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Abstract

A nice property of the semi-naive evaluation of recursive rules is that it does
not repeat rule firings in different iterations. In a recent study [W], however,
it was observed that intermediate steps during a rule firing may be repeated in
different iterations, and a notion of the step-wise semi-naive property and an
evaluation with this property were proposed to capture the semi-naive prop-
erty at intermediate steps of a rule firing. In this paper, we further extend the
semi-naive notion to the build-up of index for computing relations that grow
monotonically in each iteration. Hash tables are chosen as the index in this
study, but the idea can be applied to other types of index in general. A modifi-
cation of the step-wise semi-naive evaluation based on the semi-naive build-up
of hash tables is proposed. In most cases, join, set difference, and set union
operations performed to fire a rule are implemented in a single 1/O scan of
relations that are cumulated up to that iteration. Experiments conducted on a
few typical recursive queries and test data show that the proposed evaluation
is much more 1/O cost effective than both the semi-naive evaluation and the
step-wise semi-naive evaluation.



1 Introduction

An iterative bottom-up evaluation of recursive rules computes the least fixpoint by
firing rules in iterations until no new facts can be derived. The term “rule firing”
here refers to instantiation of all subgoals with established facts so that all con-
straints in the rule body are satisfied. An evaluation has the semi-naive property
if no rule firings in different iterations are duplicated. The basic semi-naive evalua-
tion was rediscovered by several researchers [B, BalR1, Bayer] and was generalized
and improved a few times [BalR2, KNSS, RSS]. Essential to these variations of the
semi-naive evaluation are rewriting each rule into a number of differential or semi-
naive versions and firing them through use of relational join operation. Recently,
the following observation regarding semi-naive evaluations was drawn [W]: although
the semi-naive property guarantees that no rule firing as a whole will be duplicated
in subsequent iterations, it does not guarantee that no intermediate steps of a rule
firing will be so duplicated. Consider the join-based implementation (a X b) X Ac of
a differential rule p : —a, b, Ac in a semi-naive evaluation, whereby predicates «a, b, ¢
are recursive subgoals, Ac is the incremental version of ¢ (arguments are omitted
for simplicity). In iteration 7, the intermediate relation a; M b; was computed and
was discarded immediately after it is joined with A¢;. When computing intermediate
relation a;11 M b,y in iteration ¢ + 1, all facts in a; X b; are recomputed because
definite rules are monotonic (thus a; C a;41 and b; € b;41). In other words, though
the semi-naive evaluation performs incremental computation for relations defined by
rules, it fails to do the same for relations generated at intermediate steps of rule fir-
ings, such as the result of a M b in the above example. To address the semi-naive
notion at intermediate steps of an evaluation, the step-wise semi-naive property was
defined and a step-wise semi-naive evaluation was presented in [W]. The essence of a
step-wise semi-naive evaluation is that join of every two tuples during a rule firing is
not duplicated in different iterations (see Section 2 for more details). This is achieved
by storing intermediate relations computed at internal nodes of the evaluation tree
for a recursive rule. It has been analytically shown [W] that much fewer tuples are
generated in the step-wise semi-naive evaluation than in the semi-naive evaluation, a
measure of efficiency recommended by [BR].

However, the step-wise semi-naive evaluation still suffers from inefficiency because
implementation issues at access path level are not considered. Firstly, the evaluation
gives no instruction on how indexes of relations can be shared across iterations to
speed up the query processing. For performing a large join efficiently, it is desirable
to make use of certain indexes, such as hash tables in hash-based join [Bra] or sorted
lists in merge/sort join [BE]. Since current relations in any two consecutive iterations
differ only by an increment computed in one iteration, the join index in each iteration



can be obtained from the join index used in the last iteration by reflecting only the
increment. Secondly, at each intermediate step the step-wise semi-naive evaluation
needs to perform one set difference and one set union to remove “new” tuples that
were previously generated, in order to enforce the step-wise semi-naive property. The
cost of these operations is ignored in the analysis of [W] where only the number of
generated tuples, or equivalently, the number of successful rule firings, is taken into
account. Since there are no immediate implementations of these set operations that
use a single scan of operand relations ! (note that the result of set union is required to
be free of duplicates), performing these set operations at each intermediate step of a
rule firing in a naive way could incur a heavy /O cost in the case where databases can
not be held in the memory. Finally, measuring only the number of tuples generated
can be largely inaccurate when the work of unsuccessful rule firings is substantial.

In this paper, a new bottom-up evaluation of recursive rules is proposed to rem-
edy the above problems. The proposed evaluation aims at minimizing the I/O cost
while preserving the step-wise semi-naive property by building up indexes of grow-
ing relations in a semi-naive manner, thus the name of indezed step-wise semi-naive
evaluation. In this study, we choose hash tables as the index, but the methodology
is applicable to other indexes as well. By assuming that each joining pair of buckets
of increments can be held in the memory, which is reasonable in most cases, the 1/0
cost of each iteration is only a single I/O scan of the current relations partially com-
puted up to that iteration, where an 1/O scan of a relation refers to either reading or
writing all pages of the relation once. This is the best one can possibly expect in the
absence of preprocessing and knowledge of data distribution. In contrast, five such
scans are required for the step-wise semi-naive evaluation and a number of scans de-
pending on the number of recursive subgoals in the rule is required for the semi-naive
evaluation. Experiments conducted on some typical recursive queries and test data
also show that the proposed evaluation is much more I/O cost effective than both the
semi-naive evaluation and the step-wise semi-naive evaluation. As its major short-
coming, however, the proposed evaluation requires more storage space, as compared
to the other two evaluations. In Section 6, we will remark on this issue and consider
possibilities of reducing the storage requirement by sharing hash tables among nodes
of evaluation trees.

The rest of the paper is organized as follows: In Section 2 we briefly examine the
ideas and merits of the semi-naive evaluation and the step-wise semi-naive evaluations
through examples. In Section 3, we identify I/O inefficiency of the step-wise semi-
naive evaluation and propose the indexed step-wise semi-naive evaluation aiming at
reducing [/O cost. In Section 4, the I/O cost of the indexed step-wise semi-naive

'In many systems, set difference and duplicate elimination of set union are implemented through
sorting.



evaluation is analyzed and is analytically compared with the step-wise semi-naive
evaluation and the basic semi-naive evaluation. A comparison based on experiments
is given in Section 5. In Section 6 we remark on space requirement of the proposed
evaluation, and in Section 7 we conclude the paper.

2 Existing Bottom-up Evaluations

Before proposing a new evaluation of recursive rules, we review briefly some existing
bottom-up evaluations of recursive rules. We shall restrict to stratified rules [BR, U],
so that there is a partial order among blocks of mutually recursive predicates by which
relations of recursive predicates can be monotonically evaluated over iterations. This
shall include all rules evaluable by the naive or semi-naive bottom-up evaluations
[BR]. It is assumed that the reader is familiar with the terminology in the area of
deductive databases, such as rules, EDB and IDB predicates, subgoals, least fixpoint,
ete. For more background information of deductive databases, please refer to [BR, U].

We shall stress that optimization strategies that rewrite rules to make their eval-
uations more efficient do not fall into the class of evaluations; only actual query
evaluation algorithms will be considered here. A quick look at the list provided by
[BR] tells that only the naive evaluation and the semi-naive evaluation are purely
bottom-up and of general application domains. In this paper, we are interested in
the semi-naive evaluation and the step-wise semi-naive evaluation recently proposed

in [W].

2.1 Basic Semi-Naive Evaluation

A few variations of the semi-naive evaluation have been proposed recently, based on
improved strategies of evaluating loops [KNSS, RSS]. But their essence remains the
same as the basic semi-naive evaluation, as illustrated by the following example of a
simple recursive query.

Example 2.1 Assume that a recursive query has four rules:

a: ta,y): —t(e,w), t{w,u), s(w,u), e(u,y)

B s(xyy) —t(x,w), s(w,u), ex(u,y)

v tayy) —es(x,y)

§:  s(x,y): —eq(a,y)
t and s are recursive predicates, and a and [ are recursive rules. These rules contain
only ordinary subgoals; subgoals that are not ordinary are defined on predicates
=,#,<,>, <, >, called built-in subgoals. The body of a rule refers to the right side
of : — and the head of a rule refers to the left side of : — in that rule. Figure 1 shows



the basic semi-naive evaluation of these rules. For each IDB predicate p, the current
relation p holds the tuples computed in all previous iterations and the increment Ap
holds the tuples computed only in the last iteration. The evaluation terminates when
all increments Ap computed by some iteration are empty. Importantly, the evaluation
avoids duplicating the same rule firing in different iterations by mapping rule « to
three differential versions and mapping rule 3 to two differential versions, where each
differential version replaces exactly one recursive subgoal with its increment computed
in the last iteration. O

However, in the semi-naive evaluation intermediate computation of a rule firing
could still be repeated in different iterations. For example, if the join order for the first
differential version of rule o is At M ((¢ X s) M ey ), computing ¢; M s; in iteration ¢ will
duplicate the work of computing ¢,_; X s;_; that was previously done in iteration 1 —1.
One may argue that this problem will disappear if these joins are executed in a linear
order that starts with the increment, i.e., ((At X ) X s) X e; for the above joins.
But such increment-headed linear join orders are usually contradictory with other
optimization requirements. For instance, if the evaluated rule is a magic rule in which
the underlying side-way information passing strategy [BMSU] requires evaluating the
joins in a rule body from left to right, then it is impossible to meet both ordering
requirements (i.e., the increment-headed linear order and the side-way information
passing order) in evaluating the third differential version [T, (¢ M ¢ M As M ¢;) of
rule . Also, the choice of linear join ordering completely rules out the possibility of
parallelizing multiway joins in a rule as in [Gr]. A desirable evaluation should allow
join evaluation plans that are more flexible than linear joins for the sake of further
optimizations. These observations have motivated the proposal of the step-wise semi-
naive property in [W].

2.2 Step-Wise Semi-Naive Evaluation

The step-wise semi-naive evaluation was proposed in [W] as an improvement of the
basic semi-naive evaluation, by ensuring that no intermediate steps of rule firings are
duplicated in different iterations. Consider the rules in Example 2.1 and assume the
join order ¢ M ((t M s) M ey ) for evaluating rule o and the join order (¢ X s) X eq for
evaluating rule 3, as given by the evaluation trees [W] in Figure 2. Before the loop
begins, relations for ¢, s, At, As are initialized by

t < es;

At — t;

S 4 €45

As s



begin

t — es;
ANt +— t;
S ¢ e4;
As +—— s;
repeat
A — T, (At X1 X s Mey)
U TL,(t X AL X s X eq)
U TL, (t Xt As M eq);
JANCR S HLy(At X s M eq)
[T, (t X As X ep);
At +— At’ —
t+— tUNAt;

Ns +— N5 — s;
s — sUAs;
until At = () and As = (;
output ¢ and s
end.

Figure 1: Basic semi-naive evaluation of rules in Example 2.1

as before. Intermediate relations uy, uy, v1 associated with non-root internal nodes of
the two evaluation trees are explicitly stored throughout the evaluation. The least
fixpoint is computed in relations ¢, s by the loop:

repeat
X, « 0;
X + 0;
Xy« Xy UINCR(o);
X; <« X; UINCR(B);
At « X, —
t e tUAL
As+— X, —s
s ¢ s U As;
until At = 0 and As = 0.

Functions INCR(«) and INCR([3), defined below, are invoked to compute new
tuples defined by « and (3 in each iteration, respectively.
INCR(a):
begin



Xy () X 5(x)

/ v1(x,u)

t(x,w) u2(w.y)
e2(u,z)

ul(w,u) e1(uy)
t(X, W) s(w,u)

t(w,u) s(w,u)

Tree for C{ Tree for 5

Figure 2: Evaluation trees for rules a and 3

Aup —  [lpu(At(w,u) Ms(w,u)) U [T, (H(w, u) X As(w, u));

Ay — Auy — uy;

Uy +— uy U Auy;

Ay — [Ty (Dug(w, u) Xeg(u,y));

Aug — Nuy — uy;

Uy +— Uy U Auy;

return the result of [, ,(At(z,w) X ug(w,y)) U T, (t(x, w) X Aug(w,y));
end.

INCR(S):
begin
Ao Tl At(10) ¥ (a0, ) U Tl (1 20) M As(an, )
Avy — Avy — vy
vy +— vy U Avy;
return the result of [, ,(Awvi(z,u) M ex(u,y));
end.

Intuitively, at the beginning of iteration ¢ (i > 1), relations ¢ and s contain all
tuples derived in all iterations j for j < 1—1, and increments At and As contain tuples
that are derived in iteration ¢ — 1 but not derived in any iteration j for j < ¢ — 1.



During iteration i, each join operation derives new tuples using at least one new
tuple, by having an increment as one of its operands. This amounts to propagating
increments from leafs to the root of the evaluation tree, or equivalently from subgoals
towards the head of the rule. Since each join involves one operand that contains only
new tuples, no intermediate steps of firing rules are duplicated in different iterations.
This is made possible by storing intermediate relations (such as w;,v;) produced by
each join to avoid recomputation in subsequent iterations. In [W] this property of
being free of duplication at every intermediate step of rule firings was called the step-
wise semi-naive property and an evaluation with this property, called the step-wise
semi-naive evaluation, was presented.

The above step-wise semi-naive evaluation assumes that an evaluation tree is
constructed for each recursive rule with at least two ordinary subgoals. In general,
each leaf of an evaluation tree represents a subgoal of the rule and each internal node
represents a #-join of the two children followed by a projection. More precisely, if
an internal node w(wy,...,w;) has two children u(uy,...,u,) and v(vy,...,v,) with
a set 0 of inequalities on arguments of w (equalities are specified through shared
variables as explained below), then node v defines the operations

IT (Au(ur, ... un) Xo(vr,..o,0.)) U T (wlu, .o oswn) X Ao, ..., 0,))

W yeeey W] W yeeeyWy
where

o Jl,, .. . 1s projection,

o X is f-join,

e u,v are current relations, and

o Au,Av are increments.

If 0 is empty, X becomes the natural join with the join attributes specified by variables
common to both operands. To simplify a little, notation u & v will be used to denote
the above operations associated with node w. Given the topology of the evaluation
tree for a recursive rule, which is usually determined by certain optimization strategies
such as side-way information passing or optimal order of joins, a construction of
evaluation trees was presented in [W] with certain optimalities guaranteed. It is
required in that construction that rules are safe, normalized, and connected, as defined
below, but these are achievable by transformation from safe rules.

Definition 2.1 ([U]) A rule is safe if (a) every variable found in the head is found
in the body, and (b) for every variable X not found in ordinary subgoals, there is some
variable Y to which X is equated through a sequence of one or more = subgoals, and



Y is either equal to some constant in a = subgoal or is an argument of an ordinary
subgoal. O

Definition 2.2 ([W]) A safe rule is normalized if it has no = subgoal.O

Definition 2.3 ([RBK]) Two predicate instances are connected if they share a vari-
able. The set of predicate instances in a rule, including the head, is partitioned into

connected components. A rule is connected if it has only one connected component.
O

Safety is necessary for ensuring that the finiteness of EDB relations implies the
finiteness of the least fixpoint. It was shown in [W] that every safe rule can be ef-
ficiently transformed into an equivalent, safe, and normalized rule by reversing the
rectification process [U], i.e., equating arguments whose equalities are logical con-
sequence of the = subgoals in the rule. A set of rules in which not every rule is
connected can be replaced with a set of connected rules whose fixpoint evaluation is

more efficient [RBK].

From now on, we consider only rules that are safe, normalized, and connected.
We shall assume that, for each recursive rule with at least two ordinary subgoals, an
evaluation tree is constructed as in [W] without further explaining the detail of the
construction. For modification and comparison in subsequent sections, we reproduce
the step-wise semi-naive evaluation of recursive rules from [W] in Figure 3.

3 Indexed Step-Wise Semi-Naive Evaluation

The straightforward implementation of the step-wise semi-naive evaluation as above
has some major inefficiency. At each internal node v of an evaluation tree, the fol-
lowing operations are performed in every iteration

Av+— RGP S;
Av + Av —v;
v+ v U Auv;

where R and S are the child relations of v and A versions are increments. Besides the
lack of information on use of indexes as mentioned in the introduction, this compu-
tation requires to perform one set difference — and one set union U at each internal
node of an evaluation tree. Set difference and set union are usually more expensive
than projection and selection because they have no immediate implementations that
use only a single scan of operand relations (recall that the result of set union must
be free of duplicates). In a large environment where databases can not be held in
the memory, this will translate into a heavy 1/O cost and degrade drastically the
performance of the evaluation. Implementations that are substantially more efficient



than simply embedding invocation of relational operations in a loop of conventional
programming languages are crucial to the development of deductive databases. In
this section, we propose an evaluation that performs all of the above join, projection,
set difference, and set union associated with an internal node v in a single 1/O scan
of the current relations for the children of v. Three ideas make this possible: (a) have
a (small) increment as an operand in every join performed, as offered by the step-wise
semi-naive evaluation, (b) preserve the index of current relations for use in the next
iteration, and (c¢) delay performing Av < Av —v and v v U Av until v is scanned
as an operand relation of a later join in the tree. (a) helps avoid iterative scans of
the target relation in performing join. (b) restricts the work of building indexes to
only increments. (c) combines the scans for join and set operations associated with
an internal node into a single scan. These will be further elaborated below.

In this paper, we choose hash tables as the index, but the idea is not limited
to hash tables. Unlike the conventional use of performing only join, however, hash
tables here are used for performing join, set difference, and set union associated with
internal nodes. Each internal node will be associated with a hash function to hash-
partition its operand relations (i.e., child relations). If no hash-partitioning is chosen
for an internal node, the hash function is assumed to map every tuple to the same
bucket. The choice of hash functions can be different for different internal nodes.

Consider the computation in iteration ¢ (i > 1). Let v be any internal node of
the evaluation tree, and R, S be the two children of v. v, R, S also denote the current
relations associated with nodes v, R, S. Let Av, AR, AS be the increments associated
with nodes v, R and S. In the case of a leaf node R (similarly for S), AR holds the
increment computed in iteration ¢ — 1 for the subgoal represented by leaf R, and
relations R and AR contain only tuples that satisfy all equalities and inequalities
on arguments of that subgoal, by first applying selections on these relations. In the
case of an internal node R (similarly for S), AR holds the increment computed in
iteration ¢ for node R. Let h be the number of buckets defined by the hash function
chosen for (the operation of) internal node v. Then R!,..., R" denote the buckets of
R,and AR',..., AR" denote the buckets of AR. Similarly, St,..., 5" AS!, ... AS"
for S. h is usually determined by the size of available memory (because one page of
memory is allocated to each bucket as output buffer during the hash-partitioning)
and the type of join associated with node v. If the join predicate involves inequalities
<, >, #,<, >, hash-partitioning should not be used for the join and the number h
must be chosen as 1.

Small Increment Assumption: We shall assume that at each node v the in-
crement Av, computed in the latest iteration, is “much smaller” than the current
relation v, cumulated in all previous iterations. This assumption is valid when the
number of iterations needed in a bottom-up evaluation is large, which is usually the



case in deductive databases. When it comes to implementation, this has the following
implications: for every internal node having children R and S,

e the memory can hold each pair of joining buckets AR’ and AS? of increments
AR and AS, and still enough memory is left for input and output buffers of the
join operation. A nice feature of the existing step-wise semi-naive evaluation is
that, for every join performed, one of the two operands is an increment. Then
with each bucket of the increment held entirely in the memory, it is possible
to perform a join by scanning the current relation only once. For details, see
the indexed step-wise semi-naive evaluation below and its analysis in Section
4. However, we do not require the memory to hold buckets R' or S* of current
relations R and S at once.

e within each iteration, the number of I/O scans of current relations R and S
should be minimized, even at the cost of a few more scans of increments AR

and AS.

To make life easier, for a recursive rule r, we shall use the term “a node (resp., a leaf,
the root) of 7 as the abbreviation of “a node (resp., a leaf, the root) of the evaluation
tree of 7. Now we are ready to present a new evaluation of recursive rules.

Indexed Step-Wise Semi-Naive Evaluation: The algorithm is shown in Fig-
ures 4 and 5. In the main program on top of Figure 4, the current relation p for each
recursive predicate p is initialized by all non-recursive rules defining p (line 1), and a
hash table is created for each leaf of an evaluation tree (line 2). In creating a hash
table for a leaf representing a p-subgoal, the hash function associated with its parent
is applied to tuples of relation p, which are then relocated into buckets according to
computed hash values. It is possible that hash tables of two or more leafs (in the same
or different trees) are shared to save storage space. For simplicity at the moment, we
assume that a distinct hash table is created for each leaf; sharing of hash tables will
be commented in Section 6. Hash tables of current relations of all internal nodes are
initialized to empty (line 3).

Within each iteration, the algorithm computes the increment for each head predi-
cate one at a time and updates hash tables associated with internal nodes of evaluation
trees. In particular, for each recursive rule r considered, the algorithm calls INC R(r)
to propagate increments from leafs to the root of r (line 6). The increment computed
at the root of r is cumulated by INC R(r) in a special relation AX,, where p is the
head predicate of r. The main loop on top of Figure 4 terminates when condition
empty” = true holds for all recursive rules r at the end of some iteration (line 7),
indicating that at the beginning of the last iteration the increment of each leaf is a
subset of the current relation of that leaf, and therefore, that no new tuples were



generated in the last iteration. The value of empty” is set by INCR(r). When the
main loop terminates, the algorithm outputs all recursive relations p in form of hash
tables.

INCR(r): (a) build hash tables for increments of recursive subgoals of r, (b)
propagate increments from leafs to the root of r, (¢) update hash tables of current
relations to reflect their increments. For better efficiency, unit rules, i.e, rules with a
single ordinary subgoal, and non-unit rules, i.e., rules with more than one ordinary
subgoal, are treated differently. For a unit rule r, Unit Rule(r) essentially computes
some projections and selections of the increment of the leaf. For a non-unit rule r,
increments are computed bottom-up from leafs to the root in a partial order induced
by the evaluation tree of r, where the processing at an internal node v is done by
Node(r,v).

Node(r,v): propagate increments from children R and S to the parent v. If v is
the root of r, the increment for v is stored in the special relation AX, where p is the
head predicate of r, otherwise, it is stored in Av. This different treatment of the root
allows increments for the same head predicate p produced by all recursive rules for p
to be stored in the same relation, i.e, AX,, so as to perform hash-partitioning and
duplicate elimination only once. To produce the increment at v, the algorithm reads
pairs of buckets AR' and AS’ from disk, 1 <1 < h, one pair at a time. By the small
increment assumption, AR’, AS’ can be held in the memory at once. For each pair
AR, AS read, buckets ¥ and S are scanned page by page. Each scanned page of R
is joined with AS’ with the result appropriately projected, denoted [J(RP® X AS*).
Similarly, each scanned page S is joined with A R* with result appropriately projected,
denoted [T(AR' X SP?). These results are appended to the increment Av (which was
initialized to empty at the beginning of Node(r,v)) or AX, on disk, depending on
whether v is the root of r. During the same scan, AR < AR — R is computed by
removing from AR’ tuples that are in R’ (line 4), and R < RU AR is computed by
appending the updated AR’ to R; (line 5); similar operations are performed for S
and AS® (lines 8,9). TI(AR' X AS?) is also computed and appended to Av or AX,
for each pair AR', AS* read (line 10).

To reduce 1/O cost, when the result of join is appended to a file on disk, each disk
writing is triggered by one of two conditions: either the output buffer is full or the
data in the output buffer is the last page of the result. After all pairs of buckets are
scanned, emptyp (resp., emptys) is set to true if R (resp., S) is a recursive subgoal
and the increment AR (resp., AS) is empty (lines 11 and 12). This can be easily
tested by checking if every updated AR’ (resp., AS?) is empty at line 4 (resp., line 8).
Then the disk storage for hash tables of AR and AS is released because increments
generated in the next iteration will share no tuples with old increments. Finally, if v
is not the root of r, the increment Av is hash-partitioned and duplicates are removed



bucket by bucket (line 14). Since each bucket of an increment can be held entirely
in the memory, duplicate elimination within a bucket of Av can be done in memory.
For the increment of the root, the hash-partitioning and duplicate elimination is done
after all recursive rules defining the same predicate are evaluated, that is, in the next
iteration where the increment is scanned as that of a leaf.

It is worth mentioning that AS participates in join (line 3) before duplicates are
removed from it (line 8). For AR, however, duplicates are removed before joined.
This implies that the indexed step-wise semi-naive evaluation approximates the step-
wise semi-naive property rather than strictly enforces it. As a result, duplication of
work may exist at intermediate steps of rule firings in different iterations. Similar ap-
proximation arises in the approximated semi-naive evaluation where no set difference
is performed to remove old tuples [BR] (for the reason that set difference in general is
not cheap.) In our case, duplicate tuples are eliminated (after used) in each iteration,
and if there are some duplicates participating in the join, they must be generated only
by a single iteration. We expect that the approximation in the proposed evaluation
be better than the case of approximated semi-naive evaluation where duplicates are
never removed. In most cases, duplication of work introduced by a single iteration
is smaller than the overhead of additional scans of the whole current relations, and
hence this sacrifice of the strict step-wise semi-naive property is worthwhile in order
to achieve a better performance in term of the I/O cost.

Example 3.1 Consider the rules in Example 2.1 and the evaluation trees in Figure
2. Assume that domains of all arguments are integers. Hash functions hq, hs, hs
associated with operations at internal nodes wuq, uz, X;(x,y) can be chosen as

hi(w,u) = (w + u) mod 10

ha(u) = w* mod 10

hs(w) = w? mod 10,
and hash functions hf, h} associated with operations at internal nodes vy, X(, y) can
be chosen as

R (w) = w® mod 10

hi(u) = v mod 10.
For example, with ¢ = (a + b) mod 10, hash function hy will map each tuple ¢(a,b)
for subgoal t(w, u) and each tuple s(a,b) for subgoal s(w,u) to the ith bucket of their
hash tables. Figures 6 and 7 give the indexed step-wise semi-naive evaluation of these
rules where only Node(a,uy) and Node(a, X¢(x,y)) are expanded; the other calls can
be expanded similarly. O



4 Experimental Comparison

Experiments have been conducted on UNIX machines using the language C to sup-
plement the analytical performance study of the three evaluations in Section 4. In
all experiments, disk storage was simulated by the UNIX file system (relations are
represented by UNIX files) and a memory of 1Mbytes is allocated for each evaluation.
Each 1/0 page has 4 Kbytes and is viewed as an array of tuples, each tuple being
128 bytes. Therefore, the memory has 2% I/O pages of space. For each experiment
we must (1) choose a set of recursive rules that will represent our benchmark query,
(2) choose some test data that will represent the EDB relations, (3) collect the infor-
mation about the I/O cost incurred in each evaluation of the recursive rules. Three
experiments have been conducted. The first experiment evaluates non-linear recursive
rules, the second evaluates linear recursive rules, and the third evaluates a non-linear
version of transitive closure. The choice of EDB relations in each experiment will be
explained later. Each time a page is read from or written to a disk file, it is counted
as one page 1/0.

We assume that domains of all arguments are integers and that the following hash
function is used throughout to hash-partition relations:

flw) = wmodh

where w refers to the value of a single join attribute or if there are more than one join
attributes, the sum of their values. h, the number of partitioned buckets, is chosen
to be 271 if there are 2™ pages of memory available. In our case, h = 128.

We shall use the abbreviations BSN, SWSN, ISWSN for the basic semi-naive
evaluation, the step-wise semi-naive evaluation, and the indexed step-wise semi-naive
evaluation. In all graphs plotted in this section, coordinate (x,y), for positive integers
z,y, denotes the cumulative [/O cost y in number of pages at the end of zth iteration.
In the indexed step-wise semi-naive evaluation, there is an extra I/O cost incurred to
construct the least fixpoint from hash tables of relations after the loop terminates.
This extra [/O cost is included in the cost of the last iteration.

4.1 Experiment 1

The first experiment is designed to measure the I/O cost incurred by various evalu-
ations on the non-linear rules in Example 2.1. For convenience, we reproduce those
rules below



yit(x,y) = es(x,y).
)

Evaluation trees in Figure 2 are used for rules o and (. Two runs of the experiment
were conducted, each handling a different set of test data. In both runs, EDB relations
€1,...,cq are identical and are binary trees, that is, a tree in which each node has at
most two children. To model branch variation of binary trees, we use

fan-out ratio a : b

to denote that, at an internal node v, the probability that v has one child is @ and
the probability that v has two children is b. For example, the extreme case of a
linear chain is modeled by ratio 1 : 0 and the extreme case of complete binary tree is
modeled by ratio 0 : 1. The first run of the experiment was conducted on the linear
chain of depth 250, and the second run on the binary tree of fan-out ratio 0.8 : 0.2
with depth of 35. The tree used in the second run was generated top-down starting
with the root, and at each node a decision is make regarding whether one or two
children are produced according to the fan-out ratio 0.8 : 0.2. There are a total of
574 tuples generated for each EDB tree in the second run. The performance of BSN,
SWESN, and ISWSN in both runs are illustrated by Figures 8 and 9, respectively.

First of all, we observe that ISWSN always needs one more iteration than BSN and
SWESN because ISWSN delays its set difference and set union operations on recursive
predicates till the next iteration. Despite this, the result of this experiment shows that
ISWSN performs significantly better than BSN and SWSN. In fact, as the number
of iterations increases, the improvement in performance increases too. Two closely
related factors contribute to the saving in I/O cost in ISWSN: the semi-naive build-up
of hash tables and the semi-naive computation of intermediate relations throughout
the evaluation. These two factors together allow the join, set difference and set union
operations to be performed in a single I/O scan of current relations at each internal
node of an evaluation tree.

4.2 Experiment 2

The second experiment investigates the performance of various evaluations on linear
rules. We borrow the the following linear rules and test data from in [KRS]:

te,y,2) 1= elz,y,z2).

Ha,y,z) +— ez, u),t(u,y,z).
Hax,y,2) +— ey,v), t(x,v,2).
ta,y,2) 1= ealz,w), t(z,y,w).



where

er = {(x,y,z)|x =100i,y = 1007, z = 100k; 1,5,k = 0,...,m}
e = {(x,y)le=y+1,y=1000 +5;:=0,...,m;5=0,...,n}

e1 can be regarded as vectors in three dimensional space. They are arranged in a cubic
grid, separated from each other by one hundred units, and contained in a cube that
has opposite vertices of (0,0,0) and (100 - m, 100 - m, 100 - m). The derived relation
t consists of all vectors on the finest cubic grids extended from points in e, with the
maximal extension in each direction being n. In this experiment, m and n are set
to the value of 3 and 4 respectively. Figure 10 shows that in evaluating these linear
rules, ISWSN performs significantly better than BSN and SWSN, because BSN and
SWSN need additional I/O scans of current relations to hash-partition the current
relations and perform set difference and set union operations. However, SWSN was
observed to give the same performance as BSN. This is so because in the particular
case of these linear rules, no intermediate relations, i.e., non-root internal nodes in
the evaluation tree, are involved and SWSN degenerates to BSN.

4.3 Experiment 3

In the third experiment, we consider a non-linear version of the transitive closure.
Transitive closure is often described as typical recursive queries and its non-linearization
would enable to achieve increased degree of parallel computation, in the sense of build-
ing longer paths out of a few shorter paths. The following non-linear version of the
transitive closure is considered:

Hr,y) = e(z,y)
tHa,y) +— e(x,z2),e(z,y).
Ha,y) +— ta,2),t(z,w), tH{w,y)

where the third rule derives the reachability of a path using reachability of three
shorter paths. The readers can easily verify that these rules correctly compute the
transitive closure of relation e. The evaluation tree for the recursive rule is as follows:



Xi(z, y)

uy(z, w)

t(x,2) t(z,w)

This experiment is conducted using the the binary tree with a fan-out ratio of
0.8:0.2 and a depth of 35. The result is shown in Figure 11, in which ISWSN performs
better than BSN and SWSN until the extra iteration of ISWSN where the total
cumulative I/O cost of ISWSN exceeds that of SWSN. A close examination reveals
that this exceeding is caused by (a) duplication work due to the approximated step-
wise semi-naive property of ISWSN and (b) the extra cost of combining buckets of
hash tables to return the least fixpoint which we have included in the last iteration of
ISWSN. However, as the number of iterations needed increases, the gain of reduced
[/O scans through semi-naive build-up of hash tables will dominate the performance

of ISWSN.

One may also notice that although Experiment 1 shows no big difference in 1/0
performance between SWSN and BSN, in Experiment 3 SWSN performs significantly
better than BSN. The reason is that the evaluation trees in Experiment 1 have more
internal nodes, i.e., 5, than the evaluation tree in Experiment 3, i.e., 2. The number
of internal nodes reflects the number of set difference and set union performed in
each iteration of SWSN. When there are more internal nodes the I/O saving by
enforcing the step-wise semi-naive property in SWSN can be offset by the overhead
of performing the additional set operations at internal nodes. However, the number of
internal nodes does not affect the performance of ISWSN much because set operations
are performed in the same [/O scan as for the join at each internal node.

In summary, the results of the three experiments have indicated that by semi-naive
build-up of hash tables, we are able to reduce the I/O cost incurred in evaluating
recursive rules. The results also indicate that three factors influence the performance
of ISWSN: the type of queries or rules, the characteristics of EDB relations, and the
amount of duplication work. In general, if the amount of duplication work introduced
by a single iteration is not “very large” and if the number of iterations needed is
“large”, ISWSN is expected to perform significantly better than BSN and SWSN.



5 Conclusion

We now conclude the paper by highlighting the progress made by each of the semi-
naive evaluation, the step-wise semi-naive evaluation, and the indexed step-wise semi-
naive evaluation. Compared to the naive evaluation that repeatedly computes all
previously computed facts plus new facts in each iteration, the semi-naive evalua-
tion computes only new facts in each iteration. However, this primitive form of the
semi-naive notion addresses only derivation of facts about recursive predicates, not
intermediate tuples generated during a rule firing. The step-wise semi-naive evalua-
tion extends the semi-naive notion to computation of all intermediate tuples so that
each iteration computes only new intermediate tuples. The indexed step-wise semi-
naive evaluation further extends the semi-naive notion to the build-up of indexes that
are used at the data access level during the evaluation. This progressive enforcement
of the semi-naive notion at the predicate level, the workspace level, and the data
access level has leaded to a substantial performance improvement of least fixpoint
evaluations.

The major drawback of the indexed step-wise semi-naive evaluation is its higher
storage space requirement as compared to the semi-naive evaluation and the step-
wise semi-naive evaluation. This is due to the fact that (a) intermediate relations
produced at each step of rule firing is stored and (b) subgoals of the same predicate
may not be able to share the same hash table. However, the strongest argument for
the indexed step-wise semi-naive evaluation is that, except for storage limitation, it
does not make sense to discard intermediate results or indexes that are known to
be used at chance of 100% in the next iteration. As storage price continuously goes
down, the constraint of storage requirement of the proposed evaluation is expected
to become less and less visible.
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Step-Wise Semi-Naive Evaluation: Evaluate a set of safe, connected, and
normalized rules.
Precondition: An evaluation tree has been constructed for each recursive rule
with at least two ordinary subgoals.
Method:
for each recursive predicate p do initialize both p and Ap by the exit rules for p;
initialize current relations of all non-root internal nodes in all evaluation trees to
empty set;
repeat

for each recursive predicate p do X, + 0;

for each recursive rule r defining some recursive predicate p do

X, « X, UINCR(r);

for each recursive predicate p do {Ap «+ X, — p; p < pU Ap};
until Ap = () for all recursive predicates p;
output relations p’s for all recursive predicates p’s.

function INCR(r) : a set of tuples for the head predicate of rule r

— —

1. if r has a single ordinary subgoal, say of the form ¢(Z) : —p(X), F', where F'is
conjunction of the built-in subgoals
then return the result of HZ(UF(Ap()?)));

2. compute the current relations and incremental relations for all non-root internal
nodes in the partial order induced by

the evaluation tree for r. More precisely, the computation at node w denoting
operation u @ v is as follows:

Aw +— u@v;

Aw +— Aw — w;

w — w U Aw;
3.  return the result of u@ v, where u@ v is the operation at the root.

Figure 3: Step-wise semi-naive evaluation



Indexed Step-Wise Semi-Naive Evaluation: Evaluate a set of mutually recursive
rules that are safe, connected, and normalized.
Precondition: An evaluation tree has been constructed for each recursive rule with
at least two different ordinary subgoals.
for each recursive predicate p do initialize p and AX, by non-recursive rules for p;
create hash tables for current relations of all subgoals;
set empty all buckets of current relations of all non-root internal nodes;
repeat

for each recursive predicate p do {Ap + AX,; AX, «+ 0};

for each recursive predicate p do for each rule r defining p do INCR(r);
until empty” = true for every recursive rule r;
output relations p, in form of hash tables on disk, for all recursive predicates p.

SR A

procedure INCR(r)
Input: r — a recursive rule with at least two ordinary subgoals;
Effect: cumulate increment for the head predicate p of r in X,,. Also update current
relations associated with internal nodes of r.
1. for the increment Ap of each recursive subgoal in r do
create a hash table and eliminate duplicates in each bucket of the table;
if 7 is a unit rule then UnitRule(r) else
{ for i =1 to n do Node(r,v;), where vq,...,v, is a bottom-up partial order
of all internal nodes of r;
empty” <— empty; A ... N\emptyg , where sq, ..., s, are the recursive
subgoals in r }.

procedure UnitRule(r)
Input: r — a unit recursive rule with the head predicate p and the recursive leaf R.
Effect: the result of [[(¢c(AR)) is added to AX,. Also, new tuples of AR are added
to R.

for 1 =1 to h do {

1. read AR';
for each page of R, denoted RP’, do
2. { read RP";
3. append the result of [J(o(RP?)) to AX, on disk, where selection o
corresponds to the built-in subgoals in r };
4. append AR’ to R' on disk;

};
5. if AR = () then empty}, + true;
6. release the disk space of AR;

Figure 4: Indexed step-wise semi-naive evaluation



procedure Node(r,v)
Input:
r — a non-unit rule with head predicate p;

v — an internal node of r;

R,AR,S, AS — child relations of node v, in form of hash tables stored on disk.
Effect: the result of [J[(R X AS)UTI(AR X S)UTI(AR X AS) is stored in buckets
of Av if v is not the root of r, or is added to relation AX,, if v is the root of r. Also,
new tuples of AR and AS are added into buckets of R and S on disk.

11.
12.
13.
14.

if v is not the root of r then Av + {;
for :=1to h do

{

read AR’ and ASY;

for each page of R', denoted RP!, do
{ |
read RP";
if v is the root then append the result of [J(RP' X AS?) to AX, on disk

else append the result of [[(RP! M AS*) to Av on disk;

remove in memory from AR’ all tuples that are in RP;
};

append AR' to R' on disk; /* R+ RUAR */

for each page of S°, denoted SP*, do
{ |
read S P
if v is the root then append the result of [[(AR’ X SP*) to Av on disk

else append the result of [[(AR' X SP*) to Av on disk;

remove in memory from AS® all tuples that are in S P
};

append AS® to S on disk; /* S < SUAS */

if v is the root then append the result of [J(AR’ X AS") to AX, on disk
else append the result of J[T[(AR' X AS?) to Av on disk;

};

if R is a recursive subgoal and AR = ) then empty}, < true;
if S is a recursive subgoal and AS = () then emptys + true;
release disk space of AR and AS;

if v is not the root then create the hash table for Av and eliminate duplicates

in each bucket of Aw.

Figure 5: Continued from Figure 4



1 < es;

AX; ¢t

5 ¢ ey4;

AX; s

create hash tables for current relations of leafs t(:z; JHw, u), s(w,u), eq(u,y) of
rule o by hash functions hs(w), hy(w,u) hy(w,uw), ho(u), respectlvely,

create hash tables for current relations of leaf tHax,w), s(w,u), es(u, z) of rule 3

by hash functions hj(w), hi(w), hh(u), respectively;
initialize hash tables for current relations of nodes uy, us, v1 to empty;
repeat

At — AXy;

AXy 0

As +— AX;

AX, 0

INCR(o);

INCR(3)
until empty® = true A empty® = true;
output relations ¢ and s in form of hash tables on disk.

INCR(a)
create hash tables for leafs At(x,w), At(w,u), As(w,u) by hash functions
hs(w), hy(w,uw), hq(w,u), respectively, and eliminate duplicates in each bucket;
Node(a, uy );
Node(a, uz);
Node(o, Xi(x,y));
empty” < emptyta(l,’w) A emptyf“(wm A empty?(wm).

INCR(S)
create hash tables for leafs At(z,w), As(w,u) by hash functions hf(w), h}(w),
respectively, and eliminate duplicates in each bucket;
Node(3,v1);
Node(B, X;(x,y));

empty” emptyﬁl,’w) A emptyf(wm).

Figure 6: Indexed step-wise semi-naive evaluation for Example 3.1



Node(or, uy)
Auy 0
for : =1 to 10 do
{ read At(w,u)" and As(w,u);
for each page of t(w,u)’, denoted RP!, do
{ read RP;
append the result of [],, ,(RP'(w,u) X As(w, u)’) to Auj on disk;
remove in memory from At(w,u)® all tuples that are in RP" };
append At(w, u)’ to t(w,u)’ on disk;
for each page of s(w,u)’, denoted SP, do
{ read SP;
append the result of [T, ,(At(w,u)’ X SP(w,u)) to Auj on disk;
remove in memory from As(w, u)® all tuples that are in SP* };
append As(w, u)’ to s(w,u)’ on disk;
append the result of [, (At(w,u)" X As(w,u)’) to Auj on disk };
if At(w,u) =10 then emptyy, .y < true;
if As(w,u) =0 then empty,, ) < true;
release disk space of At(w,u) and As(w,u);
create the hash table for Auy by hy(u) and eliminate duplicates in each bucket.

Node(a, Xt(xv y))
for : =1 to 10 do
{ read At(z,w)" and Aub;
for each page of t(z,w)’, denoted RP, do
{ read RP;
append the result of [, ,(RP*(z,w) X Auj(w,y)) to AX; on disk;
remove in memory from At(x,w)" all tuples that are in RP* };
append At(x,w)’ to t(z,w)" on disk;
for each page of u}, denoted SP', do
{ read SP;
append the result of [, ,(At(z,w) X SP(w,y)) to AX; on disk;
remove in memory from Aul all tuples that are in SP* };
append Aul, to u4 on disk;
append the result of [[,. ,(At(z,w)" X Auj(w,y)) to AX, on disk };
bl if At(z,w) =0 then empty$ + true;
release disk space of At(x,w) and Aus.

Figure 7: Continued from Figure 6
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Figure 8: Result of Experiment 1 with linear chain of depth 250
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Figure 9: Result of Experiment 1 with fan-out ratio 0.8:0.2 and depth 35
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Figure 10: Result of Experiment 2 with m = 3 and n =4
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Figure 11: Results of Experiment 3 with fan-out ratio=0.8:0.2 and depth=35



