
Minimum Splits Based Discretization for Continuous Features

Ke Wang and Han Chong Goh
Dept of Information Systems and Computer Science

National University of Singapore

Lower Kent Ridge Road� Singapore� ������

wangk�iscs	nus	sg

Abstract

Discretization refers to splitting the range of
continuous values into intervals so as to pro�
vide useful information about classes� This is
usually done by minimizing a goodness mea�
sure� subject to constraints such as the maxi�
mal number of intervals� the minimal number
of examples per interval� or some stopping cri�
terion for splitting� We take a di�erent ap�
proach by searching for minimum splits that
minimize the number of intervals with respect
to a threshold of impurity �i�e�� badness�� We
propose a �total entropy	 motivated selection
of the �best	 split from minimum splits� with�
out requiring additional constraints� Experi�
ments show that the proposed method produces
better decision trees�

� Introduction

Continuous values refer to linearly ordered values�
mainly numeric values� While continuous values are
common in real applications� many learning algorithms
focus on unordered discrete values� A common practice
is to discretize continuous values into intervals so as to
provide useful information with respect to classes� Dis�
cretization can be performed either on the whole dataset
prior to induction� i�e� global discretization� or on local
regions during induction� i�e�� local discretization� We
focus on local discretization as it takes into account the
context sensitivity of the nature� One example of local
discretization is the entropy�based C
�� �Quinlan� �����
in which continuous values are split into two intervals�
i�e�� binary splitting� for consideration at a node� How�
ever� as pointed out in �Fayyad and Irani� ����� an in�
teresting range is usually an internal interval within the
feature�s range� and to get to such an interval a binary�
split�at�a�time leads to unnecessary and excessive parti�
tioning of the examples� We now provide further reasons
for multi�way splits�

One frequent argument against multi�way splitting is
that a multi�way split can be �simulated	 by a series of
binary splittings� Though theoretically true� this argu�
ment is false in the process of generating decision trees
where there is no guarantee that all �simulating	 binary
splittings will be �nished up before considering other
features because the splitting at each level is performed
independently� As a result� a structured multi�way split
is hardly simulated by binary splits in practice� In ad�
dition� by restricting to only binary splits� an unstruc�
tured feature could be selected instead of a structured
but never explored multi�way split of a continuous fea�
ture� making the simple structure disappear� Consider
the following two decision trees built in one of the ��
fold cross validation on Iris dataset� The �rst tree is
produced by the multi�way split proposed in this paper�
and the second by C
��� Though both trees have the
same size and same error rate on test data� the �rst tree
classi�es most examples at the �rst level using simple
rules and thus is preferred� The reason why C
�� didn�t
select petal length at the �rst level is because the op�
timal binary split of petal length loses to that of petal
width� As a result� the simple one�level test for most
examples� as in the �rst tree� is not discovered� This
example also reveals the bias of the tree size measure�
it does not take the frequency� i�e�� importance� of rules
into consideration�

petal length �� ��� � Iris�setosa 	
���
petal length ��
�� � Iris�versicolor 	
�������
petal length � � � Iris�virginica 	����
petal length �� � �
� petal width �� ��� � Iris�versicolor 	
��
� petal width � ��� � Iris�virginica 	�������

petal width �� ��� � Iris�setosa 	
���
petal width � ��� �
� petal width � ��� � Iris�virginica 	
�������
� petal width �� ��� �
� � petal length �� � � Iris�versicolor 	
�������
� � petal length � � � Iris�virginica 	���

Searching for a good multi�way split is signi�cantly
more complicated than searching for a good binary split�

The brute�force solution is exponential in k�� where k
is the number of intervals considered� Since the number
of intervals in a multi�way split is unknown and not �xed
a prior� goodness measures such as the gain that are al�
ways improved by further splitting do not work directly�
and have to be coupled with other constraints or criteri�
ons� In this paper� we address the search problem in two
steps� First� we de�ne the notion of minimum splits as
a necessary condition for a good split� A minimum split
wrt a threshold of impurity is a split that minimizes the
number of intervals subject to the threshold� We propose
a dynamic programming algorithm for �nding a mini�
mum split for any impurity measure that is additive in
the sense that the impurity of several intervals is the sum
of the impurities of each interval� This includes most
standard impurity measures� such as entropy �Quinlan�
����� twoing rule and Gini index �Breiman et al�� ��
��
Sum Minority� inconsistency rate� and others� The dy�
namic programming algorithm runs in a quadratic time
in the number of starting intervals� We describe two ap�
proximation algorithms that can compute nearly optimal
solutions e�ciently for large datasets�

We then propose a method of determining the �best	
split from a collection of minimumsplits called candidate
splits� found in a single run of the algorithm for �nding
minimum splits� The �best	 split of continuous values is
the candidate split that has the smallest product of en�
tropy and number of intervals� Intuitively� this product
measures the total information� rather than the average
information like the standard entropy� of all intervals�
We compared the proposed minimum split method with
Release � of C
��� a substantial improvement of early re�
leases on handling continuous values� The study shows
that multi�way splits usually build decision trees that are
shallow and classify more examples at upper levels of the
tree� compared to binary splits� We propose the notion
of testing depth to capture this aspect of simplicity of
decision trees� which is not addressed by the tree size�

Several recent papers have examined discretization of
continuous values� One approach� e�g�� �Kerber� ����
Richeldi and Rossotto� ����� starts with one inter�
val per value and repeatedly merges adjacent intervals
based on some �similarity	 measure� It could be di��
cult to specify a good threshold of similarity so that not
too many intervals are constructed� Another approach
aims at �nding a split that optimizes some goodness
criterion� Examples are �Quinlan� ���� Catlett� ���
Holte� ���� Chiu et al�� ���� Fulton et al�� ����
Auer et al�� ����� See �Dougherty et al�� ��� � for
more on these work� In these methods� additional con�
straints� such as the maximum number of intervals�
the minimum number of examples in each interval� a
penalty function on the number of intervals� are needed
to control the number of intervals� �Catlett� ���

Fayyad and Irani� ���� use recursive application of bi�
nary splitting to obtain a multi�way split coupled with
some criterion for stopping the splitting process� The
problem with such splittings is that some optimal k�way
splits do not come from bi�partitioning an interval in an
optimal �k � ��way split� For example� if Sum Minor�
ity is the impurity measure �i�e�� the number of examples
belonging to minority classes in an interval�� the optimal
��way split �ABBBB��AAA��BBBBA� cannot be ob�
tained by bi�partitioning one interval in any of the �only�
two optimal binary splits

�A��BBBBAAABBBBA��
�ABBBBAAABBBB��A��

where A and B present examples of di�erent classes�
The approach of multivariate decision trees considers a
combination of several continuous features rather than a
single feature at a node test� Such decision trees are still
univariate ones on the transformed features� Therefore�
the search for univariate decision trees of high perfor�
mance is a fundamental and important research area�

� Minimum splits

We propose the notion of minimum splits as a necessary
condition for a good split� The motivation is simple� for
a given threshold of impurity� a good split should have
no unnecessary splitting with respect to the threshold�
that is� no intervals in the split can be merged with�
out exceeding the threshold� We formalize this notion
below� Assume that the training examples are initially
partitioned into X�� � � � � Xk such that all examples in
Xi have a smaller value than those in Xj for i � j�
X�� � � � � Xk are called bins� A simple case is that each
bin Xi corresponds to one observed value� Other cases
which give a smaller k will be considered in Section ��
�
By splitting bins X�� � � � � Xk into several intervals� we
mean that adjacent bins may be put into the same in�
terval� but no examples in the same bin can be placed in
di�erent intervals�

��� De�nition

De�nition ��� �Minimum splits� Given threshold �
of impurity� a n�way split of X�� � � � � Xk is minimum
wrt � if n is the lowest value so that no more than �
impurity is produced� A minimum split of X�� � � � � Xk

wrt � is strong if it has the smallest impurity among all
minimum splits of X�� � � � � Xk wrt �� The minimumsplit
problem is to �nd a minimum split wrt a given threshold
of impurity�

All minimum splits wrt � �if any� have the same num�
ber of intervals but may have di�erent impurities� All
strong minimum splits wrt � �if any� have both the same
number of intervals and the same impurity� The split se�
lection algorithm in the next section will always choose a

strong minimum split� The minimum split problem has
immediate application in feature selection� For example�
if the impurity measure is the inconsistency rate� detect�
ing irrelevant continuous features is equivalent to �nding
features whose minimum splits with respect to zero im�
purity have only one interval� As another example� if a
discrete feature A has entropy a� solving the minimum
split problem for a continuous feature C with respect to
a gives the minimum number of intervals for C to beat
A in entropy� With this information� one can choose the
feature that has fewer branches�

We now examine algorithms for �nding a minimum
split for a general impurity measure that is additive
as explained in Introduction� algorithms for a strong
minimum split can be obtained easily from such algo�
rithms� Let imp�i� j� denote the impurity of the single
interval containing all continuous values in Xi� � � � � Xj�
Let I�x� j� and M �x� j�� respectively� denote the num�
ber of intervals and the impurity of a minimum split of
X�� � � � � Xj with respect to x� I�x� j� and M �x� j� are
unde�ned if there is no such minimum split� From the
minimality of the number of intervals and the additivity
of the impurity measure�

I�x� i� � min��j�iI�x � imp�j � � i�� j� � �

where only de�ned I�x � imp�j � � i�� j� are consid�
ered� That is� a minimum split of X�� � � � � Xi wrt x
comes from a minimum split of X�� � � � � Xj wrt threshold
x � imp�j � � i�� � � j � i� such that the right�most
cutpoint j minimizes I�x�imp�j�� i�� j�� Assume that
j� minimizes I�x � imp�j � � i�� j�� Then

M �x� i� �M �x� imp�j� � � i�� j�� � imp�j� � � i��

However� such a recursive computation of I�x� i� and
M �x� i� is very expensive because of repeated calls of the
same computation� We present a dynamic programming
algorithm which runs in quadratic time in the number
of starting bins�

��� The dynamic programming algorithm

We compute I�x� i� and M �x� i� in the increasing order
of x and i� For a general impurity such as the real�valued
entropy� it does not work to enumerate all possible values
for x� Our approach is to represent the domain ��� ��
of x by a number of values determined from a desired
precision of impurity denoted � below� For example� a
di�erence in entropy less than ��� is usually considered
insigni�cant� so we can choose � � ���� Now if threshold
� � ������� there are �� values for x to be examined�
����� ���� ����� � � �� ����� In implementation� we replace
the domain ��� �� of x with the integers f�� � � � �� ���g�
where � is rounded to precision �� Accordingly� imp�j �
� i� is replaced with Round�imp�j � � i����� i�e�� the
rounding of imp�j � � i��� to the closest integer�

However� one critical issue must be addressed with
care� the error caused by rounding imp�j � � i��� could
accumulate through intervals and cause de�ned I�x� i� to
be unde�ned� To see this� let � � ���� imp�� � � ���
��
and imp��� �� � ������ Thus� X�� X� can be split into
two intervals at cutpoint j � without exceeding thresh�
old x � ����� On the other hand� Round�imp��� ����� �
��� which leaves only ������� �� � �
 for X�� making
I��
� � unde�ned because Round�imp�� ���� � ��� As
a result� the split at j � is mistakenly not consid�
ered� In general� since x � Round�imp�j � � i���� is
the threshold for splitting X�� � � � � Xj� the error caused
by the rounding may accumulate through intervals� To
avoid this� we perform the rounding at each interval in
such a way that the accumulated error is always within
��� This is done by replacing Round�imp�j � � i����
with Round�imp�j�� i���� E�j��� where E�j� is the ac�
cumulated error up to Xj� As before� Round�imp�j �
� i���� E�j�� returns the rounding of imp�j � � i����
but the rounding direction is to reduce the error in
E�j�� See below� We have omitted the part of re�
trieving cutpoints as it can be easily done by storing
the right�most cutpoint j for each pair of x and i� Ini�
tially� I�x� �� � M �x� �� � � for x � �� � � � � � ���� all
other elements of I and M are unde�ned� y abbreviates
Round�imp�j � � i���� E�j���

Round�u� v��
if v � � then return floor�u��
else return ceiling�u��

Dynamic Programming Algorithm�
for x � � to ��� do
E��� � ����
for i � to k do

��� �nd a j� � � j � i� such that
I�x � y� j� is de�ned and minimized�

if found then
I�x� i� � I�x� y� j� � �
M �x� i� �M �x� y� j� � y � ��
E�i� � E�j� � y � �� imp�j � � i��

Section � will discuss how to determine threshold �
while applying the minimum split problem to select a
good split of continuous values� The precision � is usu�
ally chosen so that the number ��� of impurity values
considered is between � and ��� usually between �
and ��� A too large ��� does not necessarily improve
the test quality since a very small di�erence is likely due
to randomness�
Let us consider the complexity of the above algo�

rithm� Matrix imp�i� j� can be computed outside the
main loop� For impurity measures that use only count
information of examples and classes� such as entropy�
SumMinority� and many others� matrix imp�i� j� can be
computed incrementally from small i� j to large ones in

time O�W � k��� where W is the number of classes�

Theorem ��� Let � be the precision of the impurity
measure� The dynamic programming �nds a minimum
split for k bins �if any� wrt � impurity in O������W ��
k�� time� where W is the number of classes�

The largest k corresponds to the case where each bin
contains exactly examples that have the same continuous
value� A smaller k is possible by merging adjacent bins�
which will be considered in subsection ��
� Note that
the dynamic programming not only returns a minimum
split of X�� � � � � Xk wrt �� but also a minimum split of
X�� � � � � Xk wrt x� where x � �� �� � � � � �� � for �free	� In
Section �� these minimum splits form the search space
of the optimal split� To �nd a strong minimum split�
the only change required is to add the minimization of
M �x � y� j� � y � � as the second order requirement in
step ��� of the above dynamic programming algorithm�

��� The greedy algorithm

If the number k of bins is large� the dynamic program�
ming algorithm could be expensive� We present a linear
time algorithm by greedily merging adjacent intervals
until the threshold � is exceeded� Initially� each bin Xi

itself forms an interval� Let imp� be the impurity for
this initial state� At each step the two adjacent intervals
whose merging adds the least impurity are merged� thus
greedily maximizing the number of mergings or mini�
mizing the number of intervals� We assume imp� � ��
otherwise� there is no minimum split wrt �� For an in�
terval Ii� let imp�Ii� denote the impurity of Ii� Ii � Ii��
denotes the merged interval of two adjacent intervals Ii
and Ii���

Greedy Algorithm�
exceed � false�
n � k�
z � imp��
while �exceed � false and n � � do
�nd the pair of adjacent intervals �Ij � Ij��� minimizing
� � imp�Ij � Ij���� imp�Ij �� imp�Ij����

if z �� � � then
merge Ij and Ij���
z � z ���
n � n � �

else exceed � true�

Finding the next pair �Ij � Ij��� for merging in a �xed
time without scanning all pairs of adjacent intervals is
the key of e�ciency� For this purpose� we use the B�
tree �Elmasri and Navathe� ��
� from the database re�
search to index pairs of adjacent intervals �Ij � Ij��� in
the increasing order of increment � � imp�Ij � Ij����
imp�Ij �� imp�Ij���� With the B�tree of branching fac�
tor b �i�e�� the average number of branches at a node�
on k indexed values� search� insertion and deletion of a

value � can be done by accessing a number of tree nodes
equal to the height of the B�tree� that is� logbk� Usually
a large b� e�g�� more than ��� is chosen to reduce the
height of the B�tree� For example� if b � �� and if there
are three million distinct values� inserting� deleting� and
searching a � value needs to access at most � nodes of
the tree�

We build the initial B�tree by inserting increment �
for all pairs of adjacent bins �Xj � Xj���� Within each
iteration� we �nd the smallest � at the front of the
leaf level �remember increments � are sorted at leaves�
and merge the two intervals that de�ne this �� Sup�
pose that intervals Ia� Ib� Ic� Id are adjacent and that pair
�Ib� Ic� is merged� After the merging� �ab for �Ia� Ib�
and �bc for �Ib� Ic� are a�ected� and �cd for �Ic� Id�
should be deleted� In the B�tree� this is done by deleting
old �ab��bc��cd and inserting new �ab��bc� To �nd
the old �ab��bc� we store two pointers� pl and pr � to�
gether with increment � of every adjacent pair �I�� I���
pl points to the increment � for adjacent pair �I�� I���
and pr points to the increment � for pair �I�� I��� There�
fore� after �bc is deleted� pl and pr stored at �bc give
the addresses of the old �ab and �cd for deletion� The
new �ab and �cd are then inserted into the B�tree� The
pl and pr links are updated to re�ect that new �ab and
�cd are adjacent on these links� It can be seen that these
operations cost only a small factor of the height of the
B�tree� which still can be considered a constant for large
data size�

Theorem ��� The greedy algorithm runs in time O�h�
k� for k bins� where h is the height of the B�tree on k�
indexed values�

For a large branching factor of the B�tree� h is practi�
cally a constant as explained early�

��� The hybrid algorithm

The third strategy is a compromise between optimality
and speed through the following two�phase hybrid ap�
proach� the initial bins X�� � � � � Xk are formed by plac�
ing all examples having the same continuous value in a
bin� In the �rst phase� we apply the greedy algorithm to
X�� � � � � Xk to merge adjacent bins� Due to the greedy
nature� bins that are merged into the same interval have
similar class distribution and thus little or no impurity
is introduced� Let k� be the number of intervals pro�
duced� Note that k� � k� In the second phase� we apply
the dynamic programming algorithm to the k� intervals
produced by the greedy algorithm� by treating such in�
tervals as starting bins� The idea is to run a fast but less
accurate algorithm on the initial large data and switch
to an accurate but slower algorithm after the number of
intervals is reduced� By applying the greedy algorithm
as interval reduction� the quadratic term k� in Theorem

�� is reduced to k��� In general� the switching point k�

represents a trade�o� between optimality and speed�

� The optimal split

We now address the central question of how to determine
the optimal split for a continuous feature at a node of
decision trees� Once the optimal split is determined for
every continuous feature� any existing selection criterion
for discrete features is applied to select the best feature
at the node� We use the entropy �Quinlan� ���� as the
impurity measure�
As motivated in Section �� a good split must be a min�

imum split� therefore we consider only minimum splits
when searching for the optimal split� Since any thresh�
old larger than eb gives a minimum split having at most
two intervals� where eb is the entropy of optimal binary
splits� we need only to consider thresholds not more than
eb� In other words� the search space of the optimal split
is the set of minimum splits of X�� � � � � Xk wrt x� where
x � �� �� ��� � � � � eb� which have at least two intervals�
From Section �� these minimum splits can be found in
a single run of the dynamic programming algorithm wrt
eb� We call these splits candidate splits for feature A�
The set of candidate splits is empty only if all examples
belong to the same class� in which case there is no need
of splitting at the node� If the greedy algorithm is run in�
stead� splits after each iteration form an approximation
of candidate splits�
Let I�x� k� and M �x� k� denote the number of inter�

vals and entropy of a minimum split of X�� � � � � Xk wrt
x� In the search for the goodness measure of a split�
we observed that the product I�x� k� �M �x� k� usually
gives a reasonable quality measure of the minimumsplit�
On one hand� a �good	 split usually has both a small
number of intervals and a small entropy� thus yielding
a small product� On the other hand� a small product
but a �not�so�small	 interval number entails a very small
entropy� thus a nearly pure classi�cation with no unnec�
essary splitting �due to minimum splits�� It is possible�
however� that some of these intervals are very small� We
avoid such splits by requiring a minimal number of ex�
amples in an interval of a minimum split� With these
said� we have�
The optimal split for a continuous feature�

choose the candidate split that has the smallest prod�
uct of entropy and number of intervals�
There is a natural interpretation for the above selec�

tion� Suppose that feature A is split into d intervals�
with ni examples and ei entropy for the ith interval� Let
N be the total number of examples� The entropy of the
split is then given by

 d
i��

ni

N
ei�

This is exactly the weighed average of entropies for all

intervals� Therefore� the above minimum product selec�
tion aims at minimizing the total entropy of a split� The
following corollary says that the optimal split is well be�
haved by being actually a strong minimum split�

Corollary ��� The optimal split selected above is a
strong minimum split of X�� � � � � Xk wrt some x�

In fact� if the optimal split is not strong� there must
be another minimum split �also in the set of candidate
splits� having the same number of intervals but a smaller
entropy� which yields a smaller product and thus it is
preferred to the other one�

� Empirical evaluation

We compared three algorithms� Release � of C
�� �the
latest release� with the default setting� the multi�way
splitting based on dynamic programming� the multi�
way splitting based on the greedy algorithm� These
algorithms are denoted by C
���R��� Dynamic� and
Greedy� respectively� The hybrid algorithm is not in�
cluded because its performance is expected to lie be�
tween Dynamic and Greedy� In Dynamic� the bins to
start with correspond to examples having the contin�
uous value� Unlike early releases� C
���R�� improves
the performance on continuous values by employing an
MDL�inspired penalty to adjust the gain of a binary
split of continuous values� As shown in �Quinlan� �����
C
���R�� compares favorably with the multi�way split
method T� �Auer et al�� ���� and the discretization
method �Fayyad and Irani� ����� Therefore� we choose
C
���R�� as a benchmark� Dynamic and Greedy deter�
mine the optimal split of continuous values as in Section
� and select a feature for branching as in C
�� using the
optimal splits for continuous features� All three algo�
rithms are applied to � datasets from the UCI reposi�
tory �Murphy and Aha� ��
�� all involving some continu�
ous features and some involving many� All experiments
are performed using ��fold cross validation� The size
and error rate of pruned decision trees are collected on
test data� A summary is given in Table � The numbers
following � are standard errors�
In Table � the testing depth of a decision tree is de�

�ned as the average length of root�to�leaf paths weighed
by the numbers of examples covered by leaves� Thus�
the testing depth measures the average number of tests
needed to classify an example� thus� the average com�
plexity of rules used� A decision tree with a small testing
depth is likely to classify examples by simple rules� This
aspect of complexity is not re�ected by the simple tree
size� We highlight a few results shown in Table � �a�
Except for a few datasets� Dynamic wins over Greedy in
all three measurements� �b� On tree size Dynamic wins
over C
���R�� in � out of � datasets� with tie� and
on error rate Dynamic wins over C
���R�� in � out of ��

Tree Size Error Rate Testing Depth
Dataset Dynamic Greedy C��	
R�� Dynamic Greedy C��	
R�� Dynamic Greedy C��	
R��
anneal ��� ��� 	��� ��� ���� ��� 	��� �� ���� ��� �	� ��	 ���� ��� ���� ��� ��	� ���
australian 	��� ��� 	��� ��� �	�� ��	 ����� ��� ����� ��	 ����� ��� ���� ��� ���� ��� ���� ���
breast�w �	��� ��� ���� �� ����� �� 	��� �� ���� ��� 	��� ��� ���� ��� ���� ��� ���� ���
bupa ����� ��� �	��� ��	 ����� ��� ���� ��� ���� ��� ����� ��	 ���� ��� ���� ��� ���� ���
cleve ���	� ��� ���� ��� ��	� ��� ����� ��� ����� ��� ���� ��� ��� ��� ��� ��� ���� ���
diabetes ����� ��� 	���� ��� ����� ��� �	��� ��� ����� �� ����� ��	 ���� ��� ���� ��� ��� ���
german ������ ��	 �	���� 	�� ������ ��� ���� ��� ����� ��� ����� �� 	��� ��� 	��� ��� ���� ���
heart ���� ��� ����� ��� ����� ��� ���� ��� ����� ��� ����� ��� ���� ��� ���� ��� ��	� ���
hepatitis ����� ��� ���� ��� ����� �� ����� ��� ����� ��� ����� ��� ���� ��� ���� ��� ���� ���
hypothy� ����� ��� ��	� ��� ����� ��� ��� ��� ���� ��� ��� ��� ���� ��� ���� ��� ���� ���
ionosphere ���� ��� ���	� ��� ���� ��� ����� ��� ����� ��� ���	� ��� ���� ��� ���� ��� ���� ���
iris ���� �� ����� ��� ���� ��� ��� ��� ���� ��	 ��� ��� ���� ��� ��	� ��� ���� ���
labor ���� ��� ��� ��� ���� ��� ���� ��� ���� ��� ����� 	�	 ���� ��� ��	� ��� ���� ���
sick�euthy� ����� ��� ����� �� ����� �� ���� ��� ���� ��� ���� ��� ��	� ��� ��	� ��� ���� ���
vehicle ������ ��� �	���� 	�	 ��	��� �� ���	� ��� ���� ��	 ���	� ��� ���� ��� 	�� ��� ���� ���

Table � ��fold cross validation results

with � ties� �c� On tree size� C
���R�� performs better
than Greedy in general� and on error rate� about half�
half� �d� On testing depth� both Dynamic and Greedy
win over C
���R�� for all � datasets� Decision trees
produced by Dynamic and Greedy usually are not as
deep as those produced by C
���R��� they tend to have
more �parallel	 branches at a node� instead of �nested	
ones into the tree� After comparing actual trees� we feel
that �parallel	 branches are easier to understand than
�nested	 ones� In running time� Dynamic is slowest and
the other two are comparable� In this regard� the hy�
brid algorithm could be more promising to o�er both
quality trees and fast speed� In conclusion� the proposed
multi�way splitting of continuous values shows some ad�
vantages over C
���R��� We believe that for many ap�
plication domains a multi�way splitting coupled with a
careful control on over�splitting is a powerful technique
for handling continuous values�

References

�Auer et al�� ���� P� Auer� R�C� Holte� W� Maass� The�
ory and Application of Agnostic Pac�Learning with
Small Decision Trees� In �	th International Confer�
ence on Machine Learning�

�Breiman et al�� ��
� L� Breiman� J�H� Friedman� R�A�
Olshen� and C�J� Stone� Classi�cation and Regression
Trees� Belmont� CA� Wadsworth International Group�
��
�

�Catlett� ��� J� Catlett� On Changing Continuous At�
tributes into Ordered Discrete Attributes� In the Eu�
ropean Working Session on Learning� Springer Verlag�
�
���

�Chiu et al�� ���� D�K�Y� Chiu� B� Cheung� and A�K�C�
Wong� Information Synthesis Based on Hierarchical
Maximum Entropy Discretization� Journal of Experi�
mental and Theoretical Arti�cial Intelligence� �������
����

�Dougherty et al�� ��� � J� Dougherty� R� Kohavi� M�
Sahami� Supervised and Unsupervised Discretization
of Continuous Features� In the �	th International
Conference on Machine Learning�

�Elmasri and Navathe� ��
� R� Elmasri and S�B� Na�
vathe� Fundamentals of Database Systems� Second
Edition� The Benjamin!Cummings Publishing Com�
pany� Inc�

�Fayyad and Irani� ���� U�M� Fayyad and K�B� Irani�
Multi�Interval Discretization of Continuous�Valued
Attributes for Classi�cation Learning� In �
th Inter�
national Joint Conference on Arti�cial Intelligence�
��������

�Fulton et al�� ���� T� Fulton� S� Kasif� and S� Salzberg�
E�cient Algorithms for Finding Multi�Way Splits for
Decision Trees� Machine Learning�

�Holte� ���� R�C� Holte� Very Simple Classi�ca�
tion Rules Perform Well on Most Commonly Used
Datasets� Machine Learning� � �����

�Kerber� ���� R� Kerber� ChiMerge� Discretization of
Numeric Attributes� In Ninth National Conference on
Arti�cial Intelligence� ������

�Murphy and Aha� ��
� P� Murphy and D� Aha�
Uci Repository of Machine Learning Databases�
http�!!www�ics�uci�edu! mlearn!MLRepository�html

�Quinlan� ���� J�R� Quinlan� C��� Programs for Ma�
chine Learning� Los Altos� CA� Morgan Kaufmann�

�Quinlan� ���� J�R� Quinlan� Improved Use of Contin�
uous Attributes in C
��� In Journal of Arti�cial In�
telligence Research �� �����

�Richeldi and Rossotto� ����

M� Richeldi and M� Rossotto� Class�driven Statistical
Discretization of Continuous Attributes� In Proc� of
European Conference on Machine Learning� Lecture
Notes in Arti�cial Intelligence �
� Springer Verlag�
�������

