Minimum Splits Based Discretization for Continuous Features

Ke Wang and Han Chong Goh
Dept of Information Systems and Computer Science
National University of Singapore
Lower Kent Ridge Road, Singapore, 119260

wangk @iscs.nus.sg

Abstract

Discretization refers to splitting the range of
continuous values into intervals so as to pro-
vide useful information about classes. This is
usually done by minimizing a goodness mea-
sure, subject to constraints such as the maxi-
mal number of intervals, the minimal number
of examples per interval, or some stopping cri-
terion for splitting. We take a different ap-
proach by searching for menimum splits that
minimize the number of intervals with respect
to a threshold of impurity (i.e., badness). We
propose a “total entropy” motivated selection
of the “best” split from minimum splits, with-
out requiring additional constraints. Experi-
ments show that the proposed method produces
better decision trees.

1 Introduction

Continuous values refer to linearly ordered values,
mainly numeric values. While continuous values are
common in real applications, many learning algorithms
focus on unordered discrete values. A common practice
is to discretize continuous values into intervals so as to
provide useful information with respect to classes. Dis-
cretization can be performed either on the whole dataset
prior to induction, i.e, global discretization, or on local
regions during induction, i.e., local discretization. We
focus on local discretization as it takes into account the
context sensitivity of the nature. One example of local
discretization is the entropy-based C4.5 [Quinlan, 1993],
in which continuous values are split into two intervals,
i.e., binary splitting, for consideration at a node. How-
ever, as pointed out in [Fayyad and Irani, 1993], an in-
teresting range is usually an internal interval within the
feature’s range, and to get to such an interval a binary-
split-at-a-time leads to unnecessary and excessive parti-
tioning of the examples. We now provide further reasons
for multi-way splits.

One frequent argument against multi-way splitting is
that a multi-way split can be “simulated” by a series of
binary splittings. Though theoretically true, this argu-
ment 1s false in the process of generating decision trees
where there is no guarantee that all “simulating” binary
splittings will be finished up before considering other
features because the splitting at each level is performed
independently. As a result, a structured multi-way split
1s hardly simulated by binary splits in practice. In ad-
dition, by restricting to only binary splits, an unstruc-
tured feature could be selected instead of a structured
but never explored multi-way split of a continuous fea-
ture, making the simple structure disappear. Consider
the following two decision trees built in one of the 10-
fold cross validation on Iris dataset. The first tree is
produced by the multi-way split proposed in this paper,
and the second by C4.5. Though both trees have the
same size and same error rate on test data, the first tree
classifies most examples at the first level using simple
rules and thus is preferred. The reason why C4.5 didn’t
select petal length at the first level is because the op-
timal binary split of petal length loses to that of petal
width. As a result, the simple one-level test for most
examples, as in the first tree, is not discovered. This
example also reveals the bias of the tree size measure:
it does not take the frequency, i.e., importance, of rules
into consideration.

petal length <= 1.9 : Iris-setosa (45.0)

petal length <= 4.7 : Iris-versicolor (41.0/1.0)
petal length > 5 : Iris-virginica (38.0)

petal length <=5 :

| petal width <= 1.7 :
| petal width > 1.7 :

Iris-versicolor (4.0)
Iris-virginica (7.0/1.0)

petal width <= 0.6 :
petal width > 0.6 :
| petal width > 1.7 :
| petal width <= 1.7 :

I | petal length <=5 :
I | petal length > 5 :

Iris-setosa (45.0)

Iris-virginica (43.0/1.0)

Iris-virginica (2.0)

Searching for a good multi-way split is significantly
more complicated than searching for a good binary split.

Iris-versicolor (45.0/1.0)

The brute-force solution is exponential in k — 1, where &
is the number of intervals considered. Since the number
of intervals in a multi-way split is unknown and not fixed
a prior, goodness measures such as the gain that are al-
ways improved by further splitting do not work directly,
and have to be coupled with other constraints or criteri-
ons. In this paper, we address the search problem in two
steps. First, we define the notion of minimum splits as
a necessary condition for a good split. A minimum split
wrt a threshold of impurity is a split that minimizes the
number of intervals subject to the threshold. We propose
a dynamic programming algorithm for finding a mini-
mum split for any impurity measure that is additive in
the sense that the impurity of several intervals is the sum
of the impurities of each interval. This includes most
standard impurity measures, such as entropy [Quinlan,
1993], twoing rule and Gini index [Breiman et al., 1984],
Sum Minority, inconsistency rate, and others. The dy-
namic programming algorithm runs in a quadratic time
in the number of starting intervals. We describe two ap-
proximation algorithms that can compute nearly optimal
solutions efficiently for large datasets.

We then propose a method of determining the “best”
split from a collection of minimum splits called candidate
splits, found in a single run of the algorithm for finding
minimum splits. The “best” split of continuous values 1s
the candidate split that has the smallest product of en-
tropy and number of intervals. Intuitively, this product
measures the total information, rather than the average
information like the standard entropy, of all intervals.
We compared the proposed minimum split method with
Release 8 of C4.5, a substantial improvement of early re-
leases on handling continuous values. The study shows
that multi-way splits usually build decision trees that are
shallow and classify more examples at upper levels of the
tree, compared to binary splits. We propose the notion
of testing depth to capture this aspect of simplicity of
decision trees, which is not addressed by the tree size.

Several recent papers have examined discretization of
continuous values. One approach, e.g., [Kerber, 1992;
Richeldi and Rossotto, 1995], starts with one inter-
val per value and repeatedly merges adjacent intervals
based on some “similarity” measure. It could be diffi-
cult to specify a good threshold of similarity so that not
too many intervals are constructed. Another approach
aims at finding a split that optimizes some goodness
criterion. Examples are [Quinlan, 1993; Catlett, 1991;
Holte, 1993; Chiu et al., 1990; Fulton et al., 1995;
Auer et al., 1995]. See [Dougherty et al., 1995] for
more on these work. In these methods, additional con-
straints, such as the maximum number of intervals,
the minimum number of examples in each interval, a
penalty function on the number of intervals, are needed
to control the number of intervals. [Catlett, 1991;

Fayyad and Irani, 1993] use recursive application of bi-
nary splitting to obtain a multi-way split coupled with
some criterion for stopping the splitting process. The
problem with such splittings is that some optimal k-way
splits do not come from bi-partitioning an interval in an
optimal (k — 1)-way split. For example, if Sum Minor-
ity is the impurity measure (i.e., the number of examples
belonging to minority classes in an interval), the optimal
3-way split (ABBBB)(AAA)(BBBBA) cannot be ob-
tained by bi-partitioning one interval in any of the (only)
two optimal binary splits

(A)(BBBBAAABBBBA),
(ABBBBAAABBBB)(A),

where A and B present examples of different classes.
The approach of multivariate decision trees considers a
combination of several continuous features rather than a
single feature at a node test. Such decision trees are still
univariate ones on the transformed features. Therefore,
the search for univariate decision trees of high perfor-
mance is a fundamental and important research area.

2 Minimum splits

We propose the notion of minimum splits as a necessary
condition for a good split. The motivation is simple: for
a given threshold of impurity, a good split should have
no unnecessary splitting with respect to the threshold,
that is, no intervals in the split can be merged with-
out exceeding the threshold. We formalize this notion
below. Assume that the training examples are initially
partitioned into Xi,..., X; such that all examples in
X; have a smaller value than those in X; for ¢ < j.
Xi,..., Xy are called bins. A simple case is that each
bin X; corresponds to one observed value. Other cases
which give a smaller k£ will be considered in Section 2.4.
By splitting bins X1, ..., X; into several intervals, we
mean that adjacent bins may be put into the same in-
terval, but no examples in the same bin can be placed in
different intervals.

2.1 Definition

Definition 2.1 (Minimum splits) Given threshold ~
of itmpurity, a n-way split of Xy,..., Xg is minimum
wrt v if n is the lowest value so that no more than ~
wmpurity is produced. A minimum split of X1,..., X;
wrt v s strong if it has the smallest impurity among all
menimum splits of X1,. .., Xy wrt~y. The minimum split
problem is to find a minimum split wrt a given threshold
of impurity.

All minimum splits wrt v (if any) have the same num-
ber of intervals but may have different impurities. All
strong minimum splits wrt y (if any) have both the same
number of intervals and the same impurity. The split se-
lection algorithm in the next section will always choose a

strong minimum split. The minimum split problem has
immediate application in feature selection. For example,
if the impurity measure is the inconsistency rate, detect-
ing irrelevant continuous features is equivalent to finding
features whose minimum splits with respect to zero im-
purity have only one interval. As another example, if a
discrete feature A has entropy a, solving the minimum
split problem for a continuous feature C' with respect to
a gives the minimum number of intervals for C' to beat
A in entropy. With this information, one can choose the
feature that has fewer branches.

We now examine algorithms for finding a minimum
split for a general impurity measure that is additive
as explained in Introduction; algorithms for a strong
minimum split can be obtained easily from such algo-
rithms. Let imp(é, j) denote the impurity of the single
interval containing all continuous values in X;,...,.X;.
Let I(xz,j) and M(x,j), respectively, denote the num-
ber of intervals and the impurity of a minimum split of
X1,...,X; with respect to z. I(x,j) and M(x,j) are
undefined if there is no such minimum split. From the
minimality of the number of intervals and the additivity
of the impurity measure,

I(x,1) = mino<j<il(x —imp(j + 1,4),7) + 1,

where only defined I(x — émp(j + 1,¢),j) are consid-
ered. That is, a minimum split of Xi,..., X; wrt x
comes from a minimum split of Xy, ..., X; wrt threshold
z—imp(j + 1,4), 0 < j < 4, such that the right-most
cutpoint j minimizes I(x —imp(j+1,%), 7). Assume that
J' minimizes I(z — émp(j + 1,4),7). Then

Mz, i) = M(z —imp(j' + 1,0),7) + imp(§’ + 1,1).

However, such a recursive computation of I(x,47) and
M (z,14) is very expensive because of repeated calls of the
same computation. We present a dynamic programming
algorithm which runs in quadratic time in the number
of starting bins.

2.2 The dynamic programming algorithm

We compute I(x,4) and M (x,) in the increasing order
of # and ¢. For a general impurity such as the real-valued
entropy, 1t does not work to enumerate all possible values
for . Our approach is to represent the domain [0,~]
of x by a number of values determined from a desired
precision of impurity denoted ¢ below. For example, a
difference in entropy less than 0.01 is usually considered
insignificant, so we can choose ¢ = 0.01. Now if threshold
~ = 0.3562, there are 37 values for # to be examined:
0.00, 0.01, 0.02, ..., 0.36. In implementation, we replace
the domain [0,v] of « with the integers {0,1,...,v/€},
where v is rounded to precision e. Accordingly, imp(j +
1,4) is replaced with Round(imp(j + 1,4)/¢), i.e., the
rounding of imp(j + 1,¢)/€ to the closest integer.

However, one critical issue must be addressed with
care: the error caused by rounding imp(j + 1,7)/¢ could
accumulate through intervals and cause defined I(z, ¢) to
be undefined. To see this, let € = 0.01, imp(1,1) = 0.545,
and imp(2,2) = 0.255. Thus, X, X» can be split into
two intervals at cutpoint j = 1 without exceeding thresh-
old # = 0.80. On the other hand, Round(imp(2,2)/¢) =
26, which leaves only 0.80/¢ — 26 = 54 for X;, making
I(54,1) undefined because Round(imp(1,1)/e) = 55. As
a result, the split at j = 1 1s mistakenly not consid-
ered. In general, since # — Round(imp(j + 1,%)/€) is
the threshold for splitting X1, ..., Xj;, the error caused
by the rounding may accumulate through intervals. To
avoid this, we perform the rounding at each interval in
such a way that the accumulated error is always within
+e. This is done by replacing Round(imp(j + 1,4)/¢)
with Round(imp(j +1,7)/¢, E(j)), where E(j) is the ac-
cumulated error up to X;. As before, Round(imp(j +
1,4)/e, E(j)) returns the rounding of imp(j + 1,¢)/e,
but the rounding direction is to reduce the error in
E(j). See below. We have omitted the part of re-
trieving cutpoints as it can be easily done by storing
the right-most cutpoint j for each pair of z and 2. Ini-
tially, I(#,0) = M(z,0) = 0 for = 0,1,...,7/¢; all
other elements of I and M are undefined. y abbreviates

Round(imp(j + 1,1)/¢, E(j)).

Round(u,v):
if v > 0 then return floor(u);
else return cedling(u);

Dynamic Programming Algorithm:
for = 0 to y/e do
E(0) = 0.0;
for i=1to k do
(*) find a j, 0 < j < ¢, such that
I(x —y,j) is defined and minimized;
if found then
Iz, i) =I(x -y, j) + 1;
M(z,i)=M(z—y,j)+yx*e
E() = E(j)+y*xec—imp(j + 1,7);

Section 3 will discuss how to determine threshold =
while applying the minimum split problem to select a
good split of continuous values. The precision € 1s usu-
ally chosen so that the number /¢ of impurity values
considered is between 10 and 100, usually between 10
and 20. A too large v/¢ does not necessarily improve
the test quality since a very small difference is likely due
to randomness.

Let us consider the complexity of the above algo-
rithm. Matrix imp(i,j) can be computed outside the
main loop. For impurity measures that use only count
information of examples and classes, such as entropy,
Sum Minority, and many others, matrix émp(i, j) can be
computed incrementally from small ¢, j to large ones in

time O(W * k%), where W is the number of classes.

Theorem 2.1 Let € be the precision of the impurity
measure. The dynamic programming finds a minimum
split for k bins (if any) wrt v impurity in O((y/e+ W)
k%) time, where W is the number of classes.

The largest k& corresponds to the case where each bin
contains exactly examples that have the same continuous
value. A smaller & is possible by merging adjacent bins,
which will be considered in subsection 2.4. Note that
the dynamic programming not only returns a minimum
split of X1,..., Xy wrt v, but also a minimum split of
Xy,..., X wrt &, where x = 0,¢,...,v—¢€ for “free”. In
Section 3, these minimum splits form the search space
of the optimal split. To find a strong minimum split,
the only change required is to add the minimization of
Mz —y,j) + y * € as the second order requirement in
step (*) of the above dynamic programming algorithm.

2.3 The greedy algorithm

If the number % of bins is large, the dynamic program-
ming algorithm could be expensive. We present a linear
time algorithm by greedily merging adjacent intervals
until the threshold 7 is exceeded. Initially, each bin X;
itself forms an interval. Let ¢mpg be the impurity for
this initial state. At each step the two adjacent intervals
whose merging adds the least impurity are merged, thus
greedily maximizing the number of mergings or mini-
mizing the number of intervals. We assume tmpy < 7,
otherwise, there is no minimum split wrt 4. For an in-
terval I;, let imp(I;) denote the impurity of ;. I; U ;11
denotes the merged interval of two adjacent intervals I;
and [;41.

Greedy Algorithm:
exceed = false;
n==k,
z = 1mpo;
while (exceed = false and n > 1) do
find the pair of adjacent intervals (I;, I;41) minimizing
A =imp(L; Uljtr) —imp(L;) — imp(Li41);
if z4+ A <~ then
merge [; and [;4q;
2= z+ A
n=n-—1;
else exceed = true;

Finding the next pair (f;, [;+1) for merging in a fixed
time without scanning all pairs of adjacent intervals is
the key of efficiency. For this purpose, we use the B-
tree [Elmasri and Navathe, 1994] from the database re-
search to index pairs of adjacent intervals ([;, [;41) in
the increasing order of increment A = imp(l; U [;41) —
imp(I;) — imp(L;11). With the B-tree of branching fac-
tor b (i.e., the average number of branches at a node)
on k indexed values, search, insertion and deletion of a

value A can be done by accessing a number of tree nodes
equal to the height of the B-tree, that is, logyk. Usually
a large b, e.g., more than 20, is chosen to reduce the
height of the B-tree. For example, if & = 20 and if there
are three million distinct values, inserting, deleting, and
searching a A value needs to access at most 5 nodes of
the tree.

We build the initial B-tree by inserting increment A
for all pairs of adjacent bins (X;, X;41). Within each
iteration, we find the smallest A at the front of the
leaf level (remember increments A are sorted at leaves)
and merge the two intervals that define this A. Sup-
pose that intervals I, Iy, I., I; are adjacent and that pair
(Ip, Ic) is merged. After the merging, Agp for (Ig, Ip)
and Ay for (I, I.) are affected, and A4 for (I, 1)
should be deleted. In the B-tree, this is done by deleting
old Agp, Ape, Acqg and inserting new Agp, Ape. To find
the old Agp, Ape, we store two pointers, p; and p,., to-
gether with increment A of every adjacent pair (I, I2).
pi points to the increment A for adjacent pair (o, I1),
and p, points to the increment A for pair (I3, I3). There-
fore, after Ay, is deleted, p; and p, stored at Ay, give
the addresses of the old A, and A.g4 for deletion. The
new A,y and A.4 are then inserted into the B-tree. The
p; and p, links are updated to reflect that new Ay, and
A4 are adjacent on these links. It can be seen that these
operations cost only a small factor of the height of the
B-tree, which still can be considered a constant for large
data size.

Theorem 2.2 The greedy algorithm runs in time O(h*
k) for k bins, where h is the height of the B-tree on k—1
ndezed values.

For a large branching factor of the B-tree, & is practi-
cally a constant as explained early.

2.4 The hybrid algorithm

The third strategy is a compromise between optimality
and speed through the following two-phase hybrid ap-
proach: the initial bins Xy, ..., X are formed by plac-
ing all examples having the same continuous value in a
bin. In the first phase, we apply the greedy algorithm to
X1,..., X to merge adjacent bins. Due to the greedy
nature, bins that are merged into the same interval have
similar class distribution and thus little or no impurity
is introduced. Let &’ be the number of intervals pro-
duced. Note that &’ < k. In the second phase, we apply
the dynamic programming algorithm to the &’ intervals
produced by the greedy algorithm, by treating such in-
tervals as starting bins. The idea is to run a fast but less
accurate algorithm on the initial large data and switch
to an accurate but slower algorithm after the number of
intervals is reduced. By applying the greedy algorithm
as interval reduction, the quadratic term &2 in Theorem

2.1 is reduced to k’2. In general, the switching point &’
represents a trade-off between optimality and speed.

3 The optimal split

We now address the central question of how to determine
the optimal split for a continuous feature at a node of
decision trees. Once the optimal split is determined for
every continuous feature, any existing selection criterion
for discrete features is applied to select the best feature
at the node. We use the entropy [Quinlan, 1993] as the
impurity measure.

As motivated in Section 2, a good split must be a min-
imum split, therefore we consider only minimum splits
when searching for the optimal split. Since any thresh-
old larger than e, gives a minimum split having at most
two intervals, where ep is the entropy of optimal binary
splits, we need only to consider thresholds not more than
ep. In other words, the search space of the optimal split
1s the set of minimum splits of Xq,..., Xi wrt x, where
z = 0,€,2¢,...,ep, which have at least two intervals.
From Section 2, these minimum splits can be found in
a single run of the dynamic programming algorithm wrt
ey. We call these splits candidate splits for feature A.
The set of candidate splits is empty only if all examples
belong to the same class, in which case there is no need
of splitting at the node. If the greedy algorithm is run in-
stead, splits after each iteration form an approximation
of candidate splits.

Let I(z, k) and M(x, k) denote the number of inter-
vals and entropy of a minimum split of X,..., X wrt
z. In the search for the goodness measure of a split,
we observed that the product I(x, k) * M (xz, k) usually
gives a reasonable quality measure of the minimum split.
On one hand, a “good” split usually has both a small
number of intervals and a small entropy, thus yielding
a small product. On the other hand, a small product
but a “not-so-small” interval number entails a very small
entropy, thus a nearly pure classification with no unnec-
essary splitting (due to minimum splits). Tt is possible,
however, that some of these intervals are very small. We
avoid such splits by requiring a minimal number of ex-
amples in an interval of a minimum split. With these
said, we have:

The optimal split for a continuous feature:
choose the candidate split that has the smallest prod-
uct of entropy and number of intervals.

There is a natural interpretation for the above selec-
tion. Suppose that feature A is split into d intervals,
with n; examples and e; entropy for the ith interval. Let
N be the total number of examples. The entropy of the
split is then given by

Elc»lzl %ei .
This is exactly the weighed average of entropies for all

intervals. Therefore, the above minimum product selec-
tion aims at minimizing the total entropy of a split. The
following corollary says that the optimal split is well be-
haved by being actually a strong minimum split.

Corollary 3.1 The optimal split selected above 1s a
strong mintmum split of Xy, ..., Xy wrt some z.

In fact, if the optimal split is not strong, there must
be another minimum split (also in the set of candidate
splits) having the same number of intervals but a smaller
entropy, which yields a smaller product and thus it 1s
preferred to the other one.

4 Empirical evaluation

We compared three algorithms: Release 8 of C4.5 (the
latest release) with the default setting, the multi-way
splitting based on dynamic programming, the multi-
way splitting based on the greedy algorithm. These
algorithms are denoted by C4.5(R8), Dynamic, and
Greedy, respectively. The hybrid algorithm is not in-
cluded because its performance is expected to lie be-
tween Dynamic and Greedy. In Dynamic, the bins to
start with correspond to examples having the contin-
uous value. Unlike early releases, C4.5(R8) improves
the performance on continuous values by employing an
MDL-inspired penalty to adjust the gain of a binary
split of continuous values. As shown in [Quinlan, 1996],
C4.5(R8) compares favorably with the multi-way split
method T2 [Auer et al., 1995] and the discretization
method [Fayyad and Irani, 1993]. Therefore, we choose
C4.5(R8) as a benchmark. Dynamic and Greedy deter-
mine the optimal split of continuous values as in Section
3 and select a feature for branching as in C4.5 using the
optimal splits for continuous features. All three algo-
rithms are applied to 15 datasets from the UCI reposi-
tory [Murphy and Aha, 1994], all involving some continu-
ous features and some involving many. All experiments
are performed using 10-fold cross validation. The size
and error rate of pruned decision trees are collected on
test data. A summary is given in Table 1. The numbers
following + are standard errors.

In Table 1, the testing depth of a decision tree 1s de-
fined as the average length of root-to-leaf paths weighed
by the numbers of examples covered by leaves. Thus,
the testing depth measures the average number of tests
needed to classify an example, thus, the average com-
plexity of rules used. A decision tree with a small testing
depth is likely to classify examples by simple rules. This
aspect of complexity is not reflected by the simple tree
size. We highlight a few results shown in Table 1: (a)
Except for a few datasets, Dynamic wins over Greedy in
all three measurements. (b) On tree size Dynamic wins
over C4.5(R8) in 12 out of 15 datasets, with 1 tie, and
on error rate Dynamic wins over C4.5(R8) in 8 out of 15,

Tree Size Error Rate Testing Depth
Dataset Dynamic Greedy C4.5(R8) Dynamic Greedy C4.5(R8) Dynamic | Greedy C4.5(R8)
anneal 77.0+1.4 75.6+ 1.6 72.84+ 2.3 56+£0.7 6.2+ 0.8 7.5+ 0.5 3.6+0.0 3.8+ 0.1 4.5+ 0.1
australian 52.7+ 2.6 57.4+ 2.0 35.7+ 3.5 14.0£ 1.6 146 £ 1.5 149+ 1.2 2.0£0.1 2.1+ 0.1 4.6+ 2.1
breast-w 25.2+ 1.4 21.7+£1.7 2824+ 1.7 50+£0.7 4.6+£0.38 56+ 0.8 2.3£0.1 2.3+ 0.2 2.8+ 0.1
bupa 42.24+ 4.0 65.4+ 4.5 43.8+ 4.0 32.7+ 2.0 373+ 2.4 34.8+ 1.5 3.8+0.3 4.0£0.2 4.3+£0.2
cleve 64.5+ 3.9 67.8+ 2.8 76.5+ 3.6 44.3+ 2.0 46.2+ 1.0 47.24+£ 2.0 2.7£0.1 2.7+ 0.1 3.6£0.1
diabetes 46.6 £ 3.9 50.1 £ 6.3 46.6 £ 4.4 25.6+ 1.8 269+ 1.7 26.1+1.5 3.8+0.1 3.3+£0.2 7.3+ 0.4
german 1189+ 4.5 156.1£ 5.0 142.8 £ 6.3 27.3+ 0.8 29.1+1.2 26.44+0.7 50+£0.1 544 0.2 6.1+ 0.2
heart 26.7+ 2.8 32.1£3.2 36.4+ 1.8 20.7+ 1.4 20.3+ 2.4 21.8+ 1.6 3.0£0.1 3.1£0.2 3.5£0.1
hepatitis 13.4+£1.2 13.74+ 0.9 182+ 1.7 189+ 2.4 20.24+ 3.3 18.2+£ 2.0 1.9+ 0.1 1.9+ 0.1 2.6+ 0.2
hypothy. 11.0£ 1.0 175+ 2.1 12.2£0.8 0.7£0.2 0.8+ 0.1 0.7+ 0.1 1.2+ 0.0 1.2+ 0.0 1.2+ 0.0
ionosphere 21.7+£2.2 285+ 1.8 272+ 1.1 11.1£ 2.0 10.6£1.8 105+ 1.4 2.9+£0.1 2.8+ 0.1 4.8+ 0.2
iris 86+ 0.7 11.0£ 0.6 88+ 0.4 73+£2.1 4.0£15 4.7+ 2.0 1.2+ 0.0 1.5+ 0.0 2.1+ 0.0
labor 6.1+1.3 6.7£1.2 6.9+£0.9 22.7+ 4.9 22.7+ 4.9 22.3+5.5 1.44+0.2 1.5+ 0.2 1.8+ 0.2
sick-euthy. 24.0+1.2 30.4+£2.7 241+ 1.7 2.2+£0.3 2.3+ 0.2 2.4+ 0.3 1.5+ 0.0 1.5+ 0.0 1.6+ 0.0
vehicle 129.0+ 6.8 156.9£ 5.5 135.2 £ 7.4 285+ 1.1 29.7+ 1.5 285+ 1.4 6.3£0.2 57+0.1 6.6+ 0.2

Table 1: 10-fold cross validation results

with 2 ties. (¢) On tree size, C4.5(R8) performs better
than Greedy in general, and on error rate, about half-
half. (d) On testing depth, both Dynamic and Greedy
win over C4.5(R8) for all 15 datasets. Decision trees
produced by Dynamic and Greedy usually are not as
deep as those produced by C4.5(R8); they tend to have
more “parallel” branches at a node, instead of “nested”
ones into the tree. After comparing actual trees, we feel
that “parallel” branches are easier to understand than
“nested” ones. In running time, Dynamic is slowest and
the other two are comparable. In this regard, the hy-
brid algorithm could be more promising to offer both
quality trees and fast speed. In conclusion, the proposed
multi-way splitting of continuous values shows some ad-
vantages over C4.5(R8). We believe that for many ap-
plication domains a multi-way splitting coupled with a
careful control on over-splitting is a powerful technique
for handling continuous values.

References

[Auer et al., 1995] P. Auer, R.C. Holte, W. Maass. The-
ory and Application of Agnostic Pac-Learning with
Small Decision Trees. In 12th International Confer-
ence on Machine Learning.

[Breiman et al., 1984] L. Breiman, J.H. Friedman, R.A.
Olshen, and C.J. Stone. Classification and Regression
Trees. Belmont, CA: Wadsworth International Group,
1984.

[Catlett, 1991] J. Catlett. On Changing Continuous At-
tributes into Ordered Discrete Attributes. In the Eu-
ropean Working Session on Learning, Springer Verlag,

164-178
[Chiu et al., 1990] D.K.Y. Chiu, B. Cheung, and A.K.C.

Wong. Information Synthesis Based on Hierarchical
Maximum Entropy Discretization. Journal of Fzperi-
mental and Theoretical Artificial Intelligence, 2(1990),
117-129

[Dougherty et al., 1995] J. Dougherty, R. Kohavi, M.
Sahami. Supervised and Unsupervised Discretization
of Continuous Features. In the 12th International
Conference on Machine Learning.

[Elmasri and Navathe, 1994] R. Elmasri and S.B. Na-
vathe. Fundamentals of Database Systems. Second
Edition, The Benjamin/Cummings Publishing Com-
pany, Inc.

[Fayyad and Irani, 1993] U.M. Fayyad and K.B. Irani.
Multi-Interval Discretization of Continuous-Valued
Attributes for Classification Learning. In 13th Inter-
national Joint Conference on Artificial Intelligence,

1022-1027.

[Fulton et al., 1995] T. Fulton, S. Kasif, and S. Salzberg.
Efficient Algorithms for Finding Multi-Way Splits for
Decision Trees. Machine Learning.

[Holte, 1993] R.C. Holte. Very Simple Classifica-
tion Rules Perform Well on Most Commonly Used
Datasets. Machine Learning, 11, 63-91.

[Kerber, 1992] R. Kerber. ChiMerge: Discretization of
Numeric Attributes. In Ninth National Conference on
Artificial Intelligence, 123-128.

[Murphy and Aha, 1994] P. Murphy and D. Aha.
Uci Repository of Machine Learning Databases.
http://www.ics.uci.edu/ mlearn/MLRepository.html

[Quinlan, 1993] J.R. Quinlan. C4.5: Programs for Ma-
chine Learning. Los Altos, CA: Morgan Kaufmann.

[Quinlan, 1996] J.R. Quinlan. Improved Use of Contin-
uous Attributes in C4.5. In Journal of Artificial In-
telligence Research 4, 7T7-90

[Richeldi and Rossotto, 1995]
M. Richeldi and M. Rossotto. Class-driven Statistical
Discretization of Continuous Attributes. In Proc. of
FEuropean Conference on Machine Learning. Lecture
Notes in Artificial Intelligence 914, Springer Verlag,
335-338

