requires to map an address to the corresponding position and map a position to
the corresponding address. Also, the update afy to ady requires to delete § and insert ¢ in
the B-tree(P). These costs depend on the height of the B-tree(P) and the length of the substring
updated, not on the data size. It is commonly known that the height of a balanced B-tree with a
large branching factor is very small, even for a very large database. Therefore, the total cost of an
update is the number of distinct nodes on splitters with a small constant factor. For a large string
and a local update, which is a scenario assumed for most dynamic environments, it is expected
that only a small number of suffixes (i.e., paths) are affected compared to the whole suffix tree,
therefore, the incremental approach is more efficient than the naive approach in most cases, as
verified by the experiment below. Of course, if most characters of the string database are updated,
the incremental approach could be worse than the naive computation. However, such cases do not

occur often.

7.2 Experiments

One way to evaluate the effectiveness of a discovery algorithm is to apply it to a real data set and see what
it finds. But sometimes it may be difficult to judge the quality of the findings, without knowing a prior
what the algorithm is supposed to find. Thus, to evaluate our algorithms, we generated data sets that honor
several patterns modeling the weather change in Singapore. Figure 8(a) gives the set of characters encoding
the weather conditions on sky and temperature. Figure 8(b) gives the patterns used to generate the data
and Figure 8(c) is the graphical representation of these patterns in which a node is either a left side or a
right side of a pattern. For example, the three patterns with left side ab say that if the first and second days
are (Sunny, High) and (Sunny, Normal) in sequence, the third day will be (Cloudy, High), (Sunny, High),
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Characters | (Sky, Temperature)
a (Sunny,High)
b (Sunny,Normal)
c (Cloudy,High)
d (Cloudy,Normal)
e (Rainy,High)
f (Rainy,Normal)

(a) The encoding of weather conditions

1 0.4 0.35 0.7 0.8 0.3
a—b ab =1 | ¢ dlcd=2c|cd=Sb|lefSec

0.2 0.7 0.65 0.1 1 0.55
abSa|bf2a|c 31 |cd=e|e>T fb =" a

0.4 0.3 0.2 0.2 0.7 0.45
ab—>c | bf Sc|lcd Sa|cd=Sa |ef 2a|fb = c

(b) Patterns used to generate the string

Figure 8: (c) Diagram for patterns
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(Rainy, Normal) with confidence 0.4, 0.2 and 0.4, respectively. To generate a string, we apply patterns with
left sides matching the last few characters of the partial string to extend the string. The confidence of a
pattern determines the probability of picking up the pattern. To start with, the initial string contains the

left side of a randomly chosen pattern.

Discovered patterns. We generated a string of length 2000k. The dynamic suffix tree has 3781915
nodes and depth of 30. We choose minisup to be 10%. Therefore, a node is “infrequent” if its count(v) is
less than 200k. Figure 9(a) shows the dynamic suffix tree after pruning infrequent nodes, except the first
infrequent node each path (to indicate no more frequent nodes deeper in the path). Figure 9(b) shows the
patterns obtained from the pruned suffix tree, as described in Section 2, of which three are among those used
to generate the data and three are new. In a sense, the new patterns are those that “follow” from the original
patterns. On the other hand, by reducing minisup to 0.21%, the algorithm actually discovered all patterns
used to generate the data, as in Figure 9(c). (Much more patterns were discovered for minisup = 0.21% and
we have to omit them due to the space limit.) The discovered confidences of these patterns are very close to
their original confidences. What is more interesting is that the experiment also discovered the importance
of these patterns which was not originally known at all. For example, the small support of ecd — e, e — f,
ef — a, and ef — ¢ suggests that these patterns are insignificant and can be ignored. Of course, it is up to

the user to decide the interestingness of patterns by specifying or tuning minisup and miniconf.

Performance study. To verify the above cost analysis, we run the incremental method and the non-
incremental method on same sets of data and updates. We simulated the disk in the memory and compared
tree node accesses, which corresponds to disk accesses, for updating or constructing the suffix tree by the
two methods. The storage used by both methods is the same and is ignored in the comparison. The data
sets were generated using the above weather patterns with the size ranging from 50k to 5000k at the interval
of 500k. For each data set, we considered four groups of updates, with each group containing 10 updates of
the same size. The size of an update afy to «d~ is defined as |3| + |4]. The size of updates for the four
groups are 10,50,100,500, respectively. An update o3y to ady was generated by determining 5 and « in a
random manner, with |a|+ |8| being equal to the specified update size. We averaged the cost of performing
the 10 updates in each update group. Figure 10(b) shows the cost of the incremental method for different
data size. The update cost is almost not affected by the scale up of the data size beyond 500k.

To compare with the non-incremental method, Figure 10(a) shows the size of the suffix tree (the vertical
axis) created by the construction algorithm for different data size. The size of the suffix tree grows linearly
with the data size. The cost of the non-incremental method is at least double the size of the suffix tree
because it needs to traverse the suffix tree to compute count(v) for non-terminal nodes v. The comparison
of Figure 10(a) and Figure 10(b) shows a clear edge of the incremental method over the non-incremental

method.
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(a) The suffix tree pruned by minisup = 10%

pattern | confidence (%) | support (%) | original patterns
a—b 100.00 19.84 yes
b—c 41.69 12.65 no
c—>f 64.80 13.12 yes
c—fb 51.99 10.51 no
c =D 80.17 10.51 yes
f—b 48.31 10.51 no

(b) Discovered patterns having minisup = 10%

pattern | confidence (%) | support (%)
ab — a 20.04 3.97
ab — ¢ 39.91 7.92
ab — f 40.05 7.95
bf — a 70.00 5.56
bf — ¢ 29.99 2.38
c—~d 35.16 7.11
cd — a 20.00 1.42
cd = ¢ 69.99 4.98
cd — e 10.00 0.71
cf —+ a 19.83 2.60
e > f 100.00 0.71
ef - a 69.97 0.49
ef - ¢ 30.02 0.21
fb — a 55.01 5.78
fb — ¢ 44.99 4.73

(c) Discovered support and confidence of original patterns

Figure 9: Discovered patterns
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(b) The update cost of the dynamic suffix tree

Figure 10: Performance study

8 Conclusion

We proposed a framework of discovering sequential patterns from sequential data. Though suitable for
discovering and representing sequential patterns for static strings, the suffix tree is very expensive for dynamic
strings because of the sensitivity of the position to the update operation. The existing update algorithm [M76]
failed to address this inefficiency. We proposed a new representation of the suffix tree for dynamic strings,
called the dynamic suffix tree, in which substrings are referenced by addresses rather than positions. The
address reference restricts the impact of updates to a small part of the dynamic suffix tree, making efficient
update of the dynamic suffix tree possible. Based on the dynamic suffix tree, we presented an algorithm
for incrementally discovering sequential patterns from large and dynamic sequential data. Experiments

showed that the proposed framework finds important patterns and that the incremental method performs
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substantially better than the non-incremental one for large and dynamic databases.

The following areas need further investigation in the future. (a) Handling numeric values such as tem-
perature. Discretization is a possible approach, but its effect on the discovery quality needs to be studied.
(b) Discovering patterns from multi-dimensional data, with the flexibility of allowing the user to specify the
dimensions for discovery. For example, in one case the user may be interested in sky patterns, in another case
may be interested in temperature patterns, and in a third case in combined patterns of sky and temperature.
Simply performing discovery for individual dimensions does not work, nor does performing discovery for a
fixed set of dimensions. (c) Approximate patterns that allow some degree of errors or mismatches. (d) Dis-
covery within a user-specified range of positions. (e) Discovery of periodic patterns such as “if the stock price
goes up on Monday, it will drop on the next day”. (f) Incremental discovery for these extensions. Solutions
to these problems can generally benefit from the work in the areas of Al, combinatorial pattern matching,
time series, and spatial databases, textual databases. We believe that the discovery of sequential patterns
covers a major domain of knowledge discovery applications and that a viable solution to this problem is

crucial to turning huge data stores into accessible and actionable knowledge.
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