
Some Positive Results for Boundedness of

Multiple Recursive Rules

Ke Wang

Department of Information Systems and Computer Sciences
National University of Singapore

Lower Kent Ridge Road� Singapore ����

Abstract� Following results are sketched in this extended abstract� ���
Datalog recursive programs where each rule has at most one subgoal
called unit recursions are shown to be bounded� with an e	ective con

struction of equivalent non
recursive programs� ��� A generalized chain

program� which allow IDB predicates of arbitrary arity and remove the
uniqueness condition of chain variables� is bounded if and only if it is
a unit recursion� �
� The characterization of uniform unboundedness for
linear sirups in �NS� is extended to a substantial superclass called class
C
�� ��� Boundedness for class C� with multiple exit rules is decidable

in polynomial space� ��� Predicate boundedness is decidable in doubly
exponential time for a large class of Datalog programs that properly con

tains all connected monadic programs� ��� For binary linear programs�
program boundedness is decidable if each recursive predicate is de�ned
by at most one recursive rule� predicate boundedness is also decidable if
each recursive predicate is mutually recursive with one another�

� Introduction

This abstract presents some positive results of the boundedness problem for logic
programs with multiple rules and multiple recursive predicates� The boundedness
problem is to answer whether a given recursive program is equivalent to a non�
recursive program� i�e�� whether the program is bounded� Detecting bounded
programs is a powerful optimization technique as a bounded program needs
only a �xed number of iterations in evaluation or can simply be replaced by
a non�recursive program� Unfortunately� this problem is undecidable in many
cases� which include� among others� programs with a single recursive rule �Ab��
linear programs with one binary IDB predicate �Va�� and programs with two
linear recursive rules and one initialization rule �Va�� Because of the inherent
di�culty of boundedness problem� the positive results in earlier work �HKMV�
Io� Na� NS� Va� have been obtained mainly for programs of a single recursive
rule except for monadic programs �CGKV�� some strongly restricted chain rules
�AP� BKBR� Gu� that correspond naturally to productions of a context�free
grammar� as well as typed rules with a single predicate 	not only a single IDB
predicate
 �S�� There is a lack of positive results for more general rules�

The following are the contributions in this paper�



� 	Section �
 Datalog programs in which each recursive rule has at most one
subgoal are bounded� Such programs are called unit recursions in this paper�
The result is also extended to a more general case� called pseudo�unit recur�
sions� where each recursive rule has at most one recursive subgoal and the
variables in all non�recursive subgoals occur in the recursive subgoal� A con�
struction of a non�recursive program that is equivalent to a unit recursion
	resp�� pseudo�unit recursion
 is presented� The constructed non�recursive
program may have many rules� but each rule is very simple and the depth
of the program is very small� a feature desirable for parallel evaluation�

� 	Section �
 Reduction of boundedness to �niteness of CFL for 
chain rules�
�AP� BKBR� Gu� is extended to more general programs� called generalized
chain programs� It is shown that a generalized chain program is bounded if
and only if it is a unit recursion� In all 
chain rules� studied previously in
the literature� uniqueness of chain variables has been a crucial requirement
for mapping rules to productions of a CFG� Our generalization is substantial
in that IDB predicates of arbitrary arity are allowed and uniqueness of chain
variables is no longer required�

� 	Section �
 We extend the characterization of uniform unboundedness for
linear sirups in �NS� to a superclass of the class C de�ned there� which
we call class C�� For a linear sirup in C�� the restriction that no linking
variables are mapped to persistent variables� which is a crucial requirement
in �NS�� is removed� All linear sirups e�ciently identi�ed as in C by methods
in �NS� as well as more linear sirups can be e�ciently identi�ed as in C� by
a method given in this paper�

We also extend the language 	or automata
 theoretic approach in �CGKV�
for monadic programs to arbitrary Datalog programs� In particular�

� 	Section �
 We show that boundedness 	not just uniform boundedness
 for
linear sirups with a recursive rule in class C� and with multiple exit rules is
decidable in polynomial space� Positive results of boundedness were obtained
in �NS� only for a re�nement of class C with one strongly restricted exit rule�

� 	Section �
 We show that predicate boundedness is decidable in doubly ex�
ponential time for a large class of arbitrary Datalog programs that properly
contains all connected monadic programs �CGKV��

� 	Section �
 We show that program boundedness is decidable for binary linear
programs in which each recursive predicate is de�ned by at most one recur�
sive rule and that predicate boundedness is also decidable if each recursive
predicate is mutually recursive with one another� These results generalize
the decidability of boundedness for linear binary sirups in �Va��

� In the spirit of �CGKV�� it follows immediately from our results that con�
tainment problem is decidable for programs considered in Sections ��� and
��

Due to compactness of the presented materials� certain knowledge of work in
�CGKV� Gu� Na� NS� Va� is helpful in reading the paper�



� Preliminary

A program has an IDB graph in which nodes are IDB predicates of the program
and there is a directed edge � q� p � if q occurs in the body of a rule whose head
predicate is p� we say that this rule contributes to this edge� An IDB predicate
q is useful to an IDB predicate p if there is a 	directed
 path from q to p in the
IDB graph� otherwise� q is useless to p� A sirup consists of one recursive rule and
some number of exit rules� A monadic program is a program in which all IDB
predicates have arity one�

A DB of a program P is a set of ground predicate instances� called tuples�
for the predicates in P � An EDB is a DB in which the set of tuples for the IDB
predicates in P is empty� For each DB or EDB I� qiP 	I
 denotes the set of tuples
for an IDB predicate q that can be derived by at most i applications of rules
in P � and let q�P 	I
 � �i��q

i
P 	I
� A program P� is contained 	resp�� uniformly

contained
 in a program P� wrt q if q
�
P�
	I
 � q�P�	I
 for every EDB 	resp�� DB
 I�

P� is equivalent 	resp�� uniformly equivalent
 to P� wrt q if P� is contained 	resp��
uniformly contained
 in P� wrt q and vice versa� q is bounded 	resp�� uniformly
bounded
 in P if there exists some k� depending only on P � such that for every
EDB 	resp�� DB
 I� q�P 	I
 � �ki��q

i
P 	I
� This testing is called predicate bound�

edness problem� P is bounded 	resp�� uniformly bounded
 if q is bounded 	resp��
uniformly bounded
 in P for every IDB predicate q in P � This testing is called
program boundedness problem� It is known that q is bounded 	resp�� uniformly
bounded
 in P if and only if P is equivalent 	resp�� uniformly equivalent
 to a
non�recursive program wrt q� Note that� 	�
 decidability of program bounded�
ness does not necessarily imply decidability of predicate boundedness and 	�

uniform boundedness implies boundedness�

Let q be an IDB predicate in a program P � A partial q�expansion is a conjunc�
tion of predicate instances that can be generated by some sequence of backward
applications of rules in P beginning with an instance of q containing distinct
distinguished variables 	dv�s
� See �NS� for a detailed de�nition of backward ap�
plications of rules� A q�expansion is a partial q�expansion that contains only
EDB predicates� The relation speci�ed by a q�expansion A�� � � � � An is

f	v�� � � � � vi
 j 	�w�
 � � � 	�wj
	A� � � � ��An
g�

where v�s are dv�s and w�s are non�distinguished variables 	ndv�s� i�e�� existen�
tial variables
 introduced by backward applications� Given an EDB I� q�P 	I

is equivalent to the in�nite union of the relations speci�ed by all q�expansions�
It was shown in �Na� that q is bounded in P if and only if for q�expansions
C�� C�� � � � there is some N � � such that for every n � N � the relation speci�ed
by Cn is contained in Cm for some m � N � Note that Cn is contained in Cm if
and only if there is a containment mapping from Cm to Cn �CM��

� Boundedness of Unit and Pseudo�Unit Recursions

We �rst consider programs in which each recursive rule has only one subgoal� We
show that such programs are always bounded by constructing a non�recursive



equivalent program�

��� Unit Recursions

De�nition�� A recursive rule in a program is a unit rule if it has exactly one
subgoal� otherwise� it is a non�unit rule� A program is a unit recursion if every
recursive rule in it is a unit rule�

Clearly� a program P is not a unit recursion if and only if the IDB graph of
P has a cycle on which at least one edge is contributed by a non�unit rule in P �
We will call such cycles non�unit cycles�

Example �� Consider a program consisting of the following rules�

r� � p	x� y� z
 � �q	x� y� z� z

r� � r	z� x� y
 � �p	x� y� z

r� � q	x� x� y� z
 � �r	x� y� z

r� � q	w� x� y� z
 � �e	w� x� y� z

r� � v	x� y� z
 � �r	x� y� w
� e�	w� y� z

r	 � p	x� y� y
 � �v	x� y� z
� q	z� w� x� y

r
 � r	x� z� y
 � �p	x� y� z
� u	x� y


This program is not a unit recursion because non�unit rules r�� r	� r
 contribute
to edges of a cycle in the IDB graph� However� a program consisting only of the
�rst �ve rules is a unit recursion� since in this case r� is not a recursive rule
and all recursive rules r�� r�� r� are unit rules�

The next example illustrates some basic idea of constructing an equivalent
non�recursive program for a unit recursion�

Example 	� Consider the unit recursion given by the �rst �ve rules r�� � � � � r� in
Example �� We want to �nd a non�recursive program equivalent to this program
wrt Q � fq� vg� Suppose that the relation for q receives a 
canonical� tuple t� i�e��
a tuple consisting of distinct variables� through initialization rule r�� Other tuples
can be derived from t by applying recursive rules r�� r�� r�� In applying rules� we
treat variables in t as unknown values so that they can be equated or replaced
with constants if necessary for applying a rule� For instance� to apply r� to t the
last two variables in tuple t must be equated� Assume we have derived all tuples
from t by applying rules r�� r�� r� in this manner� Let t� be any derived tuple for
q �or r
� The variables in t� must appear in the original tuple t because all rules
are safe� Let t�� be obtained from t by equating or replacing �with constants

whatever variables that were equated or replaced in the derivation of t�� Then
the derivation of t� �from the corresponding tuple in e
 can be represented by a
rule q	t�
 � �e	t��
 �or r	t�
 � �e	t��

� If we so construct a rule for each derived
t�� the recursive rules r�� r�� r� can be removed because each derivation has been
represented by one of these new rules� As a result� the program becomes non�
recursive and equivalent to the original program wrt fq� vg�



In the above example� the canonical tuple for q is transformed by a block
of mutually recursive rules into tuples for predicates� q and r� that are useful
for answering the query� q and v� In each transformation� we are interested in
the mapping from the initial tuple 	possibly with some variables equated or
replaced by constants
 to the �nal derived tuple� not the intermediate steps
in the transformation� If each recursive rule is a unit rule� there are only a
bound number of such mappings and each mapping can be represented by a
non�recursive rule� In fact� we can e�ectively construct all non�recursive rules
representing mappings�

Theorem�� Let P be a unit recursion and let Q be a set of query predicates� a
non�recursive program equivalent to P wrt Q can be constructed e�ectively�

Due to space limitation� the construction is omitted here�

��� Pseudo�Unit Recursions

Now we extend the algorithm in subsection ��� to more general programs�

De�nition�� A recursive rule in a program is a pseudo�unit rule if it has the
form

p � �q� e�� � � � � ek� k � �

where �a
 q is mutually recursive with p and none of e�� � � � � ek is mutually recur�
sive with p� �b
 every variable that appears in some of e�� � � � � ek also appears in
q� A program is a pseudo�unit recursion if every recursive rule is a pseudo�unit
rule�

The attachment e�� � � � � ek in the above pseudo�unit rule can be considered as

conditions� on tuples for the subgoal q� By modifying the concept of mappings
de�ned for unit recursions to account for such 
conditions�� we can e�ectively
construct all non�recursive rules that represent mappings as in subsection ����
So we have

Theorem�� Let P be a pseudo�unit recursion� For any non�empty set Q of
query predicates� a non�recursive program equivalent to P wrt Q can be con�
structed e�ectively�

� Generalized Chain Programs

In this section� we consider several classes of programs for which the condition
of unit recursion is both necessary and su�cient for boundedness�

De�nition	� A program P is a generalized chain program if for every predicate
p there are two distinct positions hp and tp� called the head position and the
tail position of p� such that every rule in P has the form �up to reordering of
subgoals
�



q	x
 � �q�	y�
� � � � � qk	yk
� k � ��

where �a
 x�hq� � y��hq� �� x�tq� � yk�tqk �� and �b
 for � � i � k� yi�tqi � �
yi���hqi�� � and are �not necessarily distinct
 ndv�s� �We use u�i� to denote the
ith argument of u
 A generalized chain program is simple if in each rule a ndv
appears in at most one head position �or tail position
� A program is stationary
if every rule in the program has the form q	x
 � �q�	x
� � � � � qk	x
� where x is a
vector of distinct dv�s�

A stationary program is obviously bounded� Unlike all previously studied

chain rules� �AP� BKBR� Gu�� we do not require that ndv�s as chain variables
be distinct� Even the most restricted class of simple generalized chain programs
contains properly all chain programs in �AP� BKBR� Gu��

Theorem
� 	�
 Every uniformly connected program in �Gu� that is not station�
ary is a simple generalized chain program� 	�
 Every general chained program in
�Gu� is a simple generalized chain program� The converse is not true for each of
	�
 and 	�
�

Example �� Consider the following simple generalized chain program�

q	x�� x�� x�
 � �q	u� x�� u
� q	x�� u� x�
�

where hq � � and tq � �� This rule is uniformly connected but not general
chained �Gu�� The following simple generalized chain program�

q	x�� x�� x�
 � �q	x�� u� z
� q	z� x�� x�
�

where hq � � and tq � �� is general chained but not uniformly connected �Gu��

Rule bodies in a generalized chain program are considered naturally as strings
of predicate instances in the order they are written� so are partial expansions
generated by such programs� In the following� we reduce boundedness of some
generalized chain programs to �niteness of CFL� We associate with each Datalog
program P and each IDB predicate q a CFL L	P� q
 generated by a grammar
CFG � 	P� q
 given below� With each EDB predicate b we associate a terminal
symbol tb� and with each IDB predicate p we associate a non�terminal symbol
vp� The productions of � 	P� q
 are obtained by replacing in each rule of P all
occurrences of predicates by the corresponding grammar symbols� deleting all the
variables in the rules� and turning � � into �� The starting symbol of � 	P� q

is vq � the symbol associated with q� The graph of a CFG is a directed graph
that contains all non�terminal symbols as nodes� and contains a directed edge
� A�B � whenever there is a production A� � such that B is in ��

Theorem�� Let P be a simple generalized chain program and q be an IDB
predicate� q is bounded in P if and only if L	P� q
 is �nite�



The proof is essentially the same as in �Gu�� that is� the uniqueness of variables
in head 	resp�� tails
 positions implies that the mapping from a q�expansion Cl

to a q�expansion Cm always maps the ith predicate instance in Cl to the ith
predicate instance in Cm� In the following� we consider reduction of some non�
simple subclasses� The �rst such subclass is based on the observation that the
above uniqueness is only required for head 	resp�� tail
 positions of instances of
the same predicate� since containment mappings preserve predicates�

Let P be a generalized chain program� Given two predicates p and q� we say
that p is directly left 	resp�� directly right
 dependent on q if either p � q or there
is a rule in P such that p is the head predicate and q is the predicate of the �rst
	resp�� last
 subgoal in the body� The left 	resp�� right
 dependency is de�ned to
be the transitive closure of the direct left 	resp�� right
 dependency�

De�nition�� Let P be a generalized chain program and r be a rule in P � r
is type � wrt P if the following conditions hold� if a ndv u occurs in two tail
positions tp and tq in the body of r� then p and q are not right dependent on a
common predicate� and if a ndv u occurs in two head positions hp and hq in the
body of r� then p and q are not left dependent on a common predicate� P is type
� if every rule in P is type � wrt P �

For a generalized chain program of type �� it can be shown that in any
expansion variables at the head position in two instances of the same predicate
are pairwise distinct� So we have

Theorem
� Let P be a type � generalized chain program and q be an IDB
predicate� q is bounded if and only if L	P� q
 is �nite�

Reduction to �niteness of a CFL also holds as long as in any expansion all
predicate instances sharing variables at head 	or tail
 positions are no more than
a �xed number of predicate instances apart� In the following� an IDB predicate is
called recursion�related in a program if either it is recursive or it can be reached
from a recursive predicate in the IDB graph of the program�

De�nition��� Let P be a generalized chain program and r be a rule in P � r is
type � wrt P if for every recursion�related predicate instance p in the body of r�
subgoals on the left of p and subgoals on the right of p have disjoint variables at
all head �or tail
 positions� P is type � if every rule in P is type 	 wrt P �

However� disjointness of variables is not required for non�head 	or non�tail

positions on the two sides�

Theorem��� Let P be a type � generalized chain program and q be an IDB
predicate� q is bounded if and only if L	P� q
 is �nite�

Since for each q�expansion there is a word in L	P� q
 of the same length� as a
corollary of proofs of the above reduction� boundedness of the above programs
in fact implies boundedness of length of expansions� as stated in the following
corollary�



Corollary ��� Let P be a generalized chain program that is either simple� or
type �� or type �� An IDB predicate q is bounded in P if and only if q�expansions
in P have a bounded length�

But q�expansions have a bounded length if and only if all recursive rules
de�ning predicates useful to q are unit rules 	as de�ned in Section �
� So we
have an e�cient characterization of boundedness for the above programs�

Theorem��� Let P be a generalized chain program that is either simple� or
type �� or type �� Let q be an IDB predicate� If P has no useless predicates to
q� then the following are equivalent� 	�
 L	P� q
 is �nite� 	�
 q is bounded in P �
	�
 The IDB graph of P has no non�unit cycle� 	�
 P is a unit recursion�

Based on Theorem ��� we can show that boundedness and uniform bounded�
ness coincide for each of the above three subclasses of generalized chain programs�

Theorem��� Let P be a generalized chain program that is either simple� or
type �� or type �� Let q be an IDB predicate� Assume that P contains no useless
predicates to q� Then q is bounded in P if and only if q is uniformly bounded in
P �

� Extending the A�V Graph Approach

In �NS�� uniform boundedness for a linear sirup in a class calledC is characterized
by absence of chain generating paths in the A�V graph of the linear sirup�
Unfortunately� membership in C is di�cult to test and only some su�cient
conditions are given there� We now extend that characterization to a superclass
of C� called C�� so that more programs can be e�ciently identi�ed to suit the
characterization� See �NS� for de�nitions of A�V graphs� persistent variables�
linking variables� chain generating paths� Non�persistent variables are variables
	dv�s or ndv�s
 that are not persistent�

De�nition�	� Let r be the recursive rule of a linear sirup de�ning an IDB
predicate q� A non�persistent variable V in r is called a target link if for any
pair Ci and Cj of q�expansions with i 	� j� whenever Ci maps to Cj� no instance
of V is mapped to a persistent variable� r is in class C� if either it has no chain
generating paths or has a chain generating path on which all linking variables
�i�e�� ndv�s on this path
 are target links�

Note that a linear sirup is in class C if and only if all linking variables are
target links� But for class C�� being target links is required only for the linking
variables on a single chain generating path� The following generalizes results in
�NS��

Theorem�
� 	�
 C 
 C�� 	�
 For every r � C�� r is uniformly unbounded if
and only if r has a chain generating path�



Finding all target links is not an easy task� The following theorem �nds
enough target links so that all programs identi�ed as in class C by all lemmas in
�NS� 	i�e�� Lemmas ���� ���� ���� and ���
 as well as some other programs can be
e�ciently identi�ed as in class C�� We �rst de�ne a relationship between two
predicate instances�

De�nition��� Let r be the recursive rule of a linear sirup� Let e and e� be
two �not necessarily distinct
 predicate instances in the body of r� e � e� if all
following conditions hold� �a
 they are instances of the same predicate� �b
 if
position t in e has a persistent variable X� then position t in e� has X� �c

if position t in e has a target link� then position t in e� has a non�persistent
variable� and �d
 if positions t and s in e share a variable� then positions t and
s in e� share a variable�

Intuitively� e � e� is a necessary 	but not necessarily su�cient
 condition for
an instance produced by e to be mapped to an instance produced by e� in any
containment mapping between expansions generated by the linear sirup�

Theorem��� Let r be the recursive rule in a linear sirup and V be a variable
in r� Then V is a target link if one of the following holds� 	�
 	Basis
 V is a ndv
appearing in a non�repeating EDB predicate in r� 	�
 V is a ndv appearing in
an EDB predicate e in r such that� for every other EDB predicate e� in r with
e � e�� if V appears in a position t in e then a non�persistent variable appears in
position t in e�� 	�
 V is a non�persistent dv that can be reached from a target
link in the A�V graph of r� 	�
 V is a ndv such that� for two identical copies
B and B� of the set of EDB predicate instances in the body of r� V is always
mapped to some non�persistent variable in every containment mapping from B

to B��

Observe that these rules identify as target links only variables in r whose
instances are never mapped to persistent variables in all potential containment
mappings�

Example �� Consider the rule r

t	X�Y� Z
 � �t	X�U� V 
� a	X�X
� a	V� Z
� e	U� Y 


There is a chain generating path that contains U as the only ndv� By Theorem
����
� U is a target link� so r is in C� and is not uniformly bounded by Theorem
��� Observe that X is a persistent variable that occurs in some linking position
of a� since V is a linking variable �on a di�erent chain generating path
� Thus
�NS� can not identify r as a member in class C and therefore can not tell if r is
uniformly bounded� even though r may be indeed in C�

For the rest of the paper� we extend the language�theoretic approach in
�CGKV� for monadic programs to programs of arbitrary arity�



� Decidable Boundedness of C� Class

Testing boundedness is harder than testing uniform boundedness� Decidability of
boundedness was given in �NS� only for a re�nement of class C with one strongly
restricted exit rule� By extending the language�theoretic technique �CGKV� we
can show that boundedness for the whole class C� with arbitrary exit rules is
decidable� as stated in the following theorem�

Theorem�
� Boundedness for linear sirups with a recursive rule in C� and
multiple exit rules is decidable in polynomial space�

Proof idea�We extend the language�theoretic characterization of unboundedness
for monadic programs to programs in C�� Assume P is a linear sirup with a
recursive rule r in class C�� If r has no chain generating path then P is bounded
�NS�� otherwise� r has a chain generating path on which all linking variables are
target links� By unfolding r a certain number of times� boundedness of P can
be reduced to boundedness of a linear sirup in which the recursive rule has the
form 	Theorem ���� �HKMV�


r� � p	X�� � � � � Xk� Y�� � � � � Yl
 � �p	X�� � � � � Xk� Z�� � � � � Zl
� A

where X�s� Y �s� and Z�s are vectors of distinct variables and they share no
variables� A is a conjunction of EDB predicates� Moreover� r � C� implies that
r� � C�� and there must be some integer � � m � l such that position k � m

of p is on a chain generating path 	in the A�V graph of r�
 on which all linking
variables are target variables� Clearly� Ym is connected to Zm in GA and Zm is
a target link� where GA � 	V�E
 is the variable graph of F �CGKV�� such that
V is the set of variables occurring in A and � X� Y �� E if X and Y occur
in the same predicate instance in A� Without loss of generality� assume the exit
rules have the same head as r� and have the bodies B�� � � � � Bn� By a reduction in
�CGKV� 	i�e�� Proposition ���
� no generality is lost by assuming that each graph
GBj

is connected� B�� � � � � Bn are called initialization bodies and A is called a
recursive body�

The following extends the language treatment in �CGKV� to the above linear
sirup� Let Ai 	resp�� Bi

j
 be a variant of A 	resp�� Bj
� where all variables carry a

superscript i and if i � � Y i
j are replaced by variables Zi��

j � � � j � l� Initially�

view A� 	resp�� B�
i�

 as a conjunctive query where all variables except for dv�s

are existentially quanti�ed and this one body is the leaf� Inductively� suppose
that C is a conjunctive query� Ak is a recursive body that is the leaf of C� and
Bik�� is an initialization body� Note that A

k contains variables Zk
� � � � � � Z

k
l � which

are also in Ak�� 	resp�� Bk��
ik��


� Then C�Ak�� 	resp�� C�Bk��
ik��


 can be viewed

as a conjunctive query C�� where all variables except for dv�s are existentially
quanti�ed and where Ak�� 	resp�� Bk��

ik��

 is the leaf of C�� Let �r � fag be

the recursive alphabet and �i � fb�� � � � � bng be the initialization alphabet� It is
important to see that each conjunctive query is uniquely determined by a word
in 	�r ��i
�� We can show that the language�theoretic characterization of un�
boundedness for connected monadic programs� i�e�� Proposition ��� in �CGKV��



is still valid for the above linear sirup� The key argument is that if there is a
containment mapping from a p�expansion Ci to a p�expansion Cj� then there is
a containment mapping from Ci to the pre�x of Cj that contains no more than
c bodies� for some �xed integer c� In particular� the position k � m of p plays
the role of the position of an unary recursive predicate in a monadic program�
in that all variables Zi

m are connected by EDB predicates and none of them is
mapped to a persistent variable 	because Zm is a target link
� The presence of
variables in other positions of p does not a�ect the above argument� The rest
of treatment is then a copy of �CGKV�� because it depends only on language
features that make no di�erence in our case�

	 Persistence�free and Connected Datalog Programs

We show that boundedness is decidable for a large class of Datalog programs that
are not necessarily sirups� The general idea is to prevent 
linking variables� from
being mapped to 
persistent variables�� First we need these terms for general
rules�

De�nition��� Let P be a Datalog program� q an IDB predicate� and t a position
of q� The position qt is persistent wrt an IDB predicate p in P if for every k � �
there is a partial p�expansion in which an instance of q contains a variable V at
position t and the instance is at least k predicate instances away from the very
�rst predicate containing V � otherwise� qt is persistence�free wrt p in P � An IDB
predicate p is persistence�free in P if qt is persistence�free wrt p for every IDB
predicate q and every position t of q�

We create a directed graph for testing existence of persistence� Gper has a
node pt for each recursive predicate p and each position t of p� Gper has an
	directed
 edge from pt to qs if and only if there is a recursive rule with a p

instance in the head and a q instance in the body such that the variable in
position t in the head appears in position s in that q instance in the body�

Proposition��� qt is persistence�free wrt p if and only if no node of form ps

reaches a cycle containing node qt in Gper�

The following de�nition generalizes the connectivity de�ned for monadic pro�
grams �CGKV� to Datalog programs�

De�nition��� An IDB predicate p is connected in P if there is a choice of
a position for each IDB predicate useful to p such that for each rule q	X
 �
�A� q�	Y�
� � � � � qn	Yn
 �n � �
� GA is connected and X�Y�� � � � � Yn are in GA�
where q is useful to p� A is the conjunction of the EDB predicates in the rule�
and X�Y�� � � � � Yn are variables in the chosen positions of predicates q� q�� � � � � qn�
respectively� �The rule is an exit rule when n � �
 The chosen positions� if they
exist� are called linking positions�



It is easy to see that every IDB predicate of a connected monadic program
�CGKV� is persistence�free and connected 	We need only consider monadic pro�
grams where the variable in the head does not appear in any IDB predicate in
the body� as the general case can be reduced to this case �CGKV�
� An e�cient
algorithm for testing connectivity and �nding linking positions will be given in
the full paper�

Theorem��� Predicate boundedness for predicates that are both persistence�
free and connected is decidable in doubly exponential time�

Proof idea� The idea is the same as Theorem ��� i�e�� simulating a monadic pro�
gram� Linking positions plays essentially the role of the single position of unary
IDB predicates in a monadic program� Unlike Theorem ��� we have to use the
general argument based on the tree language and tree automata �CGKV�� The
time is doubly exponential because predicate boundedness for monadic programs
is doubly exponential �CGKV��

However� the reduction of boundedness of unconnected programs to bound�
edness of connected ones for monadic programs in �CGKV� does not apply here�
because the connectivity used in that reduction is weaker than the connectivity
used here� although the two notions coincide for monadic programs�


 ��branching Binary Linear Programs

It was previously known that boundedness is decidable for linear binary sirups
but is undecidable for multiple recursive rules even with a single IDB predicate
�Va�� We now show some positive results for linear binary programs� not nec�
essarily sirups� where each predicate is de�ned by at most one recursive rule�
First� we extend the decidability for binary linear sirups in �Va� to a slightly
general version� In a sirup in �Va�� all non�recursive predicates in the body of the
recursive rule must be EDB predicates� A generalized linear sirup has a recursive
rule of the form p � �A� p 	arguments are omitted here
 and one or more non�
recursive rules� where A is a conjunction of non�recursive predicates� In other
words� non�recursive IDB predicates are allowed in the body of a generalized
sirup� This generalization appears to be nontrivial because removing such non�
recursive IDB predicates simply by unfolding them using non�recursive rules may
result in more than one recursive rule� therefore� no longer a sirup� However� no
generality is lost by assuming that each non�recursive rule has only EDB pred�
icates in the body� We assume a generalized binary linear sirup has a recursive
rule of the form p	X�Y 
 � �A� p	U� V 
� for variables X�Y� U� V � Consider the
following cases�

Case �� X�Y� U� V are all distinct� and each of X and Y is connected to
some of U and V in graph GA and vice versa� By unfolding the recursive rule
at most once� we can assume that X is always connected to U in GA� We may
also assume that for each exit rule with a body B� GB is connected� since the
general case can be reduced to this case by a reduction in �CGKV�� 	Note that
this is so only for exit rules
 Now we remove all non�recursive IDB subgoals in



A by unfolding them using non�recursive rules� In each resulting recursive rule
with the set Ai of EDB predicates� X is still connected to U in GAi

� Therefore
the �rst position of p can be chosen as the linking position� Now the predicate
p is persistence�free and connected in the program under consideration� Then
from Theorem ��� the boundedness is decidable�

Other cases� As in �Va�� all other cases can be proved to be either bounded
or reducible to monadic programs with a single recursive rule� It is important to
see that those reductions do not depend on the absence of non�recursive rules�
So we have

Theorem��� Boundedness for generalized binary linear sirups is decidable�

Now we consider more general rules de�ned below�

De�nition�	� A program P is ��branching if every recursive predicate is de�
�ned by at most one recursive rule�

A ��branching program may have more than one recursive predicate� In the
following� we show that program boundedness is decidable for binary linear ��
branching programs� We �rst show that program boundedness is reduced to
programs with at most one mutual recursion�

Let P be an arbitrary Datalog program� Let I�� � � � � Ik be a partial ordering of
the scc�s of IDB graph of P such that no predicates in Ii depend on predicates
in Ij for j � i� Let Ri be the set of rules in P that de�ne predicates in Ii�
fR�� � � � � Rkg is a partition of rules in P �

Theorem�
� 	�
 P is bounded if and only if for i � �� � � � � k in order� Rn
i���Ri

is bounded� where Rn
i�� is a non�recursive program equivalent to R�� � � ��Ri���

and Rn
� � �� 	�
 P is uniformly bounded if and only if for every Ri� the set of

recursive rules in Ri is uniformly bounded�

Corollary��� 	�
 Program boundedness for ��branching linear programs is re�
ducible to boundedness for generalized linear sirups of the same arity� 	�
 Uni�
form program boundedness for ��branching linear programs is reducible to uni�
form boundedness for linear sirups of the same arity� 	�
 Predicate boundedness
and program boundedness coincide for ��branching linear programs in which
each recursive predicate is mutually recursive with one another�

Proof idea� Consider a ��branching linear program consisting of three recursive
rules p � �A� q� q � �B� r� and r � �C� p� where A�B�C are conjunctions of
non�recursive predicates� By unfolding these recursive rules� p can be de�ned by
a linear recursive rule of form p � �A�B�C� p and some number of non�recursive
rules� Once p is so de�ned� q and r can be de�ned by p and other predicates
non�recursively� As a result� we need only deal with a generalized linear sirup�
This reduction also holds in general in light of Theorem ���

From Corollary �� and Theorem ��� we have



Theorem��� 	�
 Program boundedness is decidable for ��branching binary lin�
ear programs� 	�
 Predicate boundedness is decidable for ��branching binary lin�
ear programs in which each recursive predicate is mutually recursive with one
another�

Using the reduction of Corollary �� and some known decidability for linear
sirups in �Na� NS� HKMV�� boundedness and uniform boundedness of many
��branching linear programs of arbitrary arity can be shown to be decidable�
Finally� in the spirit of �CGKV� 	i�e�� Proposition ���
� we can show

Theorem�
� 	�
 Predicate containment is decidable in polynomial space for
linear sirups in C� 	with multiple exit rules
� 	�
 Predicate containment is de�
cidable in doubly exponential time for persistence�free and connected predicates�
	�
 Predicate containment is decidable for ��branching binary linear programs
in which each recursive predicate is mutually recursive with one another�

References

�Ab� Abiteboul� S�� Boundedness is undecidable for Datalog programs with a single
recursive rules� IPL 
� ������� pp� ���
���

�AP� Afrati� F�� Papadimitriou� C�H�� The parallel complexity of simple chain
queries� ACM PODS� ����� pp� ���
��


�BKBR� Beeri� C�� Kanellakis� P�C�� Bancilhon� F�� Ramakrishnan� R�� Bounds on the
propagation of selection into logic programs� ACM PODS� ����� pp� ���
���

�CGKV� Cosmadakis� S�� Gaifman� H�� Kanellakis� P�C�� Vardi� M�Y�� Decidable opti

mizations for datalog logic programs� ACM Symp� on Theory of Computing�
����� pp� ���
���

�CM� Chandra� A�K�� Merlin� P�M�� Optimal implementation of conjunctive queries
in relational databases� ACM Symp� on Theory of Computing� ����� pp� ��

��

�GMSV� Gaifman� H�� Mairson� H�� Sagiv� Y�� Vardi� M�Y�� Undecidable optimization
problems for database logic programs� Proc� of �nd IEEE Symposium on
Logic in Computer Science� ����� pp� ���
���

�Gu� Guessarian� I�� Deciding boundedness for uniformly connected Datalog pro

grams� Lecture Notes in Computer Science ���� ICDT ����� pp� 
��
���

�HKMV� Hillebrand� G�G�� Kanellakis� P�C�� Mairson� H�G�� Vardi� M�Y�� Tools for
datalog boundedness� ACM PODS� ����� pp� �
��

�Io� Ioanidis� Y�E�� A time bound on the materialization of some recursively de

�ned views� VLDB� ����� pp� ���
���

�NS� Naughton� J�� Sagiv� Y�� A decidable class of bounded recursions� ACM
PODS� ����� pp� ���
�
�

�Na� Naughton� J�� Data independent recursion in deductive databases� JCSS 
�
������� pp� ���
���

�S� Sagiv� Y�� On computing restricted projections of representative instances�
ACM PODS� ����� pp� ���
���

�Va� Vardi� M�Y�� Decidability and undecidability results for boundedness of linear
recursive queries� ACM PODS� ����� pp� 
��

��

This article was processed using the LaTEX macro package with LLNCS style


