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Abstract

A nice property of the semi�naive evaluation of recursive rules is that it does
not repeat rule �rings in di�erent iterations� In a recent study �W�� however�

it was observed that intermediate steps during a rule �ring may be repeated in
di�erent iterations� and a notion of the step�wise semi�naive property and an
evaluation with this property were proposed to capture the semi�naive prop�

erty at intermediate steps of a rule �ring� In this paper� we further extend the
semi�naive notion to the build�up of index for computing relations that grow

monotonically in each iteration� Hash tables are chosen as the index in this
study� but the idea can be applied to other types of index in general� A modi��

cation of the step�wise semi�naive evaluation based on the semi�naive build�up
of hash tables is proposed� In most cases� join� set di�erence� and set union

operations performed to �re a rule are implemented in a single I	O scan of
relations that are cumulated up to that iteration� Experiments conducted on a

few typical recursive queries and test data show that the proposed evaluation
is much more I	O cost e�ective than both the semi�naive evaluation and the
step�wise semi�naive evaluation�



� Introduction

An iterative bottom�up evaluation of recursive rules computes the least �xpoint by
�ring rules in iterations until no new facts can be derived� The term �rule �ring�
here refers to instantiation of all subgoals with established facts so that all con�
straints in the rule body are satis�ed� An evaluation has the semi�naive property
if no rule �rings in di�erent iterations are duplicated� The basic semi�naive evalua�
tion was rediscovered by several researchers �B	 BalR
	 Bayer� and was generalized
and improved a few times �BalR�	 KNSS	 RSS�� Essential to these variations of the
semi�naive evaluation are rewriting each rule into a number of di�erential or semi�
naive versions and �ring them through use of relational join operation� Recently	
the following observation regarding semi�naive evaluations was drawn �W�
 although
the semi�naive property guarantees that no rule �ring as a whole will be duplicated
in subsequent iterations	 it does not guarantee that no intermediate steps of a rule
�ring will be so duplicated� Consider the join�based implementation �a � b� � �c of
a di�erential rule p 
 �a� b��c in a semi�naive evaluation	 whereby predicates a� b� c

are recursive subgoals	 �c is the incremental version of c �arguments are omitted
for simplicity�� In iteration i	 the intermediate relation ai � bi was computed and
was discarded immediately after it is joined with �ci� When computing intermediate
relation ai�� � bi�� in iteration i � 
	 all facts in ai � bi are recomputed because
de�nite rules are monotonic �thus ai � ai�� and bi � bi���� In other words	 though
the semi�naive evaluation performs incremental computation for relations de�ned by
rules	 it fails to do the same for relations generated at intermediate steps of rule �r�
ings	 such as the result of a � b in the above example� To address the semi�naive
notion at intermediate steps of an evaluation	 the step�wise semi�naive property was
de�ned and a step�wise semi�naive evaluation was presented in �W�� The essence of a
step�wise semi�naive evaluation is that join of every two tuples during a rule �ring is
not duplicated in di�erent iterations �see Section � for more details�� This is achieved
by storing intermediate relations computed at internal nodes of the evaluation tree
for a recursive rule� It has been analytically shown �W� that much fewer tuples are
generated in the step�wise semi�naive evaluation than in the semi�naive evaluation	 a
measure of e�ciency recommended by �BR��

However	 the step�wise semi�naive evaluation still su�ers from ine�ciency because
implementation issues at access path level are not considered� Firstly	 the evaluation
gives no instruction on how indexes of relations can be shared across iterations to
speed up the query processing� For performing a large join e�ciently	 it is desirable
to make use of certain indexes	 such as hash tables in hash�based join �Bra� or sorted
lists in merge�sort join �BE�� Since current relations in any two consecutive iterations
di�er only by an increment computed in one iteration	 the join index in each iteration



can be obtained from the join index used in the last iteration by re�ecting only the
increment� Secondly	 at each intermediate step the step�wise semi�naive evaluation
needs to perform one set di�erence and one set union to remove �new� tuples that
were previously generated	 in order to enforce the step�wise semi�naive property� The
cost of these operations is ignored in the analysis of �W� where only the number of
generated tuples	 or equivalently	 the number of successful rule �rings	 is taken into
account� Since there are no immediate implementations of these set operations that
use a single scan of operand relations � �note that the result of set union is required to
be free of duplicates�	 performing these set operations at each intermediate step of a
rule �ring in a naive way could incur a heavy I�O cost in the case where databases can
not be held in the memory� Finally	 measuring only the number of tuples generated
can be largely inaccurate when the work of unsuccessful rule �rings is substantial�

In this paper	 a new bottom�up evaluation of recursive rules is proposed to rem�
edy the above problems� The proposed evaluation aims at minimizing the I�O cost
while preserving the step�wise semi�naive property by building up indexes of grow�
ing relations in a semi�naive manner	 thus the name of indexed step�wise semi�naive
evaluation� In this study	 we choose hash tables as the index	 but the methodology
is applicable to other indexes as well� By assuming that each joining pair of buckets
of increments can be held in the memory	 which is reasonable in most cases	 the I�O
cost of each iteration is only a single I�O scan of the current relations partially com�
puted up to that iteration	 where an I�O scan of a relation refers to either reading or
writing all pages of the relation once� This is the best one can possibly expect in the
absence of preprocessing and knowledge of data distribution� In contrast	 �ve such
scans are required for the step�wise semi�naive evaluation and a number of scans de�
pending on the number of recursive subgoals in the rule is required for the semi�naive
evaluation� Experiments conducted on some typical recursive queries and test data
also show that the proposed evaluation is much more I�O cost e�ective than both the
semi�naive evaluation and the step�wise semi�naive evaluation� As its major short�
coming	 however	 the proposed evaluation requires more storage space	 as compared
to the other two evaluations� In Section �	 we will remark on this issue and consider
possibilities of reducing the storage requirement by sharing hash tables among nodes
of evaluation trees�

The rest of the paper is organized as follows
 In Section � we brie�y examine the
ideas and merits of the semi�naive evaluation and the step�wise semi�naive evaluations
through examples� In Section �	 we identify I�O ine�ciency of the step�wise semi�
naive evaluation and propose the indexed step�wise semi�naive evaluation aiming at
reducing I�O cost� In Section �	 the I�O cost of the indexed step�wise semi�naive

�In many systems� set di�erence and duplicate elimination of set union are implemented through

sorting�



evaluation is analyzed and is analytically compared with the step�wise semi�naive
evaluation and the basic semi�naive evaluation� A comparison based on experiments
is given in Section �� In Section � we remark on space requirement of the proposed
evaluation	 and in Section � we conclude the paper�

� Existing Bottom�up Evaluations

Before proposing a new evaluation of recursive rules	 we review brie�y some existing
bottom�up evaluations of recursive rules� We shall restrict to strati�ed rules �BR	 U�	
so that there is a partial order among blocks of mutually recursive predicates by which
relations of recursive predicates can be monotonically evaluated over iterations� This
shall include all rules evaluable by the naive or semi�naive bottom�up evaluations
�BR�� It is assumed that the reader is familiar with the terminology in the area of
deductive databases	 such as rules	 EDB and IDB predicates	 subgoals	 least �xpoint	
etc� For more background information of deductive databases	 please refer to �BR	 U��

We shall stress that optimization strategies that rewrite rules to make their eval�
uations more e�cient do not fall into the class of evaluations� only actual query
evaluation algorithms will be considered here� A quick look at the list provided by
�BR� tells that only the naive evaluation and the semi�naive evaluation are purely
bottom�up and of general application domains� In this paper	 we are interested in
the semi�naive evaluation and the step�wise semi�naive evaluation recently proposed
in �W��

��� Basic Semi�Naive Evaluation

A few variations of the semi�naive evaluation have been proposed recently	 based on
improved strategies of evaluating loops �KNSS	 RSS�� But their essence remains the
same as the basic semi�naive evaluation	 as illustrated by the following example of a
simple recursive query�

Example ��� Assume that a recursive query has four rules


� 
 t�x� y� 
 �t�x�w�� t�w� u�� s�w� u�� e��u� y�
� 
 s�x� y� 
 �t�x�w�� s�w� u�� e��u� y�
� 
 t�x� y� 
 �e��x� y�
� 
 s�x� y� 
 �e��x� y�

t and s are recursive predicates	 and � and � are recursive rules� These rules contain
only ordinary subgoals� subgoals that are not ordinary are de�ned on predicates
�� ��� �������	 called built�in subgoals� The body of a rule refers to the right side
of 
 � and the head of a rule refers to the left side of 
 � in that rule� Figure 
 shows



the basic semi�naive evaluation of these rules� For each IDB predicate p	 the current
relation p holds the tuples computed in all previous iterations and the increment �p

holds the tuples computed only in the last iteration� The evaluation terminates when
all increments�p computed by some iteration are empty� Importantly	 the evaluation
avoids duplicating the same rule �ring in di�erent iterations by mapping rule � to
three di�erential versions and mapping rule � to two di�erential versions	 where each
di�erential version replaces exactly one recursive subgoal with its increment computed
in the last iteration� �

However	 in the semi�naive evaluation intermediate computation of a rule �ring
could still be repeated in di�erent iterations� For example	 if the join order for the �rst
di�erential version of rule � is �t � ��t � s� � e��	 computing ti � si in iteration i will
duplicate the work of computing ti�� � si�� that was previously done in iteration i�
�
One may argue that this problem will disappear if these joins are executed in a linear
order that starts with the increment	 i�e�	 ���t � t� � s� � e� for the above joins�
But such increment�headed linear join orders are usually contradictory with other
optimization requirements� For instance	 if the evaluated rule is a magic rule in which
the underlying side�way information passing strategy �BMSU� requires evaluating the
joins in a rule body from left to right	 then it is impossible to meet both ordering
requirements �i�e�	 the increment�headed linear order and the side�way information
passing order� in evaluating the third di�erential version

Q
x�y�t � t � �s � e�� of

rule �� Also	 the choice of linear join ordering completely rules out the possibility of
parallelizing multiway joins in a rule as in �Gr�� A desirable evaluation should allow
join evaluation plans that are more �exible than linear joins for the sake of further
optimizations� These observations have motivated the proposal of the step�wise semi�
naive property in �W��

��� Step�Wise Semi�Naive Evaluation

The step�wise semi�naive evaluation was proposed in �W� as an improvement of the
basic semi�naive evaluation	 by ensuring that no intermediate steps of rule �rings are
duplicated in di�erent iterations� Consider the rules in Example ��
 and assume the
join order t � ��t � s� � e�� for evaluating rule � and the join order �t � s� � e� for
evaluating rule �	 as given by the evaluation trees �W� in Figure �� Before the loop
begins	 relations for t� s��t��s are initialized by

t� e��
�t� t�
s� e��
�s� s



begin
t�� e��
�t�� t�
s�� e��
�s�� s�
repeat

�t� ��
Q

x�y��t � t � s � e��
�
Q

x�y�t � �t � s � e��
�
Q

x�y�t � t � �s � e���
�s� ��

Q
x�y��t � s � e��

�
Q

x�y�t � �s � e���
�t���t� � t�
t�� t ��t�
�s�� �s� � s�
s�� s � �s�

until �t � 	 and �s � 	�
output t and s

end�

Figure 

 Basic semi�naive evaluation of rules in Example ��


as before� Intermediate relations u�� u�� v� associated with non�root internal nodes of
the two evaluation trees are explicitly stored throughout the evaluation� The least
�xpoint is computed in relations t� s by the loop


repeat
Xt � 	�
Xs � 	�
Xt � Xt � INCR����
Xs � Xs � INCR����
�t� Xt � t�
t� t ��t�
�s� Xs � s�
s� s ��s�

until �t � 	 and �s � 	�

Functions INCR��� and INCR���	 de�ned below	 are invoked to compute new
tuples de�ned by � and � in each iteration	 respectively�

INCR���

begin



t(x,w)

t(w,u)

e (u,y)
t(x,w)

e (u,z)

Tree for Tree for 

s(w,u)

u1(w,u)

u2(w,y)

X (x,y)
t

s(w,u)

v1(x,u)

X (x,y)s

2

1

Figure �
 Evaluation trees for rules � and �

�u� ��
Q

w�u��t�w� u� � s�w� u�� �
Q

w�u�t�w� u� � �s�w� u���
�u� ���u� � u��
u� �� u� ��u��
�u� ��

Q
w�y��u��w� u� � e��u� y���

�u� ���u� � u��
u� �� u� ��u��
return the result of

Q
x�y��t�x�w� � u��w� y�� �

Q
x�y�t�x�w� ��u��w� y���

end�

INCR���

begin
�v� ��

Q
x�u��t�x�w� � s�w� u�� �

Q
x�u�t�x�w� � �s�w� u���

�v� ���v� � v��
v� �� v� � �v��
return the result of

Q
x�y��v��x� u� � e��u� y���

end�

Intuitively	 at the beginning of iteration i �i � 
�	 relations t and s contain all
tuples derived in all iterations j for j � i�
	 and increments �t and �s contain tuples
that are derived in iteration i � 
 but not derived in any iteration j for j � i � 
�



During iteration i	 each join operation derives new tuples using at least one new
tuple	 by having an increment as one of its operands� This amounts to propagating
increments from leafs to the root of the evaluation tree	 or equivalently from subgoals
towards the head of the rule� Since each join involves one operand that contains only
new tuples	 no intermediate steps of �ring rules are duplicated in di�erent iterations�
This is made possible by storing intermediate relations �such as ui� vi� produced by
each join to avoid recomputation in subsequent iterations� In �W� this property of
being free of duplication at every intermediate step of rule �rings was called the step�
wise semi�naive property and an evaluation with this property	 called the step�wise
semi�naive evaluation	 was presented�

The above step�wise semi�naive evaluation assumes that an evaluation tree is
constructed for each recursive rule with at least two ordinary subgoals� In general	
each leaf of an evaluation tree represents a subgoal of the rule and each internal node
represents a 	�join of the two children followed by a projection� More precisely	 if
an internal node w�w�� 
 
 
 � wl� has two children u�u�� 
 
 
 � um� and v�v�� 
 
 
 � vn� with
a set 	 of inequalities on arguments of w �equalities are speci�ed through shared
variables as explained below�	 then node v de�nes the operations

Y

w������wl

��u�u�� 
 
 
 � um� � v�v�� 
 
 
 � vn�� �
Y

w������wl

�u�u�� 
 
 
 � um� � �v�v�� 
 
 
 � vn��

where



Q

w������wl
is projection	


 � is 	�join	


 u� v are current relations	 and


 �u��v are increments�

If 	 is empty	� becomes the natural join with the join attributes speci�ed by variables
common to both operands� To simplify a little	 notation u

L
v will be used to denote

the above operations associated with node w� Given the topology of the evaluation
tree for a recursive rule	 which is usually determined by certain optimization strategies
such as side�way information passing or optimal order of joins	 a construction of
evaluation trees was presented in �W� with certain optimalities guaranteed� It is
required in that construction that rules are safe	 normalized	 and connected	 as de�ned
below	 but these are achievable by transformation from safe rules�

De�nition ��� ��U�	 A rule is safe if �a� every variable found in the head is found
in the body	 and �b� for every variable X not found in ordinary subgoals	 there is some
variable Y to which X is equated through a sequence of one or more � subgoals	 and



Y is either equal to some constant in a � subgoal or is an argument of an ordinary
subgoal� �

De�nition ��� ��W�	 A safe rule is normalized if it has no � subgoal��

De�nition ��
 ��RBK�	 Two predicate instances are connected if they share a vari�
able� The set of predicate instances in a rule	 including the head	 is partitioned into
connected components� A rule is connected if it has only one connected component�
�

Safety is necessary for ensuring that the �niteness of EDB relations implies the
�niteness of the least �xpoint� It was shown in �W� that every safe rule can be ef�
�ciently transformed into an equivalent	 safe	 and normalized rule by reversing the
recti�cation process �U�	 i�e�	 equating arguments whose equalities are logical con�
sequence of the � subgoals in the rule� A set of rules in which not every rule is
connected can be replaced with a set of connected rules whose �xpoint evaluation is
more e�cient �RBK��

From now on	 we consider only rules that are safe	 normalized	 and connected�
We shall assume that	 for each recursive rule with at least two ordinary subgoals	 an
evaluation tree is constructed as in �W� without further explaining the detail of the
construction� For modi�cation and comparison in subsequent sections	 we reproduce
the step�wise semi�naive evaluation of recursive rules from �W� in Figure ��

� Indexed Step�Wise Semi�Naive Evaluation

The straightforward implementation of the step�wise semi�naive evaluation as above
has some major ine�ciency� At each internal node v of an evaluation tree	 the fol�
lowing operations are performed in every iteration

�v � R
L

S�
�v � �v � v�
v � v � �v�

where R and S are the child relations of v and � versions are increments� Besides the
lack of information on use of indexes as mentioned in the introduction	 this compu�
tation requires to perform one set di�erence � and one set union � at each internal
node of an evaluation tree� Set di�erence and set union are usually more expensive
than projection and selection because they have no immediate implementations that
use only a single scan of operand relations �recall that the result of set union must
be free of duplicates�� In a large environment where databases can not be held in
the memory	 this will translate into a heavy I�O cost and degrade drastically the
performance of the evaluation� Implementations that are substantially more e�cient



than simply embedding invocation of relational operations in a loop of conventional
programming languages are crucial to the development of deductive databases� In
this section� we propose an evaluation that performs all of the above join� projection�
set di�erence� and set union associated with an internal node v in a single I�O scan
of the current relations for the children of v� Three ideas make this possible� 	a
 have
a 	small
 increment as an operand in every join performed� as o�ered by the step�wise
semi�naive evaluation� 	b
 preserve the index of current relations for use in the next
iteration� and 	c
 delay performing �v � �v� v and v � v ��v until v is scanned
as an operand relation of a later join in the tree� �a� helps avoid iterative scans of
the target relation in performing join� �b� restricts the work of building indexes to
only increments� �c� combines the scans for join and set operations associated with
an internal node into a single scan� These will be further elaborated below�

In this paper	 we choose hash tables as the index	 but the idea is not limited
to hash tables� Unlike the conventional use of performing only join	 however	 hash
tables here are used for performing join	 set di�erence	 and set union associated with
internal nodes� Each internal node will be associated with a hash function to hash�
partition its operand relations �i�e�	 child relations�� If no hash�partitioning is chosen
for an internal node	 the hash function is assumed to map every tuple to the same
bucket� The choice of hash functions can be di�erent for di�erent internal nodes�

Consider the computation in iteration i �i � 
�� Let v be any internal node of
the evaluation tree	 and R�S be the two children of v� v�R� S also denote the current
relations associated with nodes v�R� S� Let �v��R��S be the increments associated
with nodes v	 R and S� In the case of a leaf node R �similarly for S�	 �R holds the
increment computed in iteration i � 
 for the subgoal represented by leaf R	 and
relations R and �R contain only tuples that satisfy all equalities and inequalities
on arguments of that subgoal	 by �rst applying selections on these relations� In the
case of an internal node R �similarly for S�	 �R holds the increment computed in
iteration i for node R� Let h be the number of buckets de�ned by the hash function
chosen for �the operation of� internal node v� Then R�� 
 
 
 � Rh denote the buckets of
R	 and �R�� 
 
 
 ��Rh denote the buckets of �R� Similarly	 S�� 
 
 
 � Sh��S�� 
 
 
 ��Sh

for S� h is usually determined by the size of available memory �because one page of
memory is allocated to each bucket as output bu�er during the hash�partitioning�
and the type of join associated with node v� If the join predicate involves inequalities
���� ������	 hash�partitioning should not be used for the join and the number h

must be chosen as 
�

Small Increment Assumption� We shall assume that at each node v the in�
crement �v	 computed in the latest iteration	 is �much smaller� than the current
relation v	 cumulated in all previous iterations� This assumption is valid when the
number of iterations needed in a bottom�up evaluation is large	 which is usually the



case in deductive databases� When it comes to implementation	 this has the following
implications
 for every internal node having children R and S	


 the memory can hold each pair of joining buckets �Ri and �Si of increments
�R and �S	 and still enough memory is left for input and output bu�ers of the
join operation� A nice feature of the existing step�wise semi�naive evaluation is
that	 for every join performed	 one of the two operands is an increment� Then
with each bucket of the increment held entirely in the memory	 it is possible
to perform a join by scanning the current relation only once� For details	 see
the indexed step�wise semi�naive evaluation below and its analysis in Section
�� However	 we do not require the memory to hold buckets Ri or Si of current
relations R and S at once�


 within each iteration	 the number of I�O scans of current relations R and S

should be minimized	 even at the cost of a few more scans of increments �R

and �S�

To make life easier	 for a recursive rule r	 we shall use the term �a node �resp�	 a leaf	
the root� of r� as the abbreviation of �a node �resp�	 a leaf	 the root� of the evaluation
tree of r�� Now we are ready to present a new evaluation of recursive rules�

Indexed Step�Wise Semi�Naive Evaluation
 The algorithm is shown in Fig�
ures � and �� In the main program on top of Figure �	 the current relation p for each
recursive predicate p is initialized by all non�recursive rules de�ning p �line 
�	 and a
hash table is created for each leaf of an evaluation tree �line ��� In creating a hash
table for a leaf representing a p�subgoal	 the hash function associated with its parent
is applied to tuples of relation p	 which are then relocated into buckets according to
computed hash values� It is possible that hash tables of two or more leafs �in the same
or di�erent trees� are shared to save storage space� For simplicity at the moment	 we
assume that a distinct hash table is created for each leaf� sharing of hash tables will
be commented in Section �� Hash tables of current relations of all internal nodes are
initialized to empty �line ���

Within each iteration	 the algorithm computes the increment for each head predi�
cate one at a time and updates hash tables associated with internal nodes of evaluation
trees� In particular	 for each recursive rule r considered	 the algorithm calls INCR�r�
to propagate increments from leafs to the root of r �line ��� The increment computed
at the root of r is cumulated by INCR�r� in a special relation �Xp	 where p is the
head predicate of r� The main loop on top of Figure � terminates when condition
emptyr � true holds for all recursive rules r at the end of some iteration �line ��	
indicating that at the beginning of the last iteration the increment of each leaf is a
subset of the current relation of that leaf	 and therefore	 that no new tuples were



generated in the last iteration� The value of emptyr is set by INCR�r�� When the
main loop terminates	 the algorithm outputs all recursive relations p in form of hash
tables�

INCR�r�
 �a� build hash tables for increments of recursive subgoals of r	 �b�
propagate increments from leafs to the root of r	 �c� update hash tables of current
relations to re�ect their increments� For better e�ciency	 unit rules	 i�e	 rules with a
single ordinary subgoal	 and non�unit rules	 i�e�	 rules with more than one ordinary
subgoal	 are treated di�erently� For a unit rule r	 UnitRule�r� essentially computes
some projections and selections of the increment of the leaf� For a non�unit rule r	
increments are computed bottom�up from leafs to the root in a partial order induced
by the evaluation tree of r	 where the processing at an internal node v is done by
Node�r� v��

Node�r� v�
 propagate increments from children R and S to the parent v� If v is
the root of r	 the increment for v is stored in the special relation �Xp where p is the
head predicate of r	 otherwise	 it is stored in �v� This di�erent treatment of the root
allows increments for the same head predicate p produced by all recursive rules for p
to be stored in the same relation	 i�e	 �Xp	 so as to perform hash�partitioning and
duplicate elimination only once� To produce the increment at v	 the algorithm reads
pairs of buckets �Ri and �Si from disk	 
 � i � h	 one pair at a time� By the small
increment assumption	 �Ri��Si can be held in the memory at once� For each pair
�Ri��Si read	 buckets Ri and Si are scanned page by page� Each scanned page of Ri

is joined with �Si with the result appropriately projected	 denoted
Q

�RP i
� �Si��

Similarly	 each scanned page Si is joined with �Ri with result appropriately projected	
denoted

Q
��Ri � SP i�� These results are appended to the increment �v �which was

initialized to empty at the beginning of Node�r� v�� or �Xp on disk	 depending on
whether v is the root of r� During the same scan	 �R � �R � R is computed by
removing from �Ri tuples that are in Ri �line ��	 and R � R � �R is computed by
appending the updated �Ri to Ri �line ��� similar operations are performed for Si

and �Si �lines �	���
Q

��Ri � �Si� is also computed and appended to �v or �Xp

for each pair �Ri��Si read �line 
���

To reduce I�O cost	 when the result of join is appended to a �le on disk	 each disk
writing is triggered by one of two conditions
 either the output bu�er is full or the
data in the output bu�er is the last page of the result� After all pairs of buckets are
scanned	 emptyrR �resp�	 emptyrS� is set to true if R �resp�	 S� is a recursive subgoal
and the increment �R �resp�	 �S� is empty �lines 

 and 
��� This can be easily
tested by checking if every updated �Ri �resp�	 �Si� is empty at line � �resp�	 line ���
Then the disk storage for hash tables of �R and �S is released because increments
generated in the next iteration will share no tuples with old increments� Finally	 if v
is not the root of r	 the increment �v is hash�partitioned and duplicates are removed



bucket by bucket �line 
��� Since each bucket of an increment can be held entirely
in the memory	 duplicate elimination within a bucket of �v can be done in memory�
For the increment of the root	 the hash�partitioning and duplicate elimination is done
after all recursive rules de�ning the same predicate are evaluated	 that is	 in the next
iteration where the increment is scanned as that of a leaf�

It is worth mentioning that �S participates in join �line �� before duplicates are
removed from it �line ��� For �R	 however	 duplicates are removed before joined�
This implies that the indexed step�wise semi�naive evaluation approximates the step�
wise semi�naive property rather than strictly enforces it� As a result	 duplication of
work may exist at intermediate steps of rule �rings in di�erent iterations� Similar ap�
proximation arises in the approximated semi�naive evaluation where no set di�erence
is performed to remove old tuples �BR� �for the reason that set di�erence in general is
not cheap�� In our case	 duplicate tuples are eliminated �after used� in each iteration	
and if there are some duplicates participating in the join	 they must be generated only
by a single iteration� We expect that the approximation in the proposed evaluation
be better than the case of approximated semi�naive evaluation where duplicates are
never removed� In most cases	 duplication of work introduced by a single iteration
is smaller than the overhead of additional scans of the whole current relations	 and
hence this sacri�ce of the strict step�wise semi�naive property is worthwhile in order
to achieve a better performance in term of the I�O cost�

Example 
�� Consider the rules in Example ��
 and the evaluation trees in Figure
�� Assume that domains of all arguments are integers� Hash functions h�� h�� h�
associated with operations at internal nodes u�� u��Xt�x� y� can be chosen as

h��w� u� � �w � u� mod 
�
h��u� � u� mod 
�
h��w� � w� mod 
�	

and hash functions h��� h
�

� associated with operations at internal nodes v��Xs�x� y� can
be chosen as

h���w� � w� mod 
�
h���u� � u mod 
��

For example	 with i � �a � b� mod 
�	 hash function h� will map each tuple t�a� b�
for subgoal t�w� u� and each tuple s�a� b� for subgoal s�w� u� to the ith bucket of their
hash tables� Figures � and � give the indexed step�wise semi�naive evaluation of these
rules where only Node��� u�� and Node���Xt�x� y�� are expanded� the other calls can
be expanded similarly� �



� Experimental Comparison

Experiments have been conducted on UNIX machines using the language C to sup�
plement the analytical performance study of the three evaluations in Section �� In
all experiments	 disk storage was simulated by the UNIX �le system �relations are
represented by UNIX �les� and a memory of 
Mbytes is allocated for each evaluation�
Each I�O page has � Kbytes and is viewed as an array of tuples	 each tuple being

�� bytes� Therefore	 the memory has �� I�O pages of space� For each experiment
we must �
� choose a set of recursive rules that will represent our benchmark query	
��� choose some test data that will represent the EDB relations	 ��� collect the infor�
mation about the I�O cost incurred in each evaluation of the recursive rules� Three
experiments have been conducted� The �rst experiment evaluates non�linear recursive
rules	 the second evaluates linear recursive rules	 and the third evaluates a non�linear
version of transitive closure� The choice of EDB relations in each experiment will be
explained later� Each time a page is read from or written to a disk �le	 it is counted
as one page I�O�

We assume that domains of all arguments are integers and that the following hash
function is used throughout to hash�partition relations


f�w� � w mod h

where w refers to the value of a single join attribute or if there are more than one join
attributes	 the sum of their values� h	 the number of partitioned buckets	 is chosen
to be �m�� if there are �m pages of memory available� In our case	 h � 
���

We shall use the abbreviations BSN	 SWSN	 ISWSN for the basic semi�naive
evaluation	 the step�wise semi�naive evaluation	 and the indexed step�wise semi�naive
evaluation� In all graphs plotted in this section	 coordinate �x� y�	 for positive integers
x� y	 denotes the cumulative I�O cost y in number of pages at the end of xth iteration�
In the indexed step�wise semi�naive evaluation	 there is an extra I�O cost incurred to
construct the least �xpoint from hash tables of relations after the loop terminates�
This extra I�O cost is included in the cost of the last iteration�

��� Experiment �

The �rst experiment is designed to measure the I�O cost incurred by various evalu�
ations on the non�linear rules in Example ��
� For convenience	 we reproduce those
rules below

� 
 t�x� y� 
 � t�x�w�� t�w� u�� s�w� u�� e��u� y�


� 
 s�x� y� 
 � t�x�w�� s�w� u�� e��u� y�




� 
 t�x� y� 
 � e��x� y�


� 
 s�x� y� 
 � e��x� y�


Evaluation trees in Figure � are used for rules � and �� Two runs of the experiment
were conducted	 each handling a di�erent set of test data� In both runs	 EDB relations
e�� 
 
 
 � e� are identical and are binary trees	 that is	 a tree in which each node has at
most two children� To model branch variation of binary trees	 we use

fan�out ratio a 
 b

to denote that	 at an internal node v	 the probability that v has one child is a and
the probability that v has two children is b� For example	 the extreme case of a
linear chain is modeled by ratio 
 
 � and the extreme case of complete binary tree is
modeled by ratio � 
 
� The �rst run of the experiment was conducted on the linear
chain of depth ���	 and the second run on the binary tree of fan�out ratio �
� 
 �
�
with depth of ��� The tree used in the second run was generated top�down starting
with the root	 and at each node a decision is make regarding whether one or two
children are produced according to the fan�out ratio �
� 
 �
�� There are a total of
��� tuples generated for each EDB tree in the second run� The performance of BSN	
SWSN	 and ISWSN in both runs are illustrated by Figures � and �	 respectively�

First of all	 we observe that ISWSN always needs one more iteration than BSN and
SWSN because ISWSN delays its set di�erence and set union operations on recursive
predicates till the next iteration� Despite this	 the result of this experiment shows that
ISWSN performs signi�cantly better than BSN and SWSN� In fact	 as the number
of iterations increases	 the improvement in performance increases too� Two closely
related factors contribute to the saving in I�O cost in ISWSN
 the semi�naive build�up
of hash tables and the semi�naive computation of intermediate relations throughout
the evaluation� These two factors together allow the join	 set di�erence and set union
operations to be performed in a single I�O scan of current relations at each internal
node of an evaluation tree�

��� Experiment �

The second experiment investigates the performance of various evaluations on linear
rules� We borrow the the following linear rules and test data from in �KRS�


t�x� y� z� 
 � e��x� y� z�


t�x� y� z� 
 � e��x� u�� t�u� y� z�


t�x� y� z� 
 � e��y� v�� t�x� v� z�


t�x� y� z� 
 � e��z�w�� t�x� y� w�




where

e� � f�x� y� z�jx � 
��i� y � 
��j� z � 
��k� i� j� k � �� 
 
 
 �mg

e� � f�x� y�jx � y � 
� y � 
��i � j� i � �� 
 
 
 �m� j � �� 
 
 
 � ng

e� can be regarded as vectors in three dimensional space� They are arranged in a cubic
grid	 separated from each other by one hundred units	 and contained in a cube that
has opposite vertices of ��� �� �� and �
�� �m� 
�� �m� 
�� �m�� The derived relation
t consists of all vectors on the �nest cubic grids extended from points in e�	 with the
maximal extension in each direction being n� In this experiment	 m and n are set
to the value of � and � respectively� Figure 
� shows that in evaluating these linear
rules	 ISWSN performs signi�cantly better than BSN and SWSN	 because BSN and
SWSN need additional I�O scans of current relations to hash�partition the current
relations and perform set di�erence and set union operations� However	 SWSN was
observed to give the same performance as BSN� This is so because in the particular
case of these linear rules	 no intermediate relations	 i�e�	 non�root internal nodes in
the evaluation tree	 are involved and SWSN degenerates to BSN�

��� Experiment �

In the third experiment	 we consider a non�linear version of the transitive closure�
Transitive closure is often described as typical recursive queries and its non�linearization
would enable to achieve increased degree of parallel computation	 in the sense of build�
ing longer paths out of a few shorter paths� The following non�linear version of the
transitive closure is considered


t�x� y� 
 � e�x� y�


t�x� y� 
 � e�x� z�� e�z� y�


t�x� y� 
 � t�x� z�� t�z�w�� t�w� y�

where the third rule derives the reachability of a path using reachability of three
shorter paths� The readers can easily verify that these rules correctly compute the
transitive closure of relation e� The evaluation tree for the recursive rule is as follows




�
�
�
�
��

�
�
�
�
���
�
�
�
��

�
�
�
�

��

Xt	x� y


u��x�w�

t�w� y�

t�x� z� t�z�w�

This experiment is conducted using the the binary tree with a fan�out ratio of
���
��� and a depth of ��� The result is shown in Figure 

	 in which ISWSN performs
better than BSN and SWSN until the extra iteration of ISWSN where the total
cumulative I�O cost of ISWSN exceeds that of SWSN� A close examination reveals
that this exceeding is caused by �a� duplication work due to the approximated step�
wise semi�naive property of ISWSN and �b� the extra cost of combining buckets of
hash tables to return the least �xpoint which we have included in the last iteration of
ISWSN� However	 as the number of iterations needed increases	 the gain of reduced
I�O scans through semi�naive build�up of hash tables will dominate the performance
of ISWSN�

One may also notice that although Experiment 
 shows no big di�erence in I�O
performance between SWSN and BSN	 in Experiment � SWSN performs signi�cantly
better than BSN� The reason is that the evaluation trees in Experiment 
 have more
internal nodes	 i�e�	 �	 than the evaluation tree in Experiment �	 i�e�	 �� The number
of internal nodes re�ects the number of set di�erence and set union performed in
each iteration of SWSN� When there are more internal nodes the I�O saving by
enforcing the step�wise semi�naive property in SWSN can be o�set by the overhead
of performing the additional set operations at internal nodes� However	 the number of
internal nodes does not a�ect the performance of ISWSN much because set operations
are performed in the same I�O scan as for the join at each internal node�

In summary	 the results of the three experiments have indicated that by semi�naive
build�up of hash tables	 we are able to reduce the I�O cost incurred in evaluating
recursive rules� The results also indicate that three factors in�uence the performance
of ISWSN
 the type of queries or rules	 the characteristics of EDB relations	 and the
amount of duplication work� In general	 if the amount of duplication work introduced
by a single iteration is not �very large� and if the number of iterations needed is
�large�	 ISWSN is expected to perform signi�cantly better than BSN and SWSN�



� Conclusion

We now conclude the paper by highlighting the progress made by each of the semi�
naive evaluation	 the step�wise semi�naive evaluation	 and the indexed step�wise semi�
naive evaluation� Compared to the naive evaluation that repeatedly computes all
previously computed facts plus new facts in each iteration	 the semi�naive evalua�
tion computes only new facts in each iteration� However	 this primitive form of the
semi�naive notion addresses only derivation of facts about recursive predicates	 not
intermediate tuples generated during a rule �ring� The step�wise semi�naive evalua�
tion extends the semi�naive notion to computation of all intermediate tuples so that
each iteration computes only new intermediate tuples� The indexed step�wise semi�
naive evaluation further extends the semi�naive notion to the build�up of indexes that
are used at the data access level during the evaluation� This progressive enforcement
of the semi�naive notion at the predicate level	 the workspace level	 and the data
access level has leaded to a substantial performance improvement of least �xpoint
evaluations�

The major drawback of the indexed step�wise semi�naive evaluation is its higher
storage space requirement as compared to the semi�naive evaluation and the step�
wise semi�naive evaluation� This is due to the fact that �a� intermediate relations
produced at each step of rule �ring is stored and �b� subgoals of the same predicate
may not be able to share the same hash table� However	 the strongest argument for
the indexed step�wise semi�naive evaluation is that	 except for storage limitation	 it
does not make sense to discard intermediate results or indexes that are known to
be used at chance of 
��� in the next iteration� As storage price continuously goes
down	 the constraint of storage requirement of the proposed evaluation is expected
to become less and less visible�
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Step�Wise Semi�Naive Evaluation� Evaluate a set of safe	 connected	 and
normalized rules�
Precondition
 An evaluation tree has been constructed for each recursive rule
with at least two ordinary subgoals�
Method�
for each recursive predicate p do initialize both p and �p by the exit rules for p�
initialize current relations of all non�root internal nodes in all evaluation trees to
empty set�
repeat

for each recursive predicate p do Xp � 	�
for each recursive rule r de�ning some recursive predicate p do

Xp � Xp � INCR�r��
for each recursive predicate p do f�p� Xp � p� p � p ��pg�

until �p � 	 for all recursive predicates p�
output relations p s for all recursive predicates p s�

function INCR�r� 
 a set of tuples for the head predicate of rule r


� if r has a single ordinary subgoal	 say of the form q��Z� 
 �p� �X�� F 	 where F is
conjunction of the built�in subgoals

then return the result of
Q

�Z
��F ��p� �X����

�� compute the current relations and incremental relations for all non�root internal
nodes in the partial order induced by

the evaluation tree for r� More precisely	 the computation at node w denoting
operation u

L
v is as follows


�w � u
L

v�
�w � �w �w�
w � w � �w�

�� return the result of u
L

v	 where u
L

v is the operation at the root�

Figure �
 Step�wise semi�naive evaluation



Indexed Step�Wise Semi�Naive Evaluation� Evaluate a set of mutually recursive
rules that are safe	 connected	 and normalized�
Precondition
 An evaluation tree has been constructed for each recursive rule with
at least two di�erent ordinary subgoals�

� for each recursive predicate p do initialize p and �Xp by non�recursive rules for p�
�� create hash tables for current relations of all subgoals�
�� set empty all buckets of current relations of all non�root internal nodes�
�� repeat
�� for each recursive predicate p do f�p� �Xp� �Xp � 	g�
�� for each recursive predicate p do for each rule r de�ning p do INCR�r��
�� until emptyr � true for every recursive rule r�
�� output relations p	 in form of hash tables on disk	 for all recursive predicates p�

procedure INCR�r�
Input
 r ! a recursive rule with at least two ordinary subgoals�
E
ect
 cumulate increment for the head predicate p of r in Xp� Also update current
relations associated with internal nodes of r�

� for the increment �p of each recursive subgoal in r do

create a hash table and eliminate duplicates in each bucket of the table�
if r is a unit rule then UnitRule�r� else

f for i � 
 to n do Node�r� vi�	 where v�� 
 
 
 � vn is a bottom�up partial order
of all internal nodes of r�
emptyr � emptyrs� � 
 
 
 � emptyrsk 	 where s�� 
 
 
 � sk are the recursive
subgoals in r g�

procedure UnitRule�r�
Input
 r ! a unit recursive rule with the head predicate p and the recursive leaf R�
E
ect
 the result of

Q
����R�� is added to �Xp� Also	 new tuples of �R are added

to R�
for i � 
 to h do f


� read �Ri�
for each page of Ri	 denoted RP i	 do

�� f read RP i�
�� append the result of

Q
���RP i�� to �Xp on disk	 where selection �

corresponds to the built�in subgoals in r g�
�� append �Ri to Ri on disk�

g�
�� if �R � 	 then emptyrR � true�
�� release the disk space of �R�

Figure �
 Indexed step�wise semi�naive evaluation



procedure Node�r� v�
Input

r ! a non�unit rule with head predicate p�
v ! an internal node of r�
R��R�S��S ! child relations of node v	 in form of hash tables stored on disk�
E
ect
 the result of

Q
�R � �S� �

Q
��R � S� �

Q
��R � �S� is stored in buckets

of �v if v is not the root of r	 or is added to relation �Xp if v is the root of r� Also	
new tuples of �R and �S are added into buckets of R and S on disk�

if v is not the root of r then �v � 	�
for i � 
 to h do

f

� read �Ri and �Si�

for each page of Ri	 denoted RP i	 do
f

�� read RP i�
�� if v is the root then append the result of

Q
�RP i

� �Si� to �Xp on disk
else append the result of

Q
�RP i � �Si� to �v on disk�

�� remove in memory from �Ri all tuples that are in RP i�
g�

�� append �Ri to Ri on disk� �" R � R ��R "�
for each page of Si	 denoted SP i	 do
f

�� read SP i�
�� if v is the root then append the result of

Q
��Ri � SP i� to �v on disk

else append the result of
Q

��Ri � SP i� to �v on disk�
�� remove in memory from �Si all tuples that are in SP i�

g�
�� append �Si to Si on disk� �" S � S ��S "�

�� if v is the root then append the result of

Q
��Ri � �Si� to �Xp on disk

else append the result of
Q

��Ri � �Si� to �v on disk�
g�



� if R is a recursive subgoal and �R � 	 then emptyrR � true�

�� if S is a recursive subgoal and �S � 	 then emptyrS � true�

�� release disk space of �R and �S�

�� if v is not the root then create the hash table for �v and eliminate duplicates
in each bucket of �v�

Figure �
 Continued from Figure �



t� e��
�Xt � t�
s� e��
�Xs � s�
create hash tables for current relations of leafs t�x�w�� t�w� u�� s�w� u�� e��u� y� of
rule � by hash functions h��w�� h��w� u� h��w� u�� h��u�	 respectively�
create hash tables for current relations of leaf t�x�w�� s�w� u�� e��u� z� of rule �

by hash functions h���w�� h���w�� h���u�	 respectively�
initialize hash tables for current relations of nodes u�� u�� v� to empty�
repeat

�t� �Xt�
�Xt � 	�
�s� �Xs�
�Xs � 	�
INCR����
INCR����

until empty� � true � empty� � true�
output relations t and s in form of hash tables on disk�

INCR���
create hash tables for leafs �t�x�w���t�w� u���s�w� u� by hash functions

h��w�� h��w� u�� h��w� u�	 respectively	 and eliminate duplicates in each bucket�
Node��� u���
Node��� u���
Node���Xt�x� y���
empty� � empty�t�x�w� � empty�t�w�u� � empty�s�w�u��

INCR���
create hash tables for leafs �t�x�w���s�w� u� by hash functions h���w�� h���w�	
respectively	 and eliminate duplicates in each bucket�
Node��� v���
Node���Xs�x� y���

empty� � empty�
t�x�w� � empty�

s�w�u��

Figure �
 Indexed step�wise semi�naive evaluation for Example ��




Node��� u��
�u� � 	�
for i � 
 to 
� do

f read �t�w� u�i and �s�w� u�i�
for each page of t�w� u�i	 denoted RP i	 do
f read RP i�
append the result of

Q
w�u�RP

i�w� u� � �s�w� u�i� to �ui� on disk�
remove in memory from �t�w� u�i all tuples that are in RP i g�

append �t�w� u�i to t�w� u�i on disk�
for each page of s�w� u�i	 denoted SP i	 do
f read SP i�
append the result of

Q
w�u��t�w� u�i � SP i�w� u�� to �ui� on disk�

remove in memory from �s�w� u�i all tuples that are in SP i g�
append �s�w� u�i to s�w� u�i on disk�
append the result of

Q
w�u��t�w� u�i � �s�w� u�i� to �ui� on disk g�

if �t�w� u� � 	 then empty�t�w�u� � true�

if �s�w� u� � 	 then empty�s�w�u� � true�

release disk space of �t�w� u� and �s�w� u��
create the hash table for �u� by h��u� and eliminate duplicates in each bucket�

Node���Xt�x� y��
for i � 
 to 
� do

f read �t�x�w�i and �ui��
for each page of t�x�w�i	 denoted RP i	 do
f read RP i�
append the result of

Q
x�y�RP

i�x�w� � �ui��w� y�� to �Xt on disk�
remove in memory from �t�x�w�i all tuples that are in RP i g�

append �t�x�w�i to t�x�w�i on disk�
for each page of ui�	 denoted SP i	 do
f read SP i�
append the result of

Q
x�y��t�x�w�i � SP i�w� y�� to �Xt on disk�

remove in memory from �ui� all tuples that are in SP i g�
append �ui� to ui� on disk�
append the result of

Q
x�y��t�x�w�i � �ui��w� y�� to �Xt on disk g�

bf if �t�x�w� � 	 then empty�R � true�
release disk space of �t�x�w� and �u��

Figure �
 Continued from Figure �



Algorithm Total I�O cost in pages
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Figure �
 Result of Experiment 
 with linear chain of depth ���
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