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Abstract The techniques in association rule mining has been ex-

tended to work on numerical data and categorical data
Association rule mining is an important data mining in more conventional databases [SA96, RS98], some re-
problem. It is found to be useful for conventional relatibna searchers have noted the importance of association rule
data. However, previous work has mostly targeted on min- mining in relation to relational databases [STA0O]. Tools
ing a single table. In real life, a database is typically made for association rule mining are now found in major products
up of multiple tables and one important case is where somesuch as IBM’s Intelligent Miner, and SPSS’s Clementine.
of the tables form a star schema. The tables typically corre-  In real databases, typically a number of tables will be
spond to entity sets and joining the tables in a star schemadefined. In this paper, we examine the problem of mining
gives relationships among entity sets which can be very in-association rule from a set of relational tables. In particu
teresting information. Hence mining on the join result is |ar we are interested in the case where the tables form a star
an important problem. Based on characteristics of the star structure [CD97] (see Figure 1). A star schema consists of a
schema we propose an efficient algorithm for mining as- fact table(#7') in the center and multiple dimension tables.
sociation rules on the join result but without actually per- We aim to mine association rules on the join result of all
forming the join operation. We show that this approach can the tables [JS00]. This is interesting because the joiritresu
significantly out-perform the join-then-mine approachreve typically tells us the relationship among different et
when the latter adopts a fastest known mining algorithm.  such as customers and products and to discover cross enti-
ties association can be of great value. The star schema can
be considered as the building block for a snowflake schema
1 Introduction and hence our proposed technique can be extended to the
snowflake structure in a straightforward manner.

Association rules mining [AIS93, AS94] is identified as

one of the important problems in data mining. Let us first addr’;(sr“:gi”‘) o Subj:d(csf’:;f;)ter —
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An association rulehas the form of = Y where X and

Y are sets of items. In such a rule, we require that the fre- Tid(A)[Tid(B)[Tid(C)| 0

guency of the set of item¥ UY is above a certain threshold T
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The mining can be divided into two steps: first we
find the sets of items that have frequencies abovesup, Figure 1. Star with 3 Dimensional Tables

which we call thdrequent itemsets Second, from the sets

of frequent itemsets we generate the association rules. The At first glance it may seem easy to join the tables in a star
first step is more difficult and is shown to be NP-hard. In schema and then do the mining process on the joined result.
our subsequent discussion we shall focus on the first step. However, when multiple tables are joined, the resulting ta-



ble will increase in size many folds. There are two major note as4, B, C, ..., each of which contains only one pri-
problems: Firstly, in large applications, often the join of mary key denoted byransaction id (tid) , some other at-
all related tables cannot be realistically computed bexaus tributes and no foreign keys. (Sometimes we simply refer to
of the many-to-many relationship blow up, large dimension A, B, C, ..., as dimensionsd);, b;, ¢; denote the transaction
tables, and the distributed nature of data. id (tid) of dimension tablesi, B, C, respectively. We as-
Secondly, even if the join can be computed, the multi- sume that the attributes in the dimension tables are unique.
fold increase in both size and dimensionality presents a(If initially two tables have some common attributes, re-
hugh overhead to the already expensive frequent itemsenhaming can make them different.) We assume that attributes
mining step: (1) The number of columns will be close to take categorical values. (Numerical values can be parti-
the sum of the number of columns in the individual tables. tioned into ranges, and hence be transformed to categorical
As the performance of association rule mining is very sen- values [RS98].) The set of values for an attribute is called
sitive to the number of columns (items) the mining on the thedomain of the attribute.
resulting table can take much longer computation time com-  Conceptually, we can view the dimension table in terms
pared to mining on the individual tables. (2) If the joinre- of a binary representation, where we have one binary
sultis stored on disk, the I/O cost will increase signifibant  attribute (or we call an “item”) corresponding to one
for multiple scanning steps in data mining. (3) For mining "attribute-value” pair in the original dimension table. We
frequent itemsets of small sizes, a large portion of the I/O also refer to each tuple it or the binary representation
cost is wasted on reading the full records containing irrel- as atransaction. For example, consider Figure 2, v-,
evant dimensions. (4) Each tuple in a dimension table will v5 are attribute names for dimension tableand the value
be read multiple times in one scan of the join result becauseof attributewv; for transactior:; is R». In the conceptual
of duplicates of the tuple in the join result. binary representation in Figure 2, we have attributes for
We exploit the characteristics of tables in a star schema.”v; = Ry”,"v1 = Ry""vi = Ry", ... (we call themzy, x5,
Instead of "joining-then-mining”, we can perform "mining-  zs, ..., respectively). For transaction in table A, the value
then-joining”, in which the "joining” part is much less of attributezs is 1 (v; = R» is TRUE), and the values of
costly. Our strategy never produces the join result. In the z; andz, both equal to 0 (FALSE). In our remaining dis-
first phase, we mine the frequent itemsets locally at eachcussions, binary items (one item for each “attribute-value
dimension table, using any existing algorithm. Only rele- pair) in the conceptual binary representation would be used
vant information are scanned. In the second phase, we mine:;, z;, ;. ... denotes the itemset that is composed of items
global frequent itemsets across two or more tables basedz;,, z;,, zi,, ... We assume aordering of items which is
on local frequent itemsets. Here, we exploit the following adopted in any transaction aitémset E.g. z; would al-
pruning strategy: if{ UY is a frequent itemset, whepé is ways appear before; if they exist together in some transac-
from table A andY is from table B,X must be a frequent tion or itemset. This ordering will facilitate our algorith
itemset andy” must be a frequent itemset. Thus, the first

phase provides all local frequent itemsets we need for the A EISt“\‘je”\‘,) Yi=Roi=RuVi=Re "2)=<4R0 "Z;SRl "3;6R0 YRt
second phase. The difficulty lies in the second phase. &R, RoIR, a o o111 o o1
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track of the many-to-many relationship in the fact table
without generating the join result. We make use of the
feature that a foreign key for a dimension tablecan ap- Figure 2. Dimension Table and its Binary Rep-

pear many times in the join result, which allows us to intro- ~ resentation

duce some structure to record the key once, together with a

counter for the number of duplications. We also make use . .

of the idea of semi-join in relgtional databases to fad#ita Ther_e IS one‘apt tablg, Wh'Ch. we denote a§T.. F
the mining process. From these ideas we propose a set of al_tlas att_rlbutes oftid(4), t_ld(B)’ tid(C), ) wheretz_d(A)
gorithm and data structures for mining association rules on's the tid of tabled. That 'S’FT. stores théids from dlmen-_
a star schema which does not involve a join step of the ta->1o"N tablesi, B, C, ... . as foreign keys. (Later we shall dis-

bles involved. Experiments show that the proposed methodciﬁS thtet _n;otre gerl1eral cs;e eril@ tals_o cli)ntalnsh SC(I)_me
is efficient in many scenarios. other attributes.) In an model, typically, each dimen-

sion table corresponds to an entity set, & corresponds
to the relationship among the entity sets. The relatiorsship

2 Problem Definition among entity sets can be of any form: many-to-many, many-
to-one, one-to-many, or one-to-one.
Consider a relational database withstar schema We are interested to mine association rules from the star

There are multipleimension tables which we would de-  structure. In particular we shall examine the sub-problém o



finding allfrequent itemsetsin the table/" resulting from a
natural join of all the given tableg(I' X A X B X .. ).
The join conditions are given by 7. Tid(A) = A.tid,
FT.Tid(B) = B.tid, FT.Tid(C) = C.tid, ... In the fol-

lowing discussions, when we mention frequent itemset we

always refer to the frequency of the itemset in the table
We assume thatfeequency threshold of minsup is given

e B_tid(x;): Given an iteme; in A, B_tid(z;) denotes
a tid-list, oftid(count), wheretid is a tid of B, andcount
is the number of timesid appears together with any tig
of A such that transactiary containse; in A.

e B_tid(X): similar to B_tid(x;) except itemg; is re-
placed by an itemset X from.

for the frequent itemsets. A frequent item corresponds to aExample 3.1 Suppose we have a star schema for a num-

frequent itemset of size one.

ber of dimension tables related by a fact tatii§’. The

In our mining process, the dimension tables will be kept following figure shows 2 of the dimension tablesnd 3,

in the form of the VTV ertical Tid-Vector) representa-

and the projection ofT" on the two columns that contains

tion [SHS00] with counts. Specifically, suppose there are transaction ID’s forA, B, but without removing duplicate

T, Ty, T transactions in tabled, B, C respectively. For
each frequent item in table A, we store a column of 4
bits, thei'” bit is 1 if item z is contained in transaction
and 0 otherwise. We also keep an array ‘@fentries where
theit” entry corresponds to the frequency of tiich 7.

3 The Proposed Method

tuples.

A Tid(A) | Tid(B) B

Tid | Items al bs Tid | Items
al [ x1,x3,x5 al b3 b1 | y1,y3,y5
a2 [ x2,x3,x6 a1 b2 b2 | y1,y3,y6
a3 [x1,x3,x6 el bp b3 [ y2,y4,y6
ad | x1,x4,x6 3 b5 bg | y1,y4,y5
a bs bs |yl,y4,y6

FT

Some of the tids from the dimension tables may not ap-

First we present a simple example to show the idea of pearinFT (e.g.a», b;). Suppose minsupis set to 5. We first
discovering frequent itemsets across dimension tablés wit mine frequent itemsets from each/bnd B. For example,
out actually performing the join operation. We shall use a x; andzx; appear togetherim,, as, the total count oft, a3

data type called:d_list in our algorithm. It is an ordered
list of elements of the formid(count), wheretid is a trans-
action ID, andcount is a non-negative integer. Given two
tid_lists L1, L, theunion L, U L, is the list oftid(count),
wheretid appears in eithef; or L,, and the count is the
sum of the counts ofid in L; and L,. Theintersection
of two tid_lists L,, L, is denoted byl.; N Ly, which is a
list of tid(count), wheretid appears in botfi, and L, and
the count is the smaller of the counts ofd in L, and L.
Suppose we have 2 dimension tahlesB, and a fact table
F'T'. The following are some of the tilists we shall use.

o tid(z;) : atidlist for z;, wherex; is an attribute (
item ) of tableA. In each element afid(count) in the list,
tid is the id of a transaction iA that containg:;, andcount
is the number of occurrences of thé in F'7". If the ¢id of
a transaction that contains does not appear itid 4 (z; ),
the count ofitis O inF'7".

E.gQ. tida(zs) = {a1(5), a3(2)} means that the tids of
transactions im that containes area; andas; a; appears
5timesinFT, andas appears 2 times.

o tid 4 (X) whereX is an itemset with items from, itis
similar totid 4 (x;) exceptr; is replaced byX. tid 4 (z;z;)
can be obtained b§id 4 (x;) Ntida(z;).

e B_key(a,): Given a tida, from A, B_key(a, ) de-
notes a tid-list ofid(count), wheretid is a tid fromB and
count is the number of occurrencestl together witha,,
in FT.

E.g. B_key(a1) = {b3(4), b5(2)} means that b5 oc-
curs 4 times inFT', anda, b5 occurs 2 times.

in F'T"is 6, hencer; x5 is a frequent itemset. Next we check
if a frequent itemset fromt can be combined with a fre-
guent itemset fron® to form a frequent itemset of greater
size.y; ys is a frequent itemset fror® with frequency = 5.
We want to see if, 23 can be combined with, ys to form

a frequent itemset, the steps are outlined as follows:

1. tida(z1) = {a1(4), as(2)}, tida(zs) = {a1(4), as(2)},
tidA(l‘ll‘s) = tidA(l'l) N tidA(xS) = {a1(4),a3(2)},
tids(yrys) = {b2(2),b5(3)}.

2. Bkey(ar) = {b2(1),b3(1),b5(2)},

B key(az) = {b2(1),b5(1)}.

3. Btid(x132) = B_key(a1) U B key(as)
= {b2(2), b3(1),b5(3)}.

4. B_tid(z122) Ntide(y1ys) = {b2(2),05(3)}.

5. The combined frequency = total count in the list
{b2(2),b5(3)} =5.
Hence the itemset; 3y ys is frequent. O

In general, to examine the frequency for an itemset
that contains items from two dimension tablésand B,
we can do the following. We examine tableto find the
set of transactiong) in A that contain thed items in X.
Next we determine the transactidfisin B that appear with
such transactions ift"7". Note that this is similar to the
derivation of an intermediate table insami-join strategy,
where the result of joining a first table with the key of a
second table are placed, the key of the second table is a



foreign key in this intermediate table. In the mean time, 3.2 Binding multiple Dimension Tables

the set of transactiorig; in B that contain the3 items in

X are identified. Finally/> and/5 are intersected, and the We can easily generalize the overall steps above from

resulting count is obtained. 3 dimension tables t&/ dimension tables. Suppose there
The use of tidlist is a compressed form of recording the are totally N dimension tables and a fact tab®" in the

occurrences of tid’s in the fact table. Multiple occurresice star schema. We start with two of the dimension tables,

would be condensed as one single entry in digtwith the say A and B. We apply Steps 3.2 and 3.3 above to mine

count associated. all frequent itemsets with items fromd and/or B without
Initial Step: In order to do the above, we need to have joining the tables with#7". This set of itemsets is called
some initial information aboutid 4 (x;) for each iteme; in FAB_ We call Steps 3.2 and 3.3unding step of4 andB.

each dimension tablé¢. One scan of a dimension table can After binding, we treatd and B as a single tablei B and
give us the list of transactions for all items. In one scan of begin the process of bindingB with another table, this is
FT we can determine all the counts for all transactions in repeated until allvdimensions are bound. Some notations
all the dimension tables. In the same scan, we can also dewe shall use are:

termineB _key(a;) for eachtid a; in each dimension table. e 4 denotes the set of frequent itemsets with items
from A, FAP denotes the set of frequent itemsets with items
3.1 Overall Steps from tablesA and/orB. F4P+ denotes the set of frequent

itemsets of the formX'Y", where X is either empty set or

o ] ) an itemset fromd, andY” is either an empty set or an item-
For simplicity, let us first assume that there are 3 dimen- get fromB with size k. E.g. FAB = {1y, 211 ). E.

sion tablesd, B, C. The overall steps of our method are: FAB2 = [y v yous 219192, £1Y2Y3 -

Step 1: Preprocessing _ _ « 4 denotes the set of frequent itemsets of gifm
Read the dimension tables, convert theminto VTV (Vertical 4. F4iB; denotes the set of frequent itemsets in which the
Tid-Vector) format with counts (see Section 2). subset of items fromi has size and subset of items from

Step 2 : Local Mining B has sizej. E.g. suppose;’s are items from tabled,

Perform local mining on each dimension table. This can beandy;’s are items from tablé3, we may haver4=5: —
done with any known single table algorithm with a slight {25y, x324y-}.

modification of refering to the counts of transactions in FT  After performing "binding”, we can treat the items in
which has been collected in the initial step described iR Sec the combined itemsets as coming from a single dimension
tion 2. The time taken for this step typcially is insignifitan table. For example, after "binding! and B, we virtually

compared to the global mining steps. combine A andB into a single dimension tabléB, and all
Step 3 : Global Mining items in 45 are from the new dimension tableB. We
Step 3.1 : Scan the Fact Table always "bind” 2 dimension tables at each step, and iterate
Scan the Fact Table FT and record the information in somefor N — 1 times if there are totallww dimension tables. At
data structures. the end all frequent itemsets will be discovered.
We set an ordering for, B, C. First we handle tables Figure 3 shows a possible ordering of the "bind” opera-
A and B with the following 2 steps: tions on four dimension tablest, B, C, D.
Step 3.2 : Mining size-two itemsets
This step examines all pairs of frequent itemsand y, pece
which are from the two different dimension tables. FABC

Step 3.3 : Mining the rest fa# and B

Repeat the following fok = 3,4, 5..... Candidates are gen- >
erated by the union of pairs of mined itemsets of dize 1
differing only in the last item. The technique of generation A rs po o
would be similar to FORC [SHSO00]. Next count the fre- 10 12 15 16
guencies of the candidates and determine the frequent item-
sets. Figure 3. An example of "binding" order
After Steps 3.2 and 3.3, the results will be all frequent
itemsets formed from items in tablelsand/orB. This can We need to do two things to combine two dimension ta-

be seen as the frequent itemset mined from a single dimenbles: (1) To assign each combination& from A and
sion tableA B. Similar steps as Steps 3.2 and 3.3 are thentid from B in F'I" a newtid, and (2) to set theid in the
applied for the tabled B andC' to obtain all frequentitem-  tid_lists for items inAB to the corresponding netvd.

sets from the star schema. Consider an example in Figure 4, forféd" relating to
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Z E § ay i 1 1 1 n . .
) ) a b |5 <): alh [ g from a3 we go down to a child node with labék, from
1 (X [X & ts & 2 Ci h . . a
S I I a b | u sl o fal bywego toachildnode labeled. Every time we visita
bs 5 4 G h . .
@ L W, W = : alolola node, we increment the counter there by 1. If any child node
1 2 3 . s . e e .
b s leol { FT is not found, it is created, with the counter initialized to 1
by e mEeTEe]  Hence leveh of the prefix tree corresponds to tid's of the
L G L H H ” ”
— lr L o [ 6 n'" dimension tabl¢hat would be "bound”. When search-
: i i new_ti ts 1 d, . . . aes .
X% X YV Yy V5| o B B oo ing for a foreign tidlist, we can go down the path specified
¢ 7 1 d - . .
e e SeraaTe | et by the prefix. In this way, théereign keyand the global fre-
) ) I A e FT quency in the®” iteration can be efficiently retrieved from
Z 7 % k& { — thei + 1t" level of theprefix tree Figure 5 shows how a
o @ » _ fact table is converted to a prefix tree.
,(0) l TId(:I\BC) Tlr;(D)
ABC D l'; dz order of join
X% X5 VY Y, Y5 4 L 4| [W W, W :3 g] A,B,C,D
[:1(1)Mg?(z> rolrofrotmfuoltol (4o d3) o o Tid(A) [Tid(8) | Tid(C) | Tid(D) level 1
A et Ak AR
t,(1) FT" gl 02 22 az Level o
24 D2 1 a1l eve
_ o o 8 by Cp|dp|
Figure 4. Concatenating tids after "binding" 83 | ba| C1 | d1 level 3
8 | b3 | C2| d2
level 4

4 dimensionsA, B, C, D, after "binding” A and B, the
columns storing tid(A) and tid(B) would be concatenated.  Figure 5. Prefix Tree structure representing
Each combination of tid(A) and tid(B) would be assigned FT

a new tid. A and B would be combined intodA B. For
example, before "binding”, itemx; appears in transac-
tionSal,ag anda4. tZdA(l‘l) = {01(2),03(1), 04(1)}
After "binding”, since «; corresponds to new ti¢h and

Tid (AB)[Tid(C)| Tid(D)

{2, as corresponds to new tid,, a4 corresponds to new | t; | ¢ cottapse
tid t5. Thereforetida(z,) is updated totidap(zi) = g gf SZ Lever 1 ;

{t1(1), t2(1), ta(1), t5(1)}. ta 16| &~V ) AN
Similarly, when F48 is then "bound” withF“, AB is Eg g 82 level 2 Q¢
combined withC' and F7" would be updated again. Note Level Y d2> 4,

that in Figure 4, the tables with attributew_tid and the
multiple fact tables are not really constructed as tables, b Figure 6. Collapsing the prefix tree

instead stored in a structure which is a prefix tree.

We always bind a given dimension table with the result  yse of the prefix tree — the foreign key The prefix
of the previous binding because the tid of the dimensionta-yree s a concise structuring of 7 which can facil-
ble allows us to apply the technique of a foreign key as de-jtate our mining step. When we want to "bind?4

scribed in the previous section. The ordering can be basedyjth 72 we have to check whether an itemset (e.g.
on the estimated result size of natural join of the tables in- ;) jn F4 can be combined with an itemset iA®

volved, which can in turn be estimated by the dimension (e 4. 4,). We need to obtain the information of a for-
table sizes. A heuristic is to order the tables by increasinggign key in the form oftid_list (e.g. B_tid(zy)). Let

table sizes for binding. tida(z1) = {a1(2),a2(1)}. We can findB_key(a;) by
_ searching the children of; which are labeledb, (1),
3.3 Prefix Tree for FT bo(1), similarly let B_key(as) = {b2(2)}. As a result,

Btid(z1y1) = B_key(a1) UB key(az) = {b1(1),62(3)}.
In Step 3.1 of the overall steps, the fact ta¥lg" is
scanned once and the information is stored into a data struc- Collapsing the prefix tree Supposed and B are bound,
ture which can facilitate the mining process. The data struc AB is the derived dimension. B is not the last dimension
ture is in the form of grefix tree Each node in the prefix  to be bound, we can collapse the prefix tree by one level. A
tree has a label (a tid) and also a counter. We need only scamew root node is built, each node at the original second level
F'T" once to insert each tuple into the prefix tree. Supposebecomes a child node of the new rootnode. The subtree
we have 3 dimensiong, B, C', and a tuple igs, bs, ¢2, We under such a node is kept intact in the new tree. Figures 5



and 6 illustrate the collapse of one level in a prefixtree. 5 Experiments

To facilitate the above, we create a horizontal pointer for

each node in the same level so that the nodes form a linkeq, e generate synthetic data setsh in a similar w?y_as
list. A uniqueAB_tid is given to each of the nodes in the LHPDWO1]. First, we generate each dimension table in-

second level which corresponds to the collapsed takite dividually, in which each record consists of a number of
! P P attribute values within the attribute domains, and mode! th

These unique tids at all the levels can be assigned when the,istence of frequent itemsets. The parameters are listed i
prefix tree is first built. the following table:

Updating tid: We need to do the following with the
collapse of the prefix tree. After binding two tablésand
B, a “derived dimension”AB is formed. We update the
tid_lists stored with the frequent itemsets and items that
would be used in the following iteration, so that all of them
are referencing to the same (derived) dimension table. For
exampletid 4 (X) ortidg(Y') are updated téid 4 g(X) or
tidap(Y).

D | number of dimensions

n | number of transactions in each dimension table
m | number of attributes in each dimension table
S

t

d

largest size of frequent itemsets
largest number of transactions with a common itemset
domain size of each attribute (same for all attributes)

The domain sizel of an attribute is the number of dif-
ferent values for the attribute, which is the number of items
derived from the attribute-value pairs for the attribute.

The value ofn is set as 1000 in our experiment. After
generating transactions for each dimension table, we gener

3.4 Maintaining frequent itemsets in Fl-trees ate F'T" based on parameters in the following table:

sup | target frequency of the association rules

In both local mining and global mining (Steps 2 and 3), |L| | number of maximal potentially frequent itemsgts
we need to keep frequent itemsets as they are found from | N | humber of noise transactions

which we can generate candidate itemsets of greater SiZGQn ConstructingFT' there can be correlations among two
We keep all the discovered frequent itemsets ofdame  or more dimension tables so that some frequent itemsets
sizein a tree structure which we call &fi-tree (Fl stands  contain items from multiple dimensions. For the case of
for Frequent Itemset). Hence itemsetsfot": is mixed  two dimensions, we want thidls associated with the same
with itemsets off"4272, the first one belongs 571, the  group of transactions with common frequent itemsets from
second belongs t6472. one dimension table to appear at leasp times together
with another group ofid sharing common frequent item-
sets from another dimension table. In doing so, frequent
4 Related Work itemsets across dimensions from these 2 groups would ap-
pear with a frequency count greater than or equaldp,
after joining the two dimension tables afd/’. We repeat
Some related work can be found in [JS00], where the this process fofZ| times, so thatZ| maximal potentially
joined tablel" is computed but without being materialized. frequent itemsets would be formed (maximal, we mean
When each row of the joined table is formed, it is processed that no superset of the itemset is frequent).
and thereby storage cost foris avoided. In the processing In order to generate some random noise, transactions
of each row in the table, an array that contains the frequen-which do not contain frequent itemset are generatéd.
cies for all candidate itemsets is updated. As pointed out byrows in #'I" are generated, in which each tid from the di-
the authors, all itemsets are counted in one scan and therenension tables is picked randomly.
is no pruning from one pass to the next as in the apriori- We compare our proposed method with the approach of
gen algorithm in [AS94]. Therefore there can be many can- applying FP-tree algorithm [HPYOO] on top of the joined
didate itemsets and the approach is expensive in memorytable’7. We assumé’ is kept on disk and hence requires
costs and computation costs. The empirical experiments inl/O time for processing. FP-tree requires two scanning of
[JS00] compare their approach with a base case of apply-during the FP-tree mining. The 1/O time required is up to
ing the apriori algorithm on a materialized table forlt is 200 seconds in our experiments. It turns out that the table
shown that the proposed method needs only 0.4 to 1 timegoin time is not significant compared to the mining time.
the time compared to the base case. However, there are All experiments are conducted on SUN Ultra-Enterprise
new algorithms in recent years such as [HPY00, SHS00] Generic106541-18 with SunOS 5.7 and 8192MB Main
which are shown by experiment to often run many times Memory. The average disk I/O rate is 8MB per second.
faster than the apriori algorithm. Therefore, the appraach Programs are written in C++. We calculate the total execu-
[JS00] may not be more efficient than such algorithms. tion time of mining multiple tables as the sum of required
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Figure 7. Running time for (A,B) related and (A,B,C) related datasets

CPU and I/O times, and that of mining a large joined table
as the CPU and /O times for joining and FP-tree mining.
For the local mining step in our approach, we use a verti-
cal mining technique as in FORC [SHSO00]: frequent item-
sets of increasing sizes are discovered Tdaelist of the
itemsets are used to generate size¢ 1 frequent itemsets
from sizek frequent itemsets, which is by intersecting the
tid lists of pairs of sizek frequent itemsets with only one
differing item. In the experiments, we compare the running
time of masl (our proposed method, implementitig _list
as a linked list structurejnasb (our proposed method, im-
plementingtid_list as a fixed-size bitmap and an array of
count), andfpt (the join-before-mine approach with FP-
tree) with different data setting in 3 dimension tahiess,
C and a fact tablé®I". In most casesash runs slightly
faster thannasl, but needs about 10 times more memory.
In the first dataset, we model the situation that items in
A and B are strongly related, such that frequent itemsets
contain items acrosgl and B, while items inC' are not

involved. In such cases, transactions containing frequent

itemsets from4 and B can be related t@3r transactions

in C randomly. Br is set to 100 in all of our experiments
reported here. (We have varied the valugsefand discov-
ered little change in the performance.) The default values
of other parameters used are :

number of transactions in the joined table 50K
number of attributes in each dimension table 10
size of each attribute domain 10
random noise 10%
max. size of potentially maximal frequent itemse8

When we increase the number of items, the running time
of fpt increases steeply, while that of bottusl andmasb
would increase almost linearly. Running time of FP-tree
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Figure 8. Running time for mixture datasets

grows exponentially with the depth of the tree, which is de-
termined by the maximum number of items in a transaction.
In this case, performance of our proposed method outper-
forms FP-tree, especially when the number of items in each
transaction is large. (see Figure 7(a))

When the number of transactions in the joined table
increases, running time of both methods would increase
greatly. masl andmasb are about 10 times faster thgpt
(see Figure 7(b)). We also vary the percentage of random
noise being included in the datasets, (see Figure 7(c)), bot
masl andmasb are faster tharfpt.



In the second dataset, we model the casedhdt, C are not examined in our experiments the cases where the num-
all strongly related, so that maximal frequent itemsets al- ber of dimension tables is large. More study will be needed
ways contain items from all of, B andC'. Compared with  for these considerations.
the previous dataset, performance of our approach does not In general,[”T" can contain attributes other théd from
vary too much, while the running time gipt is faster in dimension tables. In this case, we group all these attrihute
some cases (Figures 7(b) and (c)). With the strong correla-put them in a separate new dimension table, and apply the
tion, there would be less different patterns to be consitlere same techniques to mine it as other dimension tables.
and the FP-tree will be smaller. However, we believe that in
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