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Abstract. Following results are sketched in this extended abstract: (1)
Datalog recursive programs where each rule has at most one subgoal
called unit recursions are shown to be bounded, with an effective con-
struction of equivalent non-recursive programs. (2) A generalized chain
program, which allow DB predicates of arbitrary arity and remove the
uniqueness condition of chain variables, is bounded if and only if it is
a unit recursion. (3) The characterization of uniform unboundedness for
linear sirups in [NS] is extended to a substantial superclass called class
ct. (4) Boundedness for class Ct with multiple exit rules is decidable
in polynomial space. (5) Predicate boundedness is decidable in doubly
exponential time for a large class of Datalog programs that properly con-
tains all connected monadic programs. (6) For binary linear programs,
program boundedness is decidable if each recursive predicate is defined
by at most one recursive rule; predicate boundedness is also decidable if
each recursive predicate is mutually recursive with one another.

1 Introduction

This abstract presents some positive results of the boundedness problem for logic
programs with multiple rules and multiple recursive predicates. The boundedness
problem is to answer whether a given recursive program is equivalent to a non-
recursive program, i.e., whether the program is bounded. Detecting bounded
programs is a powerful optimization technique as a bounded program needs
only a fixed number of iterations in evaluation or can simply be replaced by
a non-recursive program. Unfortunately, this problem is undecidable in many
cases, which include, among others, programs with a single recursive rule [Ab],
linear programs with one binary IDB predicate [Va], and programs with two
linear recursive rules and one initialization rule [Va]. Because of the inherent
difficulty of boundedness problem, the positive results in earlier work [HKMV,
To, Na, NS, Va] have been obtained mainly for programs of a single recursive
rule except for monadic programs [CGKV], some strongly restricted chain rules
[AP, BKBR, Gu] that correspond naturally to productions of a context-free
grammar, as well as typed rules with a single predicate (not only a single IDB
predicate) [S]. There is a lack of positive results for more general rules.
The following are the contributions in this paper.



— (Section 3) Datalog programs in which each recursive rule has at most one
subgoal are bounded. Such programs are called unit recursions in this paper.
The result is also extended to a more general case, called pseudo-unit recur-
stons, where each recursive rule has at most one recursive subgoal and the
variables in all non-recursive subgoals occur in the recursive subgoal. A con-
struction of a non-recursive program that is equivalent to a unit recursion
(resp., pseudo-unit recursion) is presented. The constructed non-recursive
program may have many rules, but each rule is very simple and the depth
of the program is very small, a feature desirable for parallel evaluation.

— (Section 4) Reduction of boundedness to finiteness of CFL for “chain rules”
[AP, BKBR, Gu] is extended to more general programs, called generalized
chain programs. It is shown that a generalized chain program is bounded if
and only if it is a unit recursion. In all “chain rules” studied previously in
the literature, uniqueness of chain variables has been a crucial requirement
for mapping rules to productions of a CFG. Our generalization is substantial
in that IDB predicates of arbitrary arity are allowed and uniqueness of chain
variables is no longer required.

— (Section b) We extend the characterization of uniform unboundedness for
linear sirups in [NS] to a superclass of the class C' defined there, which
we call class Ct. For a linear sirup in Ct, the restriction that no linking
variables are mapped to persistent variables, which is a crucial requirement
in [NS], is removed. All linear sirups efficiently identified as in C' by methods
in [NS] as well as more linear sirups can be efficiently identified as in Ct by
a method given in this paper.

We also extend the language (or automata) theoretic approach in [CGKV]
for monadic programs to arbitrary Datalog programs. In particular,

— (Section 6) We show that boundedness (not just uniform boundedness) for
linear sirups with a recursive rule in class Ct and with multiple exit rules is
decidable in polynomial space. Positive results of boundedness were obtained
in [NS] only for a refinement of class C' with one strongly restricted exit rule.

— (Section 7) We show that predicate boundedness is decidable in doubly ex-
ponential time for a large class of arbitrary Datalog programs that properly
contains all connected monadic programs [CGKV].

— (Section 8) We show that program boundedness is decidable for binary linear
programs in which each recursive predicate is defined by at most one recur-
sive rule and that predicate boundedness is also decidable if each recursive
predicate is mutually recursive with one another. These results generalize
the decidability of boundedness for linear binary sirups in [Va].

— In the spirit of [CGKV], it follows immediately from our results that con-
tainment problem is decidable for programs considered in Sections 6,7 and

8.

Due to compactness of the presented materials, certain knowledge of work in

[CGKV, Gu, Na, NS, Va] is helpful in reading the paper.



2 Preliminary

A program has an IDB graph in which nodes are IDB predicates of the program
and there is a directed edge < ¢, p > if ¢ occurs in the body of a rule whose head
predicate is p; we say that this rule contributes to this edge. An IDB predicate
q is useful to an IDB predicate p if there is a (directed) path from ¢ to p in the
IDB graph; otherwise, g is useless to p. A sirup consists of one recursive rule and
some number of exit rules. A monadic program is a program in which all IDB
predicates have arity one.

A DB of a program P is a set of ground predicate instances, called tuples,
for the predicates in P. An EDB is a DB in which the set of tuples for the IDB
predicates in P is empty. For each DB or EDB I, ¢ (1) denotes the set of tuples
for an IDB predicate ¢ that can be derived by at most ¢ applications of rules
in P, and let ¢% (I) = Ui>oqp(I). A program Py is contained (resp., uniformly
contained) in a program P, wrt ¢ if ¢ (1) C ¢, (1) for every EDB (resp., DB) I.
P is equivalent (resp., uniformly equivalent) to Py wrt ¢ if Py is contained (resp.,
uniformly contained) in P> wrt ¢ and vice versa. ¢ is bounded (resp., uniformly
bounded) in P if there exists some k, depending only on P, such that for every
EDB (resp., DB) I, ¢ (I) = UF_yq%(1). This testing is called predicate bound-
edness problem. P is bounded (resp., uniformly bounded) if ¢ is bounded (resp.,
uniformly bounded) in P for every IDB predicate ¢ in P. This testing is called
program boundedness problem. Tt is known that ¢ is bounded (resp., uniformly
bounded) in P if and only if P is equivalent (resp., uniformly equivalent) to a
non-recursive program wrt ¢. Note that: (1) decidability of program bounded-
ness does not necessarily imply decidability of predicate boundedness and (2)
uniform boundedness implies boundedness.

Let ¢ be an IDB predicate in a program P. A partial q-expansion is a conjunc-
tion of predicate instances that can be generated by some sequence of backward
applications of rules in P beginning with an instance of ¢ containing distinct
distinguished variables (dv’s). See [NS] for a detailed definition of backward ap-
plications of rules. A g-expansion is a partial g-expansion that contains only
EDB predicates. The relation specified by a g-expansion Aq,..., A, 1s

{(or, ..y v) | Gw) ... (Gwy) (AL A . A ALY,

where v’s are dv’s and w’s are non-distinguished variables (ndv’s, i.e., existen-
tial variables) introduced by backward applications. Given an EDB I, ¢% (I)
is equivalent to the infinite union of the relations specified by all g-expansions.
It was shown in [Na] that ¢ is bounded in P if and only if for g-expansions
Cy,Cq, ... there is some N > 1 such that for every n > N, the relation specified
by C,, is contained in C), for some m < N. Note that C); is contained in C,, if
and only if there is a containment mapping from Cy, to C,, [CM].

3 Boundedness of Unit and Pseudo-Unit Recursions

We first consider programs in which each recursive rule has only one subgoal. We
show that such programs are always bounded by constructing a non-recursive



equivalent program.

3.1 Unit Recursions

Definition1. A recursive rule in a program is a unit rule if it has exactly one
subgoal; otherwise, it 1s a non-unit rule. A program is a unit recursion if every
recursive rule in it is a unit rule.

Clearly, a program P is not a unit recursion if and only if the IDB graph of
P has a cycle on which at least one edge is contributed by a non-unit rule in P.
We will call such cycles non-unit cycles.

Ezxample 1. Consider a program consisting of the following rules:

o ople,y,z)—q(e,y, 2, 2)

re: r(z,z,y): —ple,y, 2)

r3 (](131’ Y,z ) . (l‘ Yy, z )

ra: q(w,z,y,z): —e(w, z,y, 2)

rs vz, y,z)—r(e,y,w), e (w,y, 2)
re . ple,y,y)  —v(z,y,2),q(z,w,z,y)
rr: vz, z,y)  —ple,y, 2), u(z, y)

This program is not a unit recursion because non-unit rules rs, rg, r7 contribute
to edges of a cycle in the IDB graph. However, a program consisting only of the
first five rules is a unit recursion, since in this case rs is not a recursive rule
and all recursive rules r1,rs, r3 are unit rules.

The next example illustrates some basic idea of constructing an equivalent
non-recursive program for a unit recursion.

Ezxample 2. Consider the unit recursion given by the first five rules r1,...,r5 in
Ezxample 1. We want to find a non-recursive program equivalent to this program
wrt @ = {q,v}. Suppose that the relation for q receives a “canonical” tuple t, i.e.,
a tuple consisting of distinct variables, through initialization rule r4. Other tuples
can be derived from t by applying recursive rules rq,r, rs. In applying rules, we
treat variables in t as unknown values so that they can be equated or replaced
with constants if necessary for applying a rule. For instance, to apply rqy to t the
last two variables in tuple t must be equated. Assume we have derived all tuples
from t by applying rules r1, 3, 3 in this manner. Let t' be any derived tuple for
q (orr). The variables in t' must appear in the original tuple t because all rules
are safe. Let 1 be obtained from t by equating or replacing (with constants)
whatever variables that were equated or replaced in the derivation of /. Then
the derivation of t' (from the corresponding tuple in e) can be represented by a
rule q(t') : —e(t") (or r(t') : —e(t”)). If we so construct a rule for each derived
t', the recursive rules ri,ro,r3 can be removed because each derivation has been
represented by one of these new rules. As a result, the program becomes non-
recursive and equivalent to the original program wrt {q,v}.



In the above example, the canonical tuple for ¢ is transformed by a block
of mutually recursive rules into tuples for predicates, ¢ and r, that are useful
for answering the query, ¢ and v. In each transformation, we are interested in
the mapping from the initial tuple (possibly with some variables equated or
replaced by constants) to the final derived tuple, not the intermediate steps
in the transformation. If each recursive rule is a unit rule, there are only a
bound number of such mappings and each mapping can be represented by a
non-recursive rule. In fact, we can effectively construct all non-recursive rules
representing mappings.

Theorem 2. Let P be a unit recursion and let () be a set of query predicates. a
non-recurstve program equivalent to P wrt ) can be constructed effectively.

Due to space limitation, the construction is omitted here.

3.2 Pseudo-Unit Recursions

Now we extend the algorithm in subsection 3.1 to more general programs.

Definition 3. A recursive rule in a program is a pseudo-unit rule if it has the
form

p:—q,e1,...,ex, k>0

where (a) q is mutually recursive with p and none of ey, ... ey is mutually recur-
sive with p, (b) every variable that appears in some of e1, ..., ex also appears in
q. A program is a pseudo-unit recursion if every recursive rule is a pseudo-unit
rule.

The attachment ey, ..., e; in the above pseudo-unit rule can be considered as
“conditions” on tuples for the subgoal ¢q. By modifying the concept of mappings
defined for unit recursions to account for such “conditions”, we can effectively
construct all non-recursive rules that represent mappings as in subsection 3.1.
So we have

Theorem4. Let P be a pseudo-unit recursion. For any non-empty set @) of
query predicates, a non-recursive program equivalent to P wrt () can be con-
structed effectively.

4 Generalized Chain Programs

In this section, we consider several classes of programs for which the condition
of unit recursion is both necessary and sufficient for boundedness.

Definition5. A program P is a generalized chain program if for every predicate
p there are two distinct positions hy, and t,, called the head position and the
tail position of p, such that every rule in P has the form (up to reordering of
subgoals):



q(x) 1 —q1(y1), -, qu(ye), k>1,

where () xlhy) = yilho), xlt] = yilta], and (b) for 1 < i < k, yilt,) =
Yit1lhgi.] and are (not necessarily distinct) ndv’s. (We use uli] to denote the
ith argument of u} A generalized chain program is simple if in each rule a ndv
appears in at most one head position (or tail position). A program is stationary
if every rule in the program has the form ¢(x) : —q1(X), ..., qx(x), where x is a
vector of distinct dv’s.

A stationary program is obviously bounded. Unlike all previously studied
“chain rules” [AP, BKBR, Gu], we do not require that ndv’s as chain variables
be distinct. Even the most restricted class of simple generalized chain programs
contains properly all chain programs in [AP, BKBR, Gu].

Theorem 6. (1) Every uniformly connected program in [Gu] that is not station-
ary is a simple generalized chain program. (2) Every general chained program in
[Gu] is a simple generalized chain program. The converse is not true for each of

(1) and (2).
Ezxample 3. Consider the following simple generalized chain program:

Q(xla T2, l‘g) : _Q(ua T2, U), Q(xla Uu, l‘3),

where hy = 2 and t; = 3. This rule is uniformly connected but not general
chained [Gu]. The following simple generalized chain program:

Q(l‘l,l‘z,l‘s) : —Q(l‘hU,Z),Q(Z,l‘z,l‘s);

where hy =1 and t, = 3, is general chained but not uniformly connected [Gu].

Rule bodies in a generalized chain program are considered naturally as strings
of predicate instances in the order they are written, so are partial expansions
generated by such programs. In the following, we reduce boundedness of some
generalized chain programs to finiteness of CFL. We associate with each Datalog
program P and each IDB predicate ¢ a CFL L(P, ¢) generated by a grammar
CFG I'(P,q) given below: With each EDB predicate b we associate a terminal
symbol 5, and with each IDB predicate p we associate a non-terminal symbol
vp. The productions of I'(P, ¢) are obtained by replacing in each rule of P all
occurrences of predicates by the corresponding grammar symbols, deleting all the
variables in the rules, and turning : — into —. The starting symbol of I'(P, ¢)
is vq, the symbol associated with ¢. The graph of a CFG is a directed graph
that contains all non-terminal symbols as nodes, and contains a directed edge
< A, B > whenever there is a production A — « such that B is in «.

Theorem 7. Let P be a simple generalized chain program and ¢ be an IDB
predicate. ¢ is bounded in P if and only if L(P, ¢) is finite.



The proof is essentially the same as in [Gu], that is, the uniqueness of variables
in head (resp., tails) positions implies that the mapping from a g-expansion Cj
to a g-expansion (), always maps the ith predicate instance in Cj to the ith
predicate instance in C),. In the following, we consider reduction of some non-
simple subclasses. The first such subclass is based on the observation that the
above uniqueness is only required for head (resp., tail) positions of instances of
the same predicate, since containment mappings preserve predicates.

Let P be a generalized chain program. Given two predicates p and ¢, we say
that p is directly left (vesp., directly right) dependent on g if either p = ¢ or there
is a rule in P such that p is the head predicate and ¢ is the predicate of the first
(resp., last) subgoal in the body. The left (resp., right) dependency is defined to
be the transitive closure of the direct left (resp., right) dependency.

Definition 8. Let P be a generalized chain program and r be a rule in P. r
1s type 1 wrt P if the following conditions hold: if a ndv u occurs in two tail
positions t, and t, in the body of r, then p and q are not right dependent on a
common predicate, and tif a ndv u occurs in two head positions h, and hy in the
body of v, then p and q are not left dependent on a common predicate. P 1s type
1 if every rule in P is type 1 wrt P.

For a generalized chain program of type 1, it can be shown that in any
expansion variables at the head position in two instances of the same predicate
are pairwise distinct. So we have

Theorem9. Let P be a type 1 generalized chain program and ¢ be an IDB
predicate. ¢ is bounded if and only if L(P, ¢) is finite.

Reduction to finiteness of a CFL also holds as long as in any expansion all
predicate instances sharing variables at head (or tail) positions are no more than
a fixed number of predicate instances apart. In the following, an IDB predicate is
called recursion-related in a program if either it is recursive or it can be reached
from a recursive predicate in the IDB graph of the program.

Definition10. Let P be a generalized chain program and v be a rule in P. r is
type 2 wrt P if for every recursion-related predicate instance p in the body of r,
subgoals on the left of p and subgoals on the right of p have disjoint variables at
all head (or tail) positions. P is type 2 if every rule in P is type 2 wrt P.

However, disjointness of variables is not required for non-head (or non-tail)
positions on the two sides.

Theorem 11. Let P be a type 2 generalized chain program and ¢ be an IDB
predicate. ¢ is bounded if and only if L(P, ¢) is finite.

Since for each g-expansion there is a word in L(P, ¢) of the same length, as a
corollary of proofs of the above reduction, boundedness of the above programs
in fact implies boundedness of length of expansions, as stated in the following
corollary.



Corollary 12. Let P be a generalized chain program that is either simple, or
type 1, or type 2. An IDB predicate ¢ is bounded in P if and only if ¢g-expansions
in P have a bounded length.

But g-expansions have a bounded length if and only if all recursive rules
defining predicates useful to ¢ are unit rules (as defined in Section 3). So we
have an efficient characterization of boundedness for the above programs.

Theorem 13. Let P be a generalized chain program that is either simple, or
type 1, or type 2. Let ¢ be an IDB predicate. If P has no useless predicates to
q, then the following are equivalent. (1) L(P, q) is finite. (2) ¢ is bounded in P.
(3) The IDB graph of P has no non-unit cycle. (4) P is a unit recursion.

Based on Theorem 13, we can show that boundedness and uniform bounded-
ness coincide for each of the above three subclasses of generalized chain programs.

Theorem 14. Let P be a generalized chain program that is either simple, or
type 1, or type 2. Let ¢ be an IDB predicate. Assume that P contains no useless
predicates to ¢. Then ¢ is bounded in P if and only if ¢ is uniformly bounded in
P.

5 Extending the A/V Graph Approach

In [NS], uniform boundedness for a linear sirup in a class called C'is characterized
by absence of chain generating paths in the A/V graph of the linear sirup.
Unfortunately, membership in C' is difficult to test and only some sufficient
conditions are given there. We now extend that characterization to a superclass
of C, called Ct, so that more programs can be efficiently identified to suit the
characterization. See [NS] for definitions of A/V graphs, persistent variables,
linking variables, chain generating paths. Non-persistent variables are variables
(dv’s or ndv’s) that are not persistent.

Definition15. Let r be the recursive rule of a linear sirup defining an IDB
predicate q. A non-persistent variable V in r is called a target link if for any
pair C; and C; of g-expansions with ¢ # j, whenever C; maps to Cj, no instance
of V is mapped to a persistent variable. r is in class CT if either it has no chain
generating paths or has a chain generating path on which all linking variables
(i.e., ndv’s on this path) are target links.

Note that a linear sirup is in class C' if and only if all linking variables are
target links. But for class Ct, being target links is required only for the linking
variables on a single chain generating path. The following generalizes results in

[NS].

Theorem 16. (1) C' C C*t. (2) For every r € C, r is uniformly unbounded if
and only if 7 has a chain generating path.



Finding all target links is not an easy task. The following theorem finds
enough target links so that all programs identified as in class C' by all lemmas in
[NS] (i.e., Lemmas 4.5, 4.6, 4.7, and 4.8) as well as some other programs can be
efficiently identified as in class CT. We first define a relationship between two
predicate instances.

Definition17. Let r be the recursive rule of a linear sirup. Let ¢ and ¢’ be
two (not necessarily distinct) predicate instances in the body of r. e < e’ if all
following conditions hold: (a) they are instances of the same predicate, (b) if
position t in e has a persistent variable X, then position t in ¢ has X, (c)
if position t in e has a target link, then position t in ¢’ has a non-persistent
variable, and (d) if positions t and s in e share a variable, then positions t and
s in €’ share a variable.

Intuitively, e < ¢’ is a necessary (but not necessarily sufficient) condition for
an instance produced by e to be mapped to an instance produced by ¢’ in any
containment mapping between expansions generated by the linear sirup.

Theorem 18. Let r be the recursive rule in a linear sirup and V be a variable
in r. Then V is a target link if one of the following holds. (1) (Basis) V is a ndv
appearing in a non-repeating EDB predicate in 7. (2) V is a ndv appearing in
an EDB predicate e in r such that, for every other EDB predicate ¢’ in r with
e < €', if V appears in a position ¢ in e then a non-persistent, variable appears in
position ¢ in €’. (3) V is a non-persistent dv that can be reached from a target
link in the A/V graph of r. (4) V is a ndv such that, for two identical copies
B and B’ of the set of EDB predicate instances in the body of r, V is always
mapped to some non-persistent variable in every containment mapping from B
to B’.

Observe that these rules identify as target links only variables in » whose
instances are never mapped to persistent variables in all potential containment
mappings.

Ezxample 4. Consider the rule r
XY, Z)  —t(X, U, V),a(X, X),a(V,Z),e(U,Y)

There 1s a chain generating path that contains U as the only ndv. By Theorem
18(1), U is a target link, so v is in Ct and is not uniformly bounded by Theorem
16. Observe that X is a persistent variable that occurs in some linking position
of a, since V is a linking variable (on a different chain generating path). Thus
[NS] can not identify r as a member in class C' and therefore can not tell if r is
uniformly bounded, even though r may be indeed in C'.

For the rest of the paper, we extend the language-theoretic approach in
[CGKYV] for monadic programs to programs of arbitrary arity.



6 Decidable Boundedness of Ct Class

Testing boundedness is harder than testing uniform boundedness. Decidability of
boundedness was given in [NS] only for a refinement of class C' with one strongly
restricted exit rule. By extending the language-theoretic technique [CGKV] we
can show that boundedness for the whole class Ct with arbitrary exit rules is
decidable, as stated in the following theorem.

Theorem 19. Boundedness for linear sirups with a recursive rule in C't and
multiple exit rules is decidable in polynomial space.

Proof idea: We extend the language-theoretic characterization of unboundedness
for monadic programs to programs in C'T. Assume P is a linear sirup with a
recursive rule r in class Ct. If r has no chain generating path then P is bounded
[NS]; otherwise, r has a chain generating path on which all linking variables are
target links. By unfolding » a certain number of times, boundedness of P can
be reduced to boundedness of a linear sirup in which the recursive rule has the

form (Theorem 4.1, [HKMV])
v op(Xy, L X, Y1, ) s —p(X, e X 2, ), A

where X’s, Y’s, and Z’s are vectors of distinct variables and they share no
variables, A is a conjunction of EDB predicates. Moreover, r € C'T implies that
€ CT, and there must be some integer 1 < m < [ such that position k& + m
of p is on a chain generating path (in the A/V graph of ') on which all linking
variables are target variables. Clearly, Y, is connected to 7, in G4 and Z,, is
a target link, where G4 = (V| F) is the variable graph of F [CGKV], such that
V' is the set of variables occurring in 4 and < X,Y >€ EF if X and Y occur
in the same predicate instance in A. Without loss of generality, assume the exit
rules have the same head as r’ and have the bodies By, ..., B,. By a reduction in
[CGKV] (i.e., Proposition 5.4), no generality is lost by assuming that each graph
G, is connected. By, ..., B, are called initialization bodies and A is called a
recursive body.

The following extends the language treatment in [CGKV] to the above linear
sirup. Let A (resp., B;) be a variant of A (resp., B;), where all variables carry a
superscript ¢ and if ¢ > 1 YJZ are replaced by variables Z;_l, 1 < 5 <. Initially,
view Al (resp., B}l) as a conjunctive query where all variables except for dv’s
are existentially quantified and this one body is the leaf. Inductively, suppose
that C is a conjunctive query, A* is a recursive body that is the leaf of C', and
Bj, . is an initialization body. Note that A contains variables ZF . . ., Zlk, which
are also in A**! (tesp., BE‘H). Then C, A**! (tesp., C, BE‘H) can be viewed

Thk41 Tk41
as a conjunctive query C”, VJ\r/here all variables except for dv’+s are existentially
quantified and where A**! (resp., Bf):rll) is the leaf of C'. Let X, = {a} be
the recursive alphabet and Z; = {by,...,b,} be the initialization alphabet. Tt is
important to see that each conjunctive query is uniquely determined by a word
in (X, UX;)*. We can show that the language-theoretic characterization of un-

boundedness for connected monadic programs, i.e., Proposition 3.2 in [CGKV],



is still valid for the above linear sirup. The key argument is that if there 1s a
containment mapping from a p-expansion C; to a p-expansion C, then there is
a containment mapping from Cj; to the prefix of C; that contains no more than
¢ bodies, for some fixed integer c. In particular, the position & + m of p plays
the role of the position of an unary recursive predicate in a monadic program,
in that all variables Z! are connected by EDB predicates and none of them is
mapped to a persistent variable (because Z,, is a target link). The presence of
variables in other positions of p does not affect the above argument. The rest
of treatment is then a copy of [CGKV], because it depends only on language
features that make no difference in our case.

7 Persistence-free and Connected Datalog Programs

We show that boundedness is decidable for a large class of Datalog programs that
are not necessarily sirups. The general idea is to prevent “linking variables” from
being mapped to “persistent variables”. First we need these terms for general
rules.

Definition 20. Let P be a Datalog program, q an IDB predicate, and t a position
of q. The position q' is persistent wrt an IDB predicate p in P if for every k > 0
there is a partial p-expansion in which an instance of q contains a variable V at
position t and the instance is at least k predicate instances away from the very
first predicate containing V' ; otherwise, ¢' is persistence-free wrt p in P. An IDB
predicate p is persistence-free in P if ¢ is persistence-free wrt p for every IDB
predicate ¢ and every position t of q.

We create a directed graph for testing existence of persistence: G, has a
node p* for each recursive predicate p and each position ¢ of p; Gpe, has an
(directed) edge from p' to ¢* if and only if there is a recursive rule with a p
instance in the head and a ¢ instance in the body such that the variable in
position t in the head appears in position s in that ¢ instance in the body.

Proposition21. ¢ is persistence-free wrt p if and only if no node of form p*
reaches a cycle containing node ¢* in Gpe,.

The following definition generalizes the connectivity defined for monadic pro-
grams [CGKV] to Datalog programs.

Definition22. An IDB predicate p is connected in P if there is a choice of
a position for each IDB predicate useful to p such that for each rule ¢(X) :
—A (M), ..., 40 (Yn) (n > 0), G4 is connected and X,Y1,..., Y, are in Gy,
where q is useful to p, A is the conjunction of the EDB predicates in the rule,
and X, Y1, ..., Y, are variables in the chosen positions of predicates q,q1, ..., qn,
respectively. (The rule is an exit rule when n = 0) The chosen positions, if they
exist, are called linking positions.



It is easy to see that every IDB predicate of a connected monadic program
[CGKV] is persistence-free and connected (We need only consider monadic pro-
grams where the variable in the head does not appear in any IDB predicate in
the body, as the general case can be reduced to this case [CGKV]). An efficient
algorithm for testing connectivity and finding linking positions will be given in
the full paper.

Theorem 23. Predicate boundedness for predicates that are both persistence-
free and connected is decidable in doubly exponential time.

Proof idea: The idea is the same as Theorem 19, 1.e., simulating a monadic pro-
gram. Linking positions plays essentially the role of the single position of unary
IDB predicates in a monadic program. Unlike Theorem 19, we have to use the
general argument based on the tree language and tree automata [CGKV]. The
time is doubly exponential because predicate boundedness for monadic programs
is doubly exponential [CGKV].

However, the reduction of boundedness of unconnected programs to bound-
edness of connected ones for monadic programs in [CGKV] does not apply here,
because the connectivity used in that reduction is weaker than the connectivity
used here, although the two notions coincide for monadic programs.

8 1-branching Binary Linear Programs

It was previously known that boundedness is decidable for linear binary sirups
but is undecidable for multiple recursive rules even with a single IDB predicate
[Va]. We now show some positive results for linear binary programs, not nec-
essarily sirups, where each predicate is defined by at most one recursive rule.
First, we extend the decidability for binary linear sirups in [Va] to a slightly
general version. In a sirup in [Va], all non-recursive predicates in the body of the
recursive rule must be EDB predicates. A generalized linear sirup has a recursive
rule of the form p : —A, p (arguments are omitted here) and one or more non-
recursive rules, where A is a conjunction of non-recursive predicates. In other
words, non-recursive IDB predicates are allowed in the body of a generalized
sirup. This generalization appears to be nontrivial because removing such non-
recursive IDB predicates simply by unfolding them using non-recursive rules may
result in more than one recursive rule, therefore, no longer a sirup. However, no
generality is lost by assuming that each non-recursive rule has only EDB pred-
icates in the body. We assume a generalized binary linear sirup has a recursive
rule of the form p(X,Y) : —A,p(U, V), for variables X,Y,U, V. Consider the
following cases.

Case 1: X,Y, U,V are all distinct, and each of X and Y is connected to
some of U and V in graph G4 and vice versa. By unfolding the recursive rule
at most once, we can assume that X is always connected to U in GG4. We may
also assume that for each exit rule with a body B, G'p is connected, since the
general case can be reduced to this case by a reduction in [CGKV]. (Note that
this is so only for exit rules) Now we remove all non-recursive IDB subgoals in



A by unfolding them using non-recursive rules. In each resulting recursive rule
with the set A; of EDB predicates, X is still connected to U in G4,. Therefore
the first position of p can be chosen as the linking position. Now the predicate
p is persistence-free and connected in the program under consideration. Then
from Theorem 23, the boundedness is decidable.

Other cases: As in [Va], all other cases can be proved to be either bounded
or reducible to monadic programs with a single recursive rule. It is important to
see that those reductions do not depend on the absence of non-recursive rules.
So we have

Theorem 24. Boundedness for generalized binary linear sirups is decidable.

Now we consider more general rules defined below.

Definition25. A program P is 1-branching if every recursive predicate is de-
fined by at most one recursive rule.

A 1-branching program may have more than one recursive predicate. In the
following, we show that program boundedness is decidable for binary linear 1-
branching programs. We first show that program boundedness is reduced to
programs with at most one mutual recursion.

Let P be an arbitrary Datalog program. Let 7, ..., Iy be a partial ordering of
the scc’s of IDB graph of P such that no predicates in /; depend on predicates
in I; for j > 4. Let R; be the set of rules in P that define predicates in I;.
{R1,..., Rx} is a partition of rules in P.

Theorem 26. (1) P is bounded if and only if for i = 1,... &k in order, R? JUR;
is bounded, where R} ; is a non-recursive program equivalent to Ry U...UR;_1,
and R = . (2) P is uniformly bounded if and only if for every R;, the set of
recursive rules in R; is uniformly bounded.

Corollary 27. (1) Program boundedness for 1-branching linear programs is re-
ducible to boundedness for generalized linear sirups of the same arity. (2) Uni-
form program boundedness for 1-branching linear programs is reducible to uni-
form boundedness for linear sirups of the same arity. (3) Predicate boundedness
and program boundedness coincide for 1-branching linear programs in which
each recursive predicate is mutually recursive with one another.

Proof idea: Consider a 1-branching linear program consisting of three recursive
rules p: —A,q, ¢ : —B,r, and r : —C,p, where A, B, (' are conjunctions of
non-recursive predicates. By unfolding these recursive rules, p can be defined by
a linear recursive rule of form p: — A, B, C, p and some number of non-recursive
rules. Once p is so defined, ¢ and r can be defined by p and other predicates
non-recursively. As a result, we need only deal with a generalized linear sirup.
This reduction also holds in general in light of Theorem 26.
From Corollary 27 and Theorem 24, we have



Theorem 28. (1) Program boundedness is decidable for 1-branching binary lin-
ear programs. (2) Predicate boundedness is decidable for 1-branching binary lin-
ear programs in which each recursive predicate is mutually recursive with one
another.

Using the reduction of Corollary 27 and some known decidability for linear
sirups in [Na, NS, HKMV], boundedness and uniform boundedness of many
1-branching linear programs of arbitrary arity can be shown to be decidable.
Finally, in the spirit of [CGKV] (i.e., Proposition 7.1), we can show

Theorem 29. (1) Predicate containment is decidable in polynomial space for
linear sirups in C't (with multiple exit rules). (2) Predicate containment is de-
cidable in doubly exponential time for persistence-free and connected predicates.
(3) Predicate containment is decidable for 1-branching binary linear programs
in which each recursive predicate is mutually recursive with one another.
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