
Mining Association Rules from Stars

Eric Ka Ka Ng�, Ada Wai-Chee Fu�, Ke Wang+�Chinese University of Hong Kong +Simon Fraser University
Department of Computer Science and Engineering Department of Computer Sciencefkkng1,adafug@cse.cuhk.edu.hk wangk@cs.sfu.ca

Abstract

Association rule mining is an important data mining
problem. It is found to be useful for conventional relational
data. However, previous work has mostly targeted on min-
ing a single table. In real life, a database is typically made
up of multiple tables and one important case is where some
of the tables form a star schema. The tables typically corre-
spond to entity sets and joining the tables in a star schema
gives relationships among entity sets which can be very in-
teresting information. Hence mining on the join result is
an important problem. Based on characteristics of the star
schema we propose an efficient algorithm for mining as-
sociation rules on the join result but without actually per-
forming the join operation. We show that this approach can
significantly out-perform the join-then-mine approach even
when the latter adopts a fastest known mining algorithm.

1 Introduction

Association rules mining [AIS93, AS94] is identified as
one of the important problems in data mining. Let us first
define the problem for a databaseD containing a set of
transactions, where each transaction contains a set ofitems.
An association rulehas the form ofX) Y whereX andY are sets of items. In such a rule, we require that the fre-
quency of the set of itemsX[Y is above a certain threshold
called theminsup. Thefrequency (also known assupport)
of a set of itemsZ is the number of occurrences ofZ inD, or the number of transactions inD that containZ. The
confidenceof the rule should also be above a threshold. By
confidence we mean the probability ofY givenX.

The mining can be divided into two steps: first we
find the sets of items that have frequencies aboveminsup,
which we call thefrequent itemsets. Second, from the sets
of frequent itemsets we generate the association rules. The
first step is more difficult and is shown to be NP-hard. In
our subsequent discussion we shall focus on the first step.

The techniques in association rule mining has been ex-
tended to work on numerical data and categorical data
in more conventional databases [SA96, RS98], some re-
searchers have noted the importance of association rule
mining in relation to relational databases [STA00]. Tools
for association rule mining are now found in major products
such as IBM’s Intelligent Miner, and SPSS’s Clementine.

In real databases, typically a number of tables will be
defined. In this paper, we examine the problem of mining
association rule from a set of relational tables. In particu-
lar we are interested in the case where the tables form a star
structure [CD97] (see Figure 1). A star schema consists of a
fact table(FT) in the center and multiple dimension tables.
We aim to mine association rules on the join result of all
the tables [JS00]. This is interesting because the join result
typically tells us the relationship among different entities
such as customers and products and to discover cross enti-
ties association can be of great value. The star schema can
be considered as the building block for a snowflake schema
and hence our proposed technique can be extended to the
snowflake structure in a straightforward manner.

a
a
a

1

2

3

b
b
b

1

2

3

subject semester credit

Phy
CS

Maths

3

3
2Spring 02

Fall 02

Fall 02

c
c
c

1

2

3

officedeptage

20-29
30-39

40-50

CS

Mat Rm 200
Phy Rm 122

Rm 103

25-30
25-30

Shatin
Taipo
Fotan

2.0-2.5
2.5-3.0
3.0-4.0

age GPAaddress
20-25

c
c
c2
3

b
b
b2
3

a
a
a3 o2

o
o
o

2
1
1

Tid(A)
a
1
1

Tid(C)
c
1
1

Tid(B)
b
1
1

o

FT

A (Student) B (Course)

C (Teacher)

2

Figure 1. Star with 3 Dimensional Tables

At first glance it may seem easy to join the tables in a star
schema and then do the mining process on the joined result.
However, when multiple tables are joined, the resulting ta-

ble will increase in size many folds. There are two major
problems: Firstly, in large applications, often the join of
all related tables cannot be realistically computed because
of the many-to-many relationship blow up, large dimension
tables, and the distributed nature of data.

Secondly, even if the join can be computed, the multi-
fold increase in both size and dimensionality presents a
hugh overhead to the already expensive frequent itemset
mining step: (1) The number of columns will be close to
the sum of the number of columns in the individual tables.
As the performance of association rule mining is very sen-
sitive to the number of columns (items) the mining on the
resulting table can take much longer computation time com-
pared to mining on the individual tables. (2) If the join re-
sult is stored on disk, the I/O cost will increase significantly
for multiple scanning steps in data mining. (3) For mining
frequent itemsets of small sizes, a large portion of the I/O
cost is wasted on reading the full records containing irrel-
evant dimensions. (4) Each tuple in a dimension table will
be read multiple times in one scan of the join result because
of duplicates of the tuple in the join result.

We exploit the characteristics of tables in a star schema.
Instead of ”joining-then-mining”, we can perform ”mining-
then-joining”, in which the ”joining” part is much less
costly. Our strategy never produces the join result. In the
first phase, we mine the frequent itemsets locally at each
dimension table, using any existing algorithm. Only rele-
vant information are scanned. In the second phase, we mine
global frequent itemsets across two or more tables based
on local frequent itemsets. Here, we exploit the following
pruning strategy: ifX [Y is a frequent itemset, whereX is
from table A andY is from table B,X must be a frequent
itemset andY must be a frequent itemset. Thus, the first
phase provides all local frequent itemsets we need for the
second phase. The difficulty lies in the second phase.

One major challenge in the second phase is how to keep
track of the many-to-many relationship in the fact table
without generating the join result. We make use of the
feature that a foreign key for a dimension tableA can ap-
pear many times in the join result, which allows us to intro-
duce some structure to record the key once, together with a
counter for the number of duplications. We also make use
of the idea of semi-join in relational databases to facilitate
the mining process. From these ideas we propose a set of al-
gorithm and data structures for mining association rules on
a star schema which does not involve a join step of the ta-
bles involved. Experiments show that the proposed method
is efficient in many scenarios.

2 Problem Definition

Consider a relational database with astar schema.
There are multipledimension tables, which we would de-

note asA, B;C; :::; each of which contains only one pri-
mary key denoted bytransaction id (tid) , some other at-
tributes and no foreign keys. (Sometimes we simply refer toA,B,C, ..., as dimensions.)ai, bi; ci denote the transaction
id (tid) of dimension tablesA;B;C, respectively. We as-
sume that the attributes in the dimension tables are unique.
(If initially two tables have some common attributes, re-
naming can make them different.) We assume that attributes
take categorical values. (Numerical values can be parti-
tioned into ranges, and hence be transformed to categorical
values [RS98].) The set of values for an attribute is called
thedomain of the attribute.

Conceptually, we can view the dimension table in terms
of a binary representation, where we have one binary
attribute (or we call an ”item”) corresponding to one
”attribute-value” pair in the original dimension table. We
also refer to each tuple inA or the binary representation
as atransaction. For example, consider Figure 2,v1, v2,v3 are attribute names for dimension tableA, and the value
of attributev1 for transactiona1 is R2. In the conceptual
binary representation in Figure 2, we have attributes for
”v1 = R0”, ” v1 = R1” ” v1 = R2”, ... (we call themx1, x2,x3, ..., respectively). For transactiona1 in tableA, the value
of attributex3 is 1 (v1 = R2 is TRUE), and the values ofx1 andx2 both equal to 0 (FALSE). In our remaining dis-
cussions, binary items (one item for each “attribute-value”
pair) in the conceptual binary representation would be used.xi1xi2xi3 ::: denotes the itemset that is composed of itemsxi1 , xi2 , xi3, ... We assume anordering of items which is
adopted in any transaction anditemset. E.g. x1 would al-
ways appear beforex2 if they exist together in some transac-
tion or itemset. This ordering will facilitate our algorithm.

a
a
a

1

2

3

v1=R0

0

x1

1
0a

a
a

1

2

3

v3=R1

0

x7

1
1

v3=R0

1

x6

0
0

v2=R1

1

x5

0
0

v2=R0

0

x4

1
1

v1=R2

0

x3

0
1

v1=R1

1

x2

0
0R

R

v

2

1
0

R
R

R
R

0

01

1

0 1

v v321

RRR

A (Student)

conversion

Figure 2. Dimension Table and its Binary Rep-
resentation

There is onefact table, which we denote asFT . FT
has attributes of(tid(A); tid(B); tid(C); :::), wheretid(A)
is the tid of tableA. That is,FT stores thetids from dimen-
sion tablesA,B;C; : : :as foreign keys. (Later we shall dis-
cuss the more general case whereFT also contains some
other attributes.) In an ER model, typically, each dimen-
sion table corresponds to an entity set, andFT corresponds
to the relationship among the entity sets. The relationships
among entity sets can be of any form: many-to-many, many-
to-one, one-to-many, or one-to-one.

We are interested to mine association rules from the star
structure. In particular we shall examine the sub-problem of

finding all frequent itemsetsin the tableT resulting from a
natural join of all the given tables (FT 1 A 1 B 1 C : : :).
The join conditions are given byFT:T id(A) = A:tid,FT:T id(B) = B:tid, FT:T id(C) = C:tid, ... In the fol-
lowing discussions, when we mention frequent itemset we
always refer to the frequency of the itemset in the tableT .
We assume that afrequency thresholdof minsup is given
for the frequent itemsets. A frequent item corresponds to a
frequent itemset of size one.

In our mining process, the dimension tables will be kept
in the form of the VTV (Vertical Tid-Vector) representa-
tion [SHS00] with counts. Specifically, suppose there areTA; TB; TC transactions in tablesA;B;C respectively. For
each frequent itemx in tableA, we store a column ofTA
bits, theith bit is 1 if item x is contained in transactioni,
and 0 otherwise. We also keep an array ofTA entries where
theith entry corresponds to the frequency of tidi in FT .

3 The Proposed Method

First we present a simple example to show the idea of
discovering frequent itemsets across dimension tables with-
out actually performing the join operation. We shall use a
data type calledtid list in our algorithm. It is an ordered
list of elements of the formtid(count), wheretid is a trans-
action ID, andcount is a non-negative integer. Given two
tid listsL1; L2, theunion L1 [L2 is the list oftid(count),
wheretid appears in eitherL1 or L2, and the count is the
sum of the counts oftid in L1 andL2. The intersection
of two tid listsL1, L2 is denoted byL1 \ L2, which is a
list of tid(count), wheretid appears in bothL1 andL2 and
thecount is the smaller of the counts oftid in L1 andL2.
Suppose we have 2 dimension tablesA, B, and a fact tableFT . The following are some of the tidlists we shall use.� tidA(xi) : a tid list for xi, wherexi is an attribute (
item) of tableA. In each element oftid(count) in the list,tid is the id of a transaction inA that containsxi, andcount
is the number of occurrences of thetid in FT . If the tid of
a transaction that containsxi does not appear intidA(xi),
the count of it is 0 inFT .

E.g. tidA(x3) = fa1(5); a3(2)g means that the tids of
transactions inA that containx3 area1 anda3; a1 appears
5 times inFT , anda3 appears 2 times.� tidA(X) whereX is an itemset with items fromA, it is
similar totidA(xi) exceptxi is replaced byX. tidA(xixj)
can be obtained bytidA(xi) \ tidA(xj).� B key(an): Given a tidan from A, B key(an) de-
notes a tid-list oftid(count), wheretid is a tid fromB andcount is the number of occurrences oftid together withan
in FT .

E.g. B key(a1) = fb3(4); b5(2)g means thata1b3 oc-
curs 4 times inFT , anda1b5 occurs 2 times.

� B tid(xi): Given an itemxi in A, B tid(xi) denotes
a tid-list, oftid(count), wheretid is a tid ofB, andcount
is the number of timestid appears together with any tidaj
of A such that transactionaj containsxi in A.� B tid(X): similar toB tid(xi) except itemxi is re-
placed by an itemset X fromA.

Example 3.1 Suppose we have a star schema for a num-
ber of dimension tables related by a fact tableFT . The
following figure shows 2 of the dimension tablesA andB,
and the projection ofFT on the two columns that contains
transaction ID’s forA;B, but without removing duplicate
tuples.

Tid Items Tid Items
b1
b2
b3
b4
b5

Tid(A) Tid(B)
a1 b5
a1 b3
a1 b2
a3 b2
a3 b5
a1 b5

x1,x3,x5
x2,x3,x6
x1,x3,x6
x1,x4,x6

a1
a2
a3
a4

y1,y3,y5
y1,y3,y6
y2,y4,y6
y1,y4,y5
y1,y4,y6

A B

FT

Some of the tids from the dimension tables may not ap-
pear inFT (e.g.a2, b1). Suppose minsup is set to 5. We first
mine frequent itemsets from each ofA andB. For example,x1 andx3 appear together ina1; a3, the total count ofa1; a3
in FT is 6, hencex1x3 is a frequent itemset. Next we check
if a frequent itemset fromA can be combined with a fre-
quent itemset fromB to form a frequent itemset of greater
size.y1y6 is a frequent itemset fromB with frequency = 5.
We want to see ifx1x3 can be combined withy1y6 to form
a frequent itemset, the steps are outlined as follows:

1. tidA(x1) = fa1(4); a3(2)g, tidA(x3) = fa1(4); a3(2)g,tidA(x1x3) = tidA(x1) \ tidA(x3) = fa1(4); a3(2)g,tidB(y1y6) = fb2(2); b5(3)g.

2. B key(a1) = fb2(1); b3(1); b5(2)g,B key(a3) = fb2(1); b5(1)g.

3. B tid(x1x3) = B key(a1) [B key(a3)= fb2(2); b3(1); b5(3)g.

4. B tid(x1x3) \ tidB(y1y6) = fb2(2); b5(3)g.

5. The combined frequency = total count in the listfb2(2); b5(3)g = 5.

Hence the itemsetx1x3y1y6 is frequent. 2
In general, to examine the frequency for an itemsetX

that contains items from two dimension tablesA andB,
we can do the following. We examine tableA to find the
set of transactionsT1 in A that contain theA items inX.
Next we determine the transactionsT2 inB that appear with
such transactions inFT . Note that this is similar to the
derivation of an intermediate table in asemi-join strategy,
where the result of joining a first table with the key of a
second table are placed, the key of the second table is a

foreign key in this intermediate table. In the mean time,
the set of transactionsT3 in B that contain theB items inX are identified. FinallyT2 andT3 are intersected, and the
resulting count is obtained.

The use of tidlist is a compressed form of recording the
occurrences of tid’s in the fact table. Multiple occurrences
would be condensed as one single entry in a tidlist with the
count associated.

Initial Step : In order to do the above, we need to have
some initial information abouttidA(xi) for each itemxi in
each dimension tableA. One scan of a dimension table can
give us the list of transactions for all items. In one scan ofFT we can determine all the counts for all transactions in
all the dimension tables. In the same scan, we can also de-
termineB key(ai) for eachtid ai in each dimension table.

3.1 Overall Steps

For simplicity, let us first assume that there are 3 dimen-
sion tablesA;B;C. The overall steps of our method are:

Step 1 : Preprocessing
Read the dimension tables, convert them into VTV (Vertical
Tid-Vector) format with counts (see Section 2).

Step 2 : Local Mining
Perform local mining on each dimension table. This can be
done with any known single table algorithm with a slight
modification of refering to the counts of transactions in FT
which has been collected in the initial step described in Sec-
tion 2. The time taken for this step typcially is insignificant
compared to the global mining steps.

Step 3 : Global Mining
Step 3.1 : Scan the Fact Table

Scan the Fact Table FT and record the information in some
data structures.

We set an ordering forA, B, C. First we handle tablesA andB with the following 2 steps:
Step 3.2 : Mining size-two itemsets

This step examines all pairs of frequent itemsx and y,
which are from the two different dimension tables.

Step 3.3 : Mining the rest forA andB
Repeat the following fork = 3; 4; 5::::. Candidates are gen-
erated by the union of pairs of mined itemsets of sizek � 1
differing only in the last item. The technique of generation
would be similar to FORC [SHS00]. Next count the fre-
quencies of the candidates and determine the frequent item-
sets.

After Steps 3.2 and 3.3, the results will be all frequent
itemsets formed from items in tablesA and/orB. This can
be seen as the frequent itemset mined from a single dimen-
sion tableAB. Similar steps as Steps 3.2 and 3.3 are then
applied for the tablesAB andC to obtain all frequent item-
sets from the star schema.

3.2 Binding multiple Dimension Tables

We can easily generalize the overall steps above from
3 dimension tables toN dimension tables. Suppose there
are totallyN dimension tables and a fact tableFT in the
star schema. We start with two of the dimension tables,
sayA andB. We apply Steps 3.2 and 3.3 above to mine
all frequent itemsets with items fromA and/orB without
joining the tables withFT . This set of itemsets is calledFAB. We call Steps 3.2 and 3.3 abinding step ofA andB.
After binding, we treatA andB as a single tableAB and
begin the process of bindingAB with another table, this is
repeated until allN dimensions are bound. Some notations
we shall use are:� FA denotes the set of frequent itemsets with items
fromA,FAB denotes the set of frequent itemsets with items
from tablesA and/orB. FABk denotes the set of frequent
itemsets of the formXY , whereX is either empty set or
an itemset fromA, andY is either an empty set or an item-
set fromB with sizek. E.g. FAB = fx1; y1; x1y1g. E.g.FAB2 = fy1y2; y2y3; x1y1y2; x1y2y3g.� FAk denotes the set of frequent itemsets of sizek fromA. FAiBj denotes the set of frequent itemsets in which the
subset of items fromA has sizei and subset of items from
B has sizej. E.g. supposexi’s are items from tableA,
andyj ’s are items from tableB, we may haveFA2B1 =fx1x2y1; x3x4y2g.

After performing ”binding”, we can treat the items in
the combined itemsets as coming from a single dimension
table. For example, after ”binding”A andB, we virtually
combineA andB into a single dimension tableAB, and all
items inFAB are from the new dimension tableAB. We
always ”bind” 2 dimension tables at each step, and iterate
for N � 1 times if there are totallyN dimension tables. At
the end all frequent itemsets will be discovered.

Figure 3 shows a possible ordering of the ”bind” opera-
tions on four dimension tables:A;B;C;D.

FA FB FC FD

FAB

10 12 15 16

FABC

FABCD

Figure 3. An example of "binding" order

We need to do two things to combine two dimension ta-
bles: (1) To assign each combination oftid from A andtid from B in FT a newtid, and (2) to set thetid in thetid lists for items inAB to the corresponding newtid.

Consider an example in Figure 4, for aFT relating to

Tid(A) Tid(B) Tid(C) Tid(D)
a1 b1 c1 d1
a1 b2 c2 d2
a2 b2 c1 d1
a2 b2 c2 d2
a3 b4 c1 d1
a4 b3 c2 d2

Tid(AB) Tid(C) Tid(D)

t1 c1 d1
t2 c2 d2
t3 c1 d1
t3 c2 d2
t4 c1 d1
t5 c2 d2

Tid(ABC) Tid(D)
t'1 d1
t'2 d2
t'3 d1
t'4 d2
t'5 d1
t'6 d2

Tid(A) Tid(B) new_tid
a1 b1 t1
a1 b2 t2
a2 b2 t3
a3 b4 t4
a4 b3 t5

Tid(AB) Tid(C) new_tid

t1 c1 t'1
t2 c2 t'2
t3 c1 t'3
t3 c2 t'4
t4 c1 t'5
t5 c2 t'6

x1 x2 x3

a
1
(2)

a
3
(1)

a
4
(1)

a
2
(2)

a
3
(1)

a
1
(2)

A

B

C

D

AB

C

D

ABC

FT

FT'

FT''

y1 y2 y3

b1(1)
b3(1)
b4(1)

b2(3)
b3(1)

b1(1)

z1 z2 z3

c1(3)
c3(0)
c

4
(0)

c1(3) c2(3)
c3(0)

w1 w2 w3

d1(3)
d3(0)
d

4
(0)

d
1
(3) d2(3)

d3(0)

 x1 x2 x3 y1 y2 y3

t1(1)
t2(1)
t4(1)
t
5
(1)

t1(1)
t2(1)

t3(2)
t4(1)

t1(1)
t4(1)
t5(1)

t1(1) t2(1)
t3(2)
t5(1)

z1 z2 z3

c1(3)
c3(0)
c4(0)

c1(3) c2(3)
c3(0)

w1 w2 w3

d1(3)
d3(0)
d4(0)

d2(3)
d3(0)

d1(3)

x1 x2 x3 y1 y2 y3 z1 z2 z3

t'1(1)
t'2(1)
t'5(1)
t'6(1)

t'1(1)
t'

2
(1)

t'3(2)
t'4(1)
t'5(1)

t'1(1)
t'

5
(1)

t'
6
(1)

t'
1
(1) t'2(1)

t'3(1)
t'4(1)
t'6(1)

t'
1
(1)

t'
3
(1)

t'
5
(1)

t'
1
(1)

t'
3
(1)

t'
5
(1)

t'
1
(1)

t'
3
(1)

t'
5
(1)

D
w1 w2 w3

d1(3)
d3(0)
d

4
(0)

d2(3)
d3(0)

d
1
(3)

Figure 4. Concatenating tids after "binding"

4 dimensionsA;B;C;D, after ”binding” A and B, the
columns storing tid(A) and tid(B) would be concatenated.
Each combination of tid(A) and tid(B) would be assigned
a new tid. A andB would be combined intoAB. For
example, before ”binding”, itemx1 appears in transac-
tions a1; a3 and a4. tidA(x1) = fa1(2); a3(1), a4(1)g.
After ”binding”, since a1 corresponds to new tidt1 andt2, a3 corresponds to new tidt4, a4 corresponds to new
tid t5. ThereforetidA(x1) is updated totidAB(x1) =ft1(1); t2(1); t4(1); t5(1)g.

Similarly, whenFAB is then ”bound” withFC, AB is
combined withC andFT would be updated again. Note
that in Figure 4, the tables with attributenew tid and the
multiple fact tables are not really constructed as tables, but
instead stored in a structure which is a prefix tree.

We always bind a given dimension table with the result
of the previous binding because the tid of the dimension ta-
ble allows us to apply the technique of a foreign key as de-
scribed in the previous section. The ordering can be based
on the estimated result size of natural join of the tables in-
volved, which can in turn be estimated by the dimension
table sizes. A heuristic is to order the tables by increasing
table sizes for binding.

3.3 Prefix Tree forFT
In Step 3.1 of the overall steps, the fact tableFT is

scanned once and the information is stored into a data struc-
ture which can facilitate the mining process. The data struc-
ture is in the form of aprefix tree. Each node in the prefix
tree has a label (a tid) and also a counter. We need only scanFT once to insert each tuple into the prefix tree. Suppose
we have 3 dimensionsA;B;C, and a tuple isa3; b2; c2, we

enter at the root node and go down a child with labela3,
from a3 we go down to a child node with labelb2, fromb2 we go to a child node labeledc2. Every time we visit a
node, we increment the counter there by 1. If any child node
is not found, it is created, with the counter initialized to 1.
Hence leveln of the prefix tree corresponds to tid’s of thenth dimension tablethat would be ”bound”. When search-
ing for a foreign tidlist, we can go down the path specified
by the prefix. In this way, theforeign keyand the global fre-
quency in theith iteration can be efficiently retrieved from
the i + 1th level of theprefix tree. Figure 5 shows how a
fact table is converted to a prefix tree.

level 1

level 2

level 3

level 4

order of join

A,B,C,D

Tid(A) Tid(B) Tid(C)
a1 b1 c1
a1 b2 c2
a2 b2 c1
a2 b2 c2
a3 b4 c1
a4 b3 c2

Tid(D)

d1
d2
d1
d2
d1
d2

a
1
(2) a

2
(2) a

3
(1) a

4
(1)

b
1
(1)b

2
(1)b

2
(2) b

4
(1) b

3
(1)

c
1
(1)

d
1
(1)

c
2
(1)

d
2
(1)

c
1
(1)

d
1
(1)

c
2
(1)

d
2
(1)

c
1
(1)

d
1
(1)

c
2
(1)

d
2
(1)

Figure 5. Prefix Tree structure representingFT
level 1

level 2

level 3

t
1
(1) t

2
(1) t

3
(2)t

4
(1) t

5
(1)

c
1
(1)

d
1
(1)

c
2
(1)

d
2
(1)

c
1
(1)

d
1
(1)

c
2
(1)

d
2
(1)

c
1
(1)

d
1
(1)

c
2
(1)

d
2
(1)

Tid(AB)Tid(C)
t1 c1
t2 c2
t3 c1
t3 c2
t4 c1
t5 c2

Tid(D)
d1
d2
d1
d2
d1
d2

collapse

Figure 6. Collapsing the prefix tree

Use of the prefix tree – the foreign key: The prefix
tree is a concise structuring ofFT which can facil-
itate our mining step. When we want to ”bind”FA
with FB, we have to check whether an itemset (e.g.x1) in FA can be combined with an itemset inFB
(e.g. y1). We need to obtain the information of a for-
eign key in the form oftid list (e.g. B tid(x1)). LettidA(x1) = fa1(2); a2(1)g. We can findB key(a1) by
searching the children ofa1 which are labeledb1(1),b2(1), similarly let B key(a2) = fb2(2)g. As a result,B tid(x1y1) = B key(a1) [B key(a2) = fb1(1); b2(3)g:

Collapsing the prefix tree: SupposeA andB are bound,AB is the derived dimension. IfB is not the last dimension
to be bound, we can collapse the prefix tree by one level. A
new root node is built, each node at the original second level
becomes a child node of the new rootnode. The subtree
under such a node is kept intact in the new tree. Figures 5

and 6 illustrate the collapse of one level in a prefix tree.

To facilitate the above, we create a horizontal pointer for
each node in the same level so that the nodes form a linked
list. A uniqueAB tid is given to each of the nodes in the
second level, which corresponds to the collapsed tableAB.
These unique tids at all the levels can be assigned when the
prefix tree is first built.

Updating tid : We need to do the following with the
collapse of the prefix tree. After binding two tablesA andB, a “derived dimension”AB is formed. We update the
tid lists stored with the frequent itemsets and items that
would be used in the following iteration, so that all of them
are referencing to the same (derived) dimension table. For
example,tidA(X) or tidB(Y) are updated totidAB(X) ortidAB(Y).
3.4 Maintaining frequent itemsets in FI-trees

In both local mining and global mining (Steps 2 and 3),
we need to keep frequent itemsets as they are found from
which we can generate candidate itemsets of greater sizes.
We keep all the discovered frequent itemsets of thesame
sizein a tree structure which we call anFI-tree (FI stands
for Frequent Itemset). Hence itemsets ofFA3B1 is mixed
with itemsets ofFA2B2 , the first one belongs toFAB1, the
second belongs toFAB2.
4 Related Work

Some related work can be found in [JS00], where the
joined tableT is computed but without being materialized.
When each row of the joined table is formed, it is processed
and thereby storage cost forT is avoided. In the processing
of each row in the table, an array that contains the frequen-
cies for all candidate itemsets is updated. As pointed out by
the authors, all itemsets are counted in one scan and there
is no pruning from one pass to the next as in the apriori-
gen algorithm in [AS94]. Therefore there can be many can-
didate itemsets and the approach is expensive in memory
costs and computation costs. The empirical experiments in
[JS00] compare their approach with a base case of apply-
ing the apriori algorithm on a materialized table forT . It is
shown that the proposed method needs only 0.4 to 1 times
the time compared to the base case. However, there are
new algorithms in recent years such as [HPY00, SHS00]
which are shown by experiment to often run many times
faster than the apriori algorithm. Therefore, the approachin
[JS00] may not be more efficient than such algorithms.

5 Experiments

We generate synthetic data sets in a similar way as
[HPDW01]. First, we generate each dimension table in-
dividually, in which each record consists of a number of
attribute values within the attribute domains, and model the
existence of frequent itemsets. The parameters are listed in
the following table:

D number of dimensions
n number of transactions in each dimension table
m number of attributes in each dimension table
s largest size of frequent itemsets
t largest number of transactions with a common itemset
d domain size of each attribute (same for all attributes)

The domain sized of an attribute is the number of dif-
ferent values for the attribute, which is the number of items
derived from the attribute-value pairs for the attribute.

The value ofn is set as 1000 in our experiment. After
generating transactions for each dimension table, we gener-
ateFT based on parameters in the following table:

sup target frequency of the association rulesjLj number of maximal potentially frequent itemsets
N number of noise transactions

In constructingFT , there can be correlations among two
or more dimension tables so that some frequent itemsets
contain items from multiple dimensions. For the case of
two dimensions, we want thetids associated with the same
group of transactions with common frequent itemsets from
one dimension table to appear at leastsup times together
with another group oftid sharing common frequent item-
sets from another dimension table. In doing so, frequent
itemsets across dimensions from these 2 groups would ap-
pear with a frequency count greater than or equal tosup,
after joining the two dimension tables andFT . We repeat
this process forjLj times, so thatjLj maximal potentially
frequent itemsets would be formed (bymaximal, we mean
that no superset of the itemset is frequent).

In order to generate some random noise, transactions
which do not contain frequent itemset are generated.N
rows inFT are generated, in which each tid from the di-
mension tables is picked randomly.

We compare our proposed method with the approach of
applying FP-tree algorithm [HPY00] on top of the joined
tableT . We assumeT is kept on disk and hence requires
I/O time for processing. FP-tree requires two scanning ofT
during the FP-tree mining. The I/O time required is up to
200 seconds in our experiments. It turns out that the table
join time is not significant compared to the mining time.

All experiments are conducted on SUN Ultra-Enterprise
Generic106541-18 with SunOS 5.7 and 8192MB Main
Memory. The average disk I/O rate is 8MB per second.
Programs are written in C++. We calculate the total execu-
tion time of mining multiple tables as the sum of required

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25 30

pr
oc

es
si

ng
 ti

m
e

in
 s

ec
on

ds

number of Attributes in each dimension

varying number of attributes

masl (A,B related)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25 30

pr
oc

es
si

ng
 ti

m
e

in
 s

ec
on

ds

number of Attributes in each dimension

varying number of attributes

masl (A,B related)
masb (A,B related)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25 30

pr
oc

es
si

ng
 ti

m
e

in
 s

ec
on

ds

number of Attributes in each dimension

varying number of attributes

masl (A,B related)
masb (A,B related)

fpt (A,B related)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25 30

pr
oc

es
si

ng
 ti

m
e

in
 s

ec
on

ds

number of Attributes in each dimension

varying number of attributes

masl (A,B related)
masb (A,B related)

fpt (A,B related)
masl (A,B,C related)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25 30

pr
oc

es
si

ng
 ti

m
e

in
 s

ec
on

ds

number of Attributes in each dimension

varying number of attributes

masl (A,B related)
masb (A,B related)

fpt (A,B related)
masl (A,B,C related)

masb (A,B,C related)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25 30

pr
oc

es
si

ng
 ti

m
e

in
 s

ec
on

ds

number of Attributes in each dimension

varying number of attributes

masl (A,B related)
masb (A,B related)

fpt (A,B related)
masl (A,B,C related)

masb (A,B,C related)
fpt (A,B,C related)

0

20000

40000

60000

80000

100000

0 200 400 600 800 1000

pr
oc

es
si

ng
 ti

m
e

in
 s

ec
on

ds

number of transactions (K)

varying number of transactions in FT

masl (A,B related)

0

20000

40000

60000

80000

100000

0 200 400 600 800 1000

pr
oc

es
si

ng
 ti

m
e

in
 s

ec
on

ds

number of transactions (K)

varying number of transactions in FT

masl (A,B related)
masb (A,B related)

0

20000

40000

60000

80000

100000

0 200 400 600 800 1000

pr
oc

es
si

ng
 ti

m
e

in
 s

ec
on

ds

number of transactions (K)

varying number of transactions in FT

masl (A,B related)
masb (A,B related)

fpt (A,B related)

0

20000

40000

60000

80000

100000

0 200 400 600 800 1000

pr
oc

es
si

ng
 ti

m
e

in
 s

ec
on

ds

number of transactions (K)

varying number of transactions in FT

masl (A,B related)
masb (A,B related)

fpt (A,B related)
masl (A,B,C related)

0

20000

40000

60000

80000

100000

0 200 400 600 800 1000

pr
oc

es
si

ng
 ti

m
e

in
 s

ec
on

ds

number of transactions (K)

varying number of transactions in FT

masl (A,B related)
masb (A,B related)

fpt (A,B related)
masl (A,B,C related)

masb (A,B,C related)

0

20000

40000

60000

80000

100000

0 200 400 600 800 1000

pr
oc

es
si

ng
 ti

m
e

in
 s

ec
on

ds

number of transactions (K)

varying number of transactions in FT

masl (A,B related)
masb (A,B related)

fpt (A,B related)
masl (A,B,C related)

masb (A,B,C related)
fpt (A,B,C related)

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30

pr
oc

es
si

ng
 ti

m
e

in
 s

ec
on

ds

% of noise

varying percentage of noise

masl (A,B related)

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30

pr
oc

es
si

ng
 ti

m
e

in
 s

ec
on

ds

% of noise

varying percentage of noise

masl (A,B related)
masb (A,B related)

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30

pr
oc

es
si

ng
 ti

m
e

in
 s

ec
on

ds

% of noise

varying percentage of noise

masl (A,B related)
masb (A,B related)

fpt (A,B related)

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30

pr
oc

es
si

ng
 ti

m
e

in
 s

ec
on

ds

% of noise

varying percentage of noise

masl (A,B related)
masb (A,B related)

fpt (A,B related)
masl (A,B,C related)

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30

pr
oc

es
si

ng
 ti

m
e

in
 s

ec
on

ds

% of noise

varying percentage of noise

masl (A,B related)
masb (A,B related)

fpt (A,B related)
masl (A,B,C related)

masb (A,B,C related)

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30

pr
oc

es
si

ng
 ti

m
e

in
 s

ec
on

ds

% of noise

varying percentage of noise

masl (A,B related)
masb (A,B related)

fpt (A,B related)
masl (A,B,C related)

masb (A,B,C related)
fpt (A,B,C related)

(a) (b) (c)

Figure 7. Running time for (A,B) related and (A,B,C) related datasets

CPU and I/O times, and that of mining a large joined table
as the CPU and I/O times for joining and FP-tree mining.

For the local mining step in our approach, we use a verti-
cal mining technique as in FORC [SHS00]: frequent item-
sets of increasing sizes are discovered Thetid list of the
itemsets are used to generate sizek + 1 frequent itemsets
from sizek frequent itemsets, which is by intersecting thetid lists of pairs of sizek frequent itemsets with only one
differing item. In the experiments, we compare the running
time ofmasl (our proposed method, implementingtid list
as a linked list structure),masb(our proposed method, im-
plementingtid list as a fixed-size bitmap and an array of
count), andfpt (the join-before-mine approach with FP-
tree) with different data setting in 3 dimension tablesA, B,C and a fact tableFT . In most cases,masb runs slightly
faster thanmasl, but needs about 10 times more memory.

In the first dataset, we model the situation that items inA andB are strongly related, such that frequent itemsets
contain items acrossA andB, while items inC are not
involved. In such cases, transactions containing frequent
itemsets fromA andB can be related toBr transactions
in C randomly.Br is set to 100 in all of our experiments
reported here. (We have varied the value ofBr and discov-
ered little change in the performance.) The default values
of other parameters used are :

number of transactions in the joined table 50K
number of attributes in each dimension table 10
size of each attribute domain 10
random noise 10%
max. size of potentially maximal frequent itemset8

When we increase the number of items, the running time
of fpt increases steeply, while that of bothmasl andmasb
would increase almost linearly. Running time of FP-tree

0

2000

4000

6000

8000

10000

12000

20 25 30 35 40 45 50 55 60

pr
oc

es
si

ng
 ti

m
e

in
 s

ec
on

ds

number of transactions (K)

varying number of transactions in FT

masl

0

2000

4000

6000

8000

10000

12000

20 25 30 35 40 45 50 55 60

pr
oc

es
si

ng
 ti

m
e

in
 s

ec
on

ds

number of transactions (K)

varying number of transactions in FT

masl
fpt

(a)

0

1000

2000

3000

4000

5000

6000

7000

8000

10 15 20 25 30 35 40 45 50 55 60

pr
oc

es
si

ng
 ti

m
e

in
 s

ec
on

ds

number of attributes in each dimension table

varying number of attributes in the dimension table

masl

0

1000

2000

3000

4000

5000

6000

7000

8000

10 15 20 25 30 35 40 45 50 55 60

pr
oc

es
si

ng
 ti

m
e

in
 s

ec
on

ds

number of attributes in each dimension table

varying number of attributes in the dimension table

masl
fpt

(b)

Figure 8. Running time for mixture datasets

grows exponentially with the depth of the tree, which is de-
termined by the maximum number of items in a transaction.
In this case, performance of our proposed method outper-
forms FP-tree, especially when the number of items in each
transaction is large. (see Figure 7(a))

When the number of transactions in the joined table
increases, running time of both methods would increase
greatly.masl andmasb are about 10 times faster thanfpt
(see Figure 7(b)). We also vary the percentage of random
noise being included in the datasets, (see Figure 7(c)), bothmasl andmasb are faster thanfpt.

In the second dataset, we model the case thatA,B,C are
all strongly related, so that maximal frequent itemsets al-
ways contain items from all ofA,B andC. Compared with
the previous dataset, performance of our approach does not
vary too much, while the running time offpt is faster in
some cases (Figures 7(b) and (c)). With the strong correla-
tion, there would be less different patterns to be considered
and the FP-tree will be smaller. However, we believe that in
real life situation such a strong correlation will be rare.

In real life application, there are often mixtures of rela-
tionships across different dimension tables in the database.
In the third group of dataset, we present data with such mix-
ture. In particular, 10% of transactions contain frequent
itemsets from onlyA, B, C, respectively, 15% contain fre-
quent itemsets fromAB, BC, AC respectively, 10% con-
tain frequent itemsets fromABC, and 15% are random
noise. We investigate how the running times ofmasl andfpt vary against increasing number of items in each trans-
action, and increasing number of transactions inT .

In Figure 8(a), we vary the number of transactions from
20K to 60K, while keeping the number of attributes in each
dimension table to be 30 In Figure 8(b), we vary the num-
ber of attributes in each dimension table from 10 to 60, and
keep the number of transactions to be 30K. In this case, run-
ning time offpt grows much faster than our approach. This
demonstrates the advantage of applying our method, which
would be more significant when we have more dimension
tables so that the number of items in theT will be large.

6 Conclusion

We propose a new algorithm for mining association
rules on a star schema without performing the natural join.
We show by experiments that it can greatly outperform a
method based on joining all tables even when the naive
approach is equipped with a state-of-the-art efficient algo-
rithm.

Our proposed method can be generalized to be applied to
a snowflakestructure, where there is a star structure with a
fact tableFT , but a dimension table can be replaced by an-
other fact tableFT 0 which is connected to a set of smaller
dimension tables. We can consider mining across dimen-
sion tables related byFT 0 first. We then consider the result
as a single derived dimension, and continue to process the
star structure withFT . This means that we always mine
from the ”leaves” of the snowflake.

Our current experiments assume that the data structures
we use can be kept in main memory. It will be of interest to
study the case where disk memory is required for the inter-
mediate steps. Since disk access is more expensive and our
intermediate structure has been designed to be more com-
pact than the fact table, we expect good performance to be
found for the proposed approach in such cases. We have

not examined in our experiments the cases where the num-
ber of dimension tables is large. More study will be needed
for these considerations.

In general,FT can contain attributes other thantid from
dimension tables. In this case, we group all these attributes,
put them in a separate new dimension table, and apply the
same techniques to mine it as other dimension tables.

AcknowledgementsThis research is supported by the
RGC (the Hong Kong Research Grants Council) grant UGC
REF.CUHK 4179/01E. We thank Yin Ling Cheung for her
help in the experiments and performance analysis.

References

[AIS93] R. Agrawal, T. Imilienski, and A. Swami. Mining asso-
ciation rules between sets of items in large datasets. Pro-
ceedings of the ACM SIGMOD International Conference
on the Management of Data, pp 207-216, 1993.

[AS94] R. Agrawal and R. Srikant. Fast algorithm for mining as-
sociation rules. Proceedings of the 20th VLDB Confer-
ence, pp 487-499, 1994.

[CD97] S. Chaudhuri and U. Dayal. An Overview of Data Ware-
housing and OLAP Technology. ACM SIGMOD Record,
Vol. 26 No.1, pp 65-74, March 1997.

[HPDW01] J. Han, J. Pei, G. Dong, and K. Wang. Efficient com-
putation of iceberg cubes with complex measures. Pro-
ceedings of the ACM SIGMOD International Conference
on the Management of Data, pp 1-12, 2001.

[HPY00] J. Han and J. Pei and Y. Yin. Mining Frequent Patterns
without Candidate Generation. Proceedings of the ACM
SIGMOD International Conference on the Management
of Data, pp 1-12, 2000.

[JS00] V.C. Jensen and N. Soparkar. Frequent Itemset Count-
ing across Multiple Tables, Proceedings of Pacific-Asia
Conference on Knowledge Discovery and Data Mining
(PAKDD), pp 49-61, 2000.

[RS98] R. Rastogi and K. Shim, Mining Optimized Association
Rules with Categorical and Numeric Attributes, Proc. of
International Conference on Data Engineering (ICDE),
pp 503-512, 1998.

[SHS00] P. Shenoy, J.R. Haritsa, S. Sudarshan. Turbo-charging
vertical mining of large databases. Proceedings of the
ACM SIGMOD International Conference on Manage-
ment of Data, pp 22-33, 2000.

[SA96] Ramakrishnan Srikent, Rakesh Agrawal, Mining Quanti-
tative Association Rules in Large Relational Tables, Pro-
ceedings of the ACM SIGMOD International Conference
on Management of Data, pp 1-12, 1996.

[STA00] S.Sarawagi, S. Thomas, R. Agrawal Integrating associ-
ation rule mining with relational database systems: Al-
ternatives and implications. Data Mining and Knowledge
Discovery, 4(2/3), 2000. (Also appeared in SIGMOD, pp
343-354, 1998.)

