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Abstract

Data mining promises to discover valid and potentially
useful patterns in data. Often, discovered patterns are not
useful to the user. ”Actionability” addresses this problem in
that a pattern is deemed actionable if the user can act upon
it in her favor. We introduce the notion of “action” as a
domain-independent way to model the domain knowledge.
Given a data set about actionable features and an utility
measure, a pattern isactionableif it summarizes a popu-
lation that can be acted upon towards a more promising
population observed with a higher utility. We present sev-
eral pruning strategies taking into account the actionability
requirement to reduce the search space, and algorithms for
mining all actionable patterns as well as mining the topk
actionable patterns. We evaluate the usefulness of patterns
and the focus of search on a real-world application domain.

1 Introduction

1.1 Background

Knowledge discovery in databases is the non-trivial pro-
cess of identifyingvalid, novel, potentiallyuseful, and ul-
timatelyunderstandablepatterns in data [4]. The literature
has mostly focussed on the ”valid” and ”understandable”
measures that can be defined inobjectiveterms, such as the
confidence/support measure [2] and the size/number of pat-
terns. Due to the lack of modeling user knowledge, dis-
covered patterns often are known or not useful to the user.
To model the ”novel” and ”useful” aspects,subjectivemea-
sures are needed [7, 10]. [10] classified subjective measures
into unexpectednessand actionability. A pattern isunex-
pectedif it is surprising to the user. A pattern isactionable
if the user can act upon it to her advantage.

Despite the efforts of initial works on actionability min-
ing (more details in Related Work), it turned out to be very
hard to capture formally the “elusive” nature of actionabil-
ity in all of its manifestations and across different types of

applications and settings. The following factors contribute
to the difficulties of this problem. First, there is the dilemma
that user knowledge should be acquired to define actionabil-
ity, but the ability to provide such knowledge tends to inval-
idate the need for mining actionable patterns. Second, it is
very hard to model the “usefulness” of a pattern. Strictly
speaking, this information is not available until after pat-
terns are deployed in the real world; on the other hand, the
data mining algorithm needs to tell if a pattern is actionable
beforeit is deployed. Finally, the search space is likely to
be large and a scalable method must exploit the notion of
actionability to prune the search as early as possible.

1.2 Our Contributions

We propose an actionability mining approach that ad-
dresses three goals. (1) Find the right balance between pro-
viding enough domain knowledge and making the problem
scalable, tractable and non-trivial. (2) Model actionability
in a domain-independent manner and provide a way to es-
timate the success of actionable patterns. (3) Utilize user
knowledge early in the search of actionable patterns. The
main idea is as follows. Suppose that a database contains
historical observations about severalfeaturesand a success
measure called theutility. Also, suppose that we know some
actionscan influence features in certain (simple) ways. If
some features are correlated with the utility in some pop-
ulation of the data, a change in those features would im-
ply a change in the utility. Now if some actions can influ-
ence those features, this influence will cascade to the utility
through the correlation. We are interested in the patterns
that summarize those actions and populations where such
cascaded influences increase the utility. An example ex-
plains these points.

Example 1.1 (Phone call charge example)Consider
a customer database in the long distance phone call
application:

C(CustID, Rate,Married, · · · , U).

U is the utility representing the profit generated on a cus-
tomer. For simplicity,U has the domain{Low, High}. The
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featureRate represents the rate charged to a customer and
has the domain{Normal, Special}, with Normal denot-
ing the normal rate andSpecial denoting the promotional
rate. Suppose that we observed the following two patterns
in the data

D : Rate = Normal,Married = No → U = Low,
D′ : Rate = Special, Married = No → U = High.

The customers inD′ generated a higher profit because they
made more calls at the lower rate. Comparing these two
patterns reveals that the telephone company can make more
profit by taking the action of offering the special rate to the
customers inD. The increase is expected because a higher
profit was observed on the customers (i.e.,D′) who shared
similar characteristics (i.e., unmarried) but were offered the
special rate.

The example conveys several points. (1) In many real life
applications, the user knows some simple action/feature re-
lationship (e.g., offering special rate can changeRate from
Normal to Special). (2) The user is interested in find-
ing the action/utility relationship, i.e., how actions would
affect the utility. Since several actions and features could
be involved in a complex relationship to affect the utility,
finding such relationships requires examining both the ac-
tion knowledge and the data, therefore, is non-trivial. (3)
A pattern is actionable if it summarizes a population that
can be affected, by taking actions, toward another popula-
tion observed with a higher utility. In a sense, the second
population serves the ”role model” of the first one.

Can this problem be solved by a standard method, such
as a classification algorithm to learn actions that influence
the utility? Unfortunately, standard learning methods can-
not easily incorporate the action knowledge. Without this
knowledge, these methods can learn the rules that summa-
rize the data, but not the rules that change the state of the
data. This comment equally applies to association rule min-
ing [2] and other rules learnt purely from the data. In prin-
ciple the actionability problem is a learning problem, but
the presence of action knowledge and the focus on changes
make it a whole new learning problem that standard meth-
ods are not designed to handle.

The contributions of this paper are as follows. We intro-
duce the notion of ”action” as a domain-independent way
to model some important domain knowledge. An action de-
scribes the condition under which it applies and the effect
it has on a feature. We formulate a new data mining prob-
lem where actions are the first class objects and actionable
patterns are summarizations of opportunities for actions to
boost the utility. We show that mining actionable patterns
is at least as hard as mining frequent itemsets of [2]. We
present several pruning strategies taking into account the ac-
tionability requirement to reduce the search space, and algo-
rithms for mining all actionable patterns as well as mining

the topk actionable patterns. We evaluate the usefulness of
patterns and the focus of search on a real-world application
domain.

In the rest of the paper, we review related work in Section
2, introduce our action model in Section 3, define the action-
ability problem in Section 4, present mining algorithms in
Section 5, and evaluate our approach in Section 6. Finally
we conclude the paper.

2 Related Work

Some initial work has been done on actionability min-
ing. [7] defined actionability of a key finding (pattern)
in terms of the estimated benefits in taking corrective ac-
tion(s) that restores the deviation back to its norm. This
approach worked well for the specific healthcare applica-
tion, but could not be generalized to other application do-
mains. A domain independent approach was presented in
[1], where a hierarchy of actions was introduced and certain
types of patterns are assigned to the nodes in the hierarchy,
and actionable patterns were discovered by executing pat-
tern templates at the nodes of the hierarchy.

Kleinberg et al. [6] presented the microeconomic view
of data mining. They regarded data mining as an opti-
mization problem where the “utility” of decisions is the
objective function: partition the customer baseC into
k parts C1, · · · , Ck to maximize the sum of the optima
Σk

1maxx∈DΣi∈Cj ci · x, whereci · x denotes the utility of a
decisionx on a customeri. In our setting, however,ci · x is
unknown because it corresponds to the actionability ofin-
creasingthe utility on a customeri by taking a set of actions
x. Modeling this notion of actionability is our contribution.

Ras et al. [8] presented an algorithm for finding action
rules. They consideredstableattributes whose values can-
not be changed, andflexibleattributes whose values can be
changed. An “action rule” is a pair of regular rules that
agree on all stable attributes and differ in some flexible at-
tributes and the utility. They did not model actions nor at-
tributes where actions affect only certain ranges, and could
not optimize the set of actions for a better actionability. The
search of action rules is done in a post-processing after find-
ing all regular rules.

The action model was first proposed in [5] with the focus
on constructing a model for optimizing the actionability for
future cases. The work in [12] presented a profit-motivated
product recommender approach, in the presence of an in-
verse correlation between the chance of selling an item and
the profit generated from the sales. The work in [13] as-
sumed that the user is able to provide the “cost” for chang-
ing a feature value. In practice, obtaining such cost will be
the bottleneck. For example, it is difficult for the user to
determine the “cost” for converting a customer from the at-
trition state to the loyal state. A key and non-trivial issue
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in actionability mining is acquiring the user knowledge in a
scalablemanner without overloading the user. We believe
that our action model is an effective way to address this is-
sue.

3 The Action Model

An action model for representing the user knowledge
about actions was recently introduced in [5]. Consider a
data set stored in a table

C(F1, ..., Fm, U).

Fi are featuresandU is theutility to be maximized. We
consider aranked domainfor every featureFj and the util-
ity U , consisting of a small number of linearly ordered
scales, represented by a few ordinals 0,1,... For example,
donation scale, skill level, letter grade, performance evalu-
ation, all can be abstracted into a ranked domain.dom(Fj)
anddom(U) denote the domain ofFj andU . Note that the
average of several utility values can be a decimal.c[Fj ] and
c[U ] denote the value of a casec in C for Fj andU . |x|
denotes the number of elements in a setx. SAT (x) denotes
the set of cases inC satisfying a conditionx.

3.1 The Influence Matrix

Consider severalactions, denotedA1, · · · , An. An ac-
tion can influence the values of featuresF1, · · · , Fm. The
influence is specified by theinfluence matrix{Eij}, 1 ≤
i ≤ n, 1 ≤ j ≤ m. Eij , the influence rangeof Ai on Fj ,
has the form[a, b], where

1. a = b = −, if Ai has no influence onFj .

2. a < b, if Ai increases the current valuef in [a, b] for
Fj to some value in thedestination range[f, b].

3. a > b, if Ai decreases current valuef in [a, b] for Fj

to some value in thedestination range[b, f ].

By default, if Ai has no influence onFj , or if f is not
in [a, b], Ai changes the current valuef to the destination
range[f, f ].

Example 3.1 (Teaching example)We shall use the real
life teaching evaluation domain in Figure 1 as our case
study. EachFi represents the score on one aspect of teach-
ing. U represents the overall score. All scores are in the
0-6 discrete scale, the higher the better. EachAi represents
a possible action. For example, if attending the commu-
nication workshop (A3) increases any communication skill
level (F3) f in the range[1, 5] to a new level in[f, 5], we
represent this knowledge by the entryE33 = [1, 5] in the
influence matrix, with the following implications.

Features: 

F1:  Present course materials in an organized fashion 

F2:  Stimulate student interest in the course 

F3:  Explain difficult concepts effectively 

F4:  Respond well to questions and comments 

F5:  Enthusiastic 

F6:  Provide practical examples 

F7:  Show an interest in students 

F8:  Grade fairly 

F9:  Provide sufficient feedback 

F10: There was sufficient class participation 

F11:  The class sessions were worthwhile 

F12: This was a demanding course 

F13:  The material I learned will be useful to me 

F14:  The text and other reading materials were worthwhile 

Utility 

U:   Overall, I would recommend this instructor 

Actions 

A1:  Post all materials on the Web before class 

A2:  Include some materials beyond the textbook 

A3:  Take part in communication skill workshops 

A4:  Increase office hour 

A5:  Provide the instructor with more TA support 

A6:  Change the content of the course 

A7:  Change the textbook of the course 

Figure 1. The teaching evaluation case study

(1) The action has no influence on the communication
skill level less than 1 or more than 5. (2) The new level is
in the range[f, 5], but the exact level is not specified. Such
range-based specification is essential because typically only
some range is known. (3) No prior assumption is made
about the distribution of the new value in[f, 5]. One ap-
proach is asking the user to provide this information, at the
cost of more burden on the user. Our approach is letting
the data itself provide this information. (4) This knowledge
does not specify the effect on the utilityU ; the influence
matrix is only intended to capture the simple action/feature
relationships known to the user.

Remarks. The influence matrix is usually sparse in that
the user may not have any knowledge for many entries. The
user only has to specify those entries that have a known
action/feature relationship. The above action model implic-
itly assumes that the influence of an action on a feature is
independent of the state of other features and the influence
of other actions. We make thisindependence assumption
because the human user tends to work better when dealing
with one thing at a time. In practice, the user knowledge
is largely imprecise and approximating due to the human
bottleneck, and capturing complete user knowledge is nei-
ther necessary nor tractable. The naive Bayes classifier [3]
is an example of making an independence assumption and
achieving good results.

3.2 The Influence of Actionsets

We now consider the influence of a set of actions, or an
actionset. Under the independence assumption, the destina-

3



tion range of an actionset is the “union” of the destination
ranges of all actions in the set. For example, if the destina-
tion range off = 3 underA1 is [2, f ] and the destination
range off underA2 is [f, 5], the destination range off un-
der the actionset{A1, A2} is [2, 5]. Note that there is no
gap in the “union” range becausef must be in all ranges.

Definition 3.1 (Destination range) Consider an actionset
α and a feature valueF = f . Let [li, hi] be the destina-
tion range ofF = f under an actionAi ∈ α. Let l(α, f)
denotemin(li) and leth(α, f) denotemax(hi). Thedesti-
nation rangeof F = f underα is [l(α, f), h(α, f)]. Ai ∈ α
is abounding actionof F = f underα if either li = l(α, f)
or hi = h(α, f).

In other words, the bounding actions completely deter-
mine the destination range. We shall consider only bound-
ing actions for a destination range. Under the independence
assumption, we can further define the influence of an ac-
tionset on several features.

Definition 3.2 (Destination space)Consider an actionset
α and a feature vector̂f = (f1, . . . , fk) on the features
F1, . . . , Fk. Thedestination spaceof f̂ = (f1, . . . , fk) un-
der α is DS1,k = ([l1, h1], . . . , [lk, hk]), where[lj , hj ] is
the destination range ofFj = fj underα.

Let αj be the bounding actions ofFj = fj underα, 1 ≤
j ≤ k. Letαk denoteα1 ∪ · · · ∪αk. α can be replaced with
αk without affectingDS1,k because[lj , hj ] is determined
completely by the bounding actionsαj . In other words,
l(α, fj) = l(αk, fj) andh(α, fj) = h(αk, fj). From now
on, we consider only an actionsetα of the formαk.

Example 3.2 Consider the influence matrix in Table 1.
dom(F1) is in the 1-5 scale anddom(F2) is in the 1-6 scale.
Consider a vector(F1 = 3, F2 = 3). A1 increasesF1 = 3
to a value in[3, 5] and increasesF2 = 3 to a value in[3, 6].
A2 decreasesF1 = 3 to a value in[2, 3] and has no effect on
F2. Thus, the destination space of(F1 = 3, F2 = 3) under
α = {A1, A2} is ([2, 5], [3, 6]) on F1 andF2. In words, by
applyingA1 andA2 to a case matching(F1 = 3, F2 = 3),
the new feature values of the case fall into([2, 5], [3, 6]) on
F1 andF2. A1 andA2 are the bounding actions ofF1 = 3
underα; A1 is the bounding action ofF2 = 3 underα.

F1 F2

A1 [1,5] [1,6]
A2 [4,2] [-,-]

Table 1. An example of influence matrix

4 Patterns and Actionability

An actionset changes the values of features. Ultimately,
we are interested in the actionability of this change in terms
of increasing the utilityU . Consider the populationP in the
dataC described by the vector̂f = (f1, . . . , fk) on features
F1, . . . , Fk. An actionsetα will change any casec in P to
the destination spaceDS1,k = ([l1, h1], . . . , [lk, hk]) de-
fined in Definition 3.2. To estimate the new utility ofc due
to the change, our approach is examining the existing cases
in the destination spaceDS1,k = ([l1, h1], . . . , [lk, hk]) and
using their utility as the estimate. The assumption is that
the user trusts the historical data for such estimation. If the
destination space is correlated to a higher utility, we have
a “profitable” change. We now formalize this notion of ac-
tionability.

4.1 Patterns

Consider the data population described by

B : (u, f1, · · · , fk) (1)

whereu is a utility value and eachfj is a value for a distinct
featureFj . An actionsetα will change each case in this
population to the destination space

M : ([l1, h1], · · · , [lk, hk]) (2)

wherelj = l(α, fj) andhj = h(α, fj). If a higher aver-
age utilityu′ > u was observed in the population described
by M , the triple(B, M, α) summarizes an opportunity for
actions: by applyingα to the population described byB,
their expected utility will increase fromu to u′. How much
this statement is valid depends on how much the user be-
lieves her knowledge and the historical estimateu′. We are
interested in finding all patterns represented by the triples
(B,M,α) such thatu′−u is above some minimum thresh-
old.

The above(B,M,α) representation, however, does not
convey the “growth” of a longer pattern from a shorter one,
which is important for organizing the search space in the
next section. Below, we present an equivalent representa-
tion that facilitates such organization. The idea is repre-
senting a pattern(B,M, α) as a set of “items”, where each
item describes the actions and the change on one feature.

Definition 4.1 (Item) An itemfor a featureFj has the form

(fj , αj , [lj , hj ]),

where fj is a value forFj , lj = l(αj , fj) and hj =
h(αj , fj), andαj contains only the bounding actions offj

(underαj). ItemFj () denotes the set of all items forFj .
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Suppose that there arep actions. For each valuefj of
Fj , there are at mostp + 1 distinct lj and at mostp + 1
distincthj . 1 is added forfj itself beinglj orhj . Therefore,
there are at most(p + 1)2 distinct ranges[lj , hj ] for fj .
Each range[lj , hj ] uniquely determines the set of bounding
actionsαj . Therefore, there are at most(p + 1)2 items of
the form(fj , αj , [lj , hj ]) involving fj .

Example 4.1 Consider Example 3.2.ItemF1() contains
the following items, ordered byfj :

(1, {A1}, [1, 5]), (1, ∅, [1, 1]),
(2, {A1, A2}, [2, 5]), (2, {A2}, [2, 2]),
(3, {A1}, [3, 5]), (3, {A2}, [2, 3]), (3, {A1, A2}, [2, 5]),

(3, ∅, [3, 3]),
(4, {A1}, [4, 5]), (4, {A2}, [2, 4]), (4, {A1, A2}, [2, 5]),

(4, ∅, [4, 4]),
(5, {A1}, [5, 5]).

Definition 4.2 (Itemset) An itemsetof length k (k ≥ 0)
has the form

{u | I1, · · · , Ik},
whereu is a utility value andIj = (fj , αj , [lj , hj ]) is an
item from ItemFj () for a distinct featureFj . αk is called
theactionsetof the itemset.

To ensure that an itemset{u | I1, · · · , Ik}, whereIj =
(fj , αj , [lj , hj ]), represents a valid triple(B,M, α) as de-
scribed in Equation (1) and (2),([l1, h1], · · · , [lk, hk]) must
be the destination space of(f1, · · · , fk) underα = αk.
This requirement is stated below.

Definition 4.3 (Bounding-preservation) An itemset{u |
I1, · · · , Ik}, where Ij = (fj , αj , [lj , hj ]), is bound-
preservingif, for 1 ≤ j ≤ k,

l(αk, fj) = l(αj , fj) = lj , h(αk, fj) = h(αj , fj) = hj .

In other words,{u | I1, · · · , Ik} is bound-preserving
if αj has represented the influence ofαk on Fj . Hence,
[lj , hj ] will remain unchanged whetherαj or αk is consid-
ered. Since only bound-preserving itemsets represent valid
triples (B,M,α) as described in Equation (1) and (2), we
shall consider only bound-preserving itemsets.

Example 4.2 Refer to Table 1. Let

I1 = (F1 = 3, {A1}, [3, 5]), I2 = (F2 = 3, ∅, [3, 3]).

Note thatα1 = {A1} andα2 = ∅. The itemsets{u | I1}
and {u | I2} are bound-preserving.{u | I1, I2} is not
bound-preserving because the presence ofα1 affects[3, 3]
of I2: h(α1 ∪ α2, F2 = 3) = 6 6= 3. This example
shows that adding an item does not preserve the bound-
preserving property. One can verify that{u | I ′1, I

′
2} is

bound-preserving, where

I ′1 = (F1 = 3, {A1}, [3, 5]), I ′2 = (F2 = 3, {A1}, [3, 6]), or
I ′1 = (F1 = 3, {A1, A2}, [2, 5]), I ′2 = (F2 = 3, {A1}, [3, 6]).

Definition 4.4 (Pattern) A pattern is a bound-preserving
itemset. LetP be a pattern:

{u | I1, · · · , Ik}, (3)

where Ij = (fj , αj , [lj , hj ]). αk is the actionset ofP .
B(P ) = (u, f1, · · · , fk) is called thebase of P , and
SAT (B(P )) is called thebase population. M(P ) =
([l1, h1], · · · , [lk, hk]) is called the model of P , and
SAT (M(P )) is called themodel population.

The patternP above is interpreted as follows. Assuming
that the user knowledge given by the influence matrixE is
valid, the actionsetαk would transform a casec matching
the profileB(P ) to fit the profileM(P ); further assuming
that the observed average utilityu′ on the model population
SAT (M(P )) is a valid estimate, this transformation would
produce the change ofu′−u on the utility for a random case
c drawn from the base populationSAT (B(P )). If u′−u is
large enough,P suggests a way to boost the utility fromu
to u′, i.e., by applyingαk to the cases inSAT (B(P )).

Example 4.3 Continue with teaching evaluation data in
Figure 1. Suppose thatA4 and A5 improve F9, andA5

improvesF8, i.e.,E49 = E58 = E59 = [0, 6]. Consider the
patternP :

{0 | I1, I2} (0.1%, 94.67%, 5.12),

where I1 = (F8 = 0, {A5}, [0, 6]) and I2 = (F9 =
0, {A4, A5}, [0, 6]).

P says that, by increasing the office hour (A4) and pro-
viding more TA support (A5), an instructor matching the
profileB(P ) : (U = 0, F8 = 0, F9 = 0) is able to increase
the overall score from 0 to5.12 on average. 5.12 is the
average overall score observed for the instructors matching
the profileM(P ) : (F8 = [0, 6], F9 = [0, 6]). SAT (B(P ))
andSAT (M(P )) account for 0.1% and 94.67% of the data,
respectively.

4.2 Problem Statements

Definition 4.5 Given a tableC and a patternP , {u |
I1, · · · , Ik},
• thebase supportof P , bs(P ), is |SAT (B(P ))|/|C|,
• the model support of P , ms(P ), is
|SAT (M(P ))|/|C|,

• the utility supportof P , us(P ), is Σc[U ]/|C|, where
c ∈ SAT (M(P )),
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• the actionability degree of P , ad(P ), is
us(P )/ms(P )− u.

A largerms(P ) means a more statistically valid model
population. A largerbs(P ) means a larger base population
for actions. us(P ) measures the utility sum of the model
population. ad(P ) measures the expected increase of the
utility by applying the actionset of the pattern to a case in
the base population.P is interesting ifbs(P ), ms(P ) and
ad(P ) are large enough as perceived by the user.

Definition 4.6 (Actionability mining) Given a tableC, an
influence matrixE, and thresholdsσ1, σ2 in [0, 1] andσ3 ≥
0, a patternP is actionableif bs(P ) ≥ σ1, ms(P ) ≥ σ2,
andad(P ) ≥ σ3. Theactionability mining problemis find-
ing all actionable patterns.

The frequent itemset mining [2] has attracted a great
deal of attention in database and data mining research. We
show that actionability mining is as least as hard as fre-
quent itemset mining in that the latter is a special case of
the former. Consider the special case thatdom(U) has
the single value 0 and there is no action. In this spe-
cial case, every itemIj now has the form(fj , ∅, [fj , fj ]),
and P = {0 | I1, · · · , Ik}, M(P ) = (f1, · · · , fk) and
B(P ) = (0, f1, · · · , fk) are reduced to{f1, · · · , fk}.
Theorem 4.1 {f1, · · · , fk} on the featuresF1, · · · , Fk is
frequent for a minimum supportσ1 as defined in [2] if and
only if {0 | I1, · · · , Ik} is actionable forσ1 = σ2 andσ3 =
0, whereIj = (fj , ∅, [fj , fj ]).

Sometimes, the user is interested in onlyk most action-
able patterns for some user-specifiedk. If k is small, it is
not efficient to search all actionable patterns and perform
the filtering at the end of the search. A better strategy is ex-
ploiting the top-k requirement to prune the search space as
early as possible.

Definition 4.7 (Top-k actionability mining) Given a table
C, an influence matrixE, σ1, σ2 in [0, 1] andσ3 ≥ 0, and an
integerk, the top-k actionability mining problemis finding
the k, or all if there are less thank, actionable patternsP
with largestad(P ).

5 The Mining Algorithms

One obvious approach is enumerating all combinations
(B,M, α) of a base populationB, a model populationM
and an actionsetα. This approach is not efficient because
many combinations do not represent patterns (see Example
4.2), due to the bound-preservation requirement, or are not
actionable, due to the threshold requirement. Essentially,
this approach ignores the “structure” of(B, M, α) as a pat-
tern and the “relationship” between patterns. We present

an algorithm that canfocuson actionable patterns by tak-
ing into account these information. It boils down to how to
enumerate patterns and how to prune the search space.

5.1 Enumeration Strategies

We need a procedure to enumerate all patterns. Since
each pattern is an itemset, we can enumerate patterns as
itemsets. The problem is that many itemsets do not rep-
resent patterns because they do not satisfy the bound-
preservation requirement, and enumerating all itemsets is
an over-kill. Below, we first discuss the depth-first enumer-
ation of all itemsets, and then modify it to enumerateall and
onlypatterns.

Itemsets can be enumerated by the standarddepth-first
enumerationbased on a pre-determined lexicographical or-
der on itemsets [9]. Consider the enumeration in the space
of three featuresA,B,C in Figure 2. {u1 | Ia} for UA,
{u1 | Ia, Ib} for UAB, {u1 | Ia, Ib, Ic}, · · · , {u1 |
Ia, Ib, I

′
c} for UABC. This finishes all itemsets starting

with u1, Ia, Ib. Similarly, it enumerates other itemsets start-
ing with u1, Ia, I ′b. Next, it enumerates all itemsets starting
with u1, Ia, Ic, · · · , u1, Ia, I ′c, finishing all itemsets starting
with u1, Ia. Similarly, it enumerates all itemsets starting
with u1, I

′
a for other I ′a. Next, it enumerates all itemsets

starting withu1, Ib, · · · , u1, I
′
b, then all itemsets starting

with u1, Ic, · · · , u1, I
′
c. By now, all itemsets starting with

u1 are enumerated. All itemsets starting with otherui are
enumerated similarly.

 

 

1:A 5:B 7:C 

2:AB 4:AC 6:BC 

3:ABC 

0 

Figure 2. The lexicographic tree

Below, we modify the above enumeration to enumerate
only and all patterns. First observe that adding an itemIk+1

from ItemFk+1() to an existing pattern{u | I1, · · · , Ik}
does not guarantee that{u | I1, · · · , Ik, Ik+1} is a pattern,
i.e, bound-preserving. Example 4.2 is an example.

To ensure that addingIk+1 to a pattern Pk =
{u | I1, · · · , Ik} leads to a patternPk+1 = {u |
I1, · · · , Ik, Ik+1}, we consider only those itemsIk+1 in
ItemFk+1() such thatPk+1 is bound-preserving.

Definition 5.1 (ItemFk+1(Pk)) Assume thatPk is a pat-
tern not involving a featureFk+1. ItemFk+1(Pk) de-
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notes the set of itemsIk+1 from ItemFk+1() such that
Pk ∪ {Ik+1} is bound-preserving.

The depth-first pattern enumeration. We modify the
above depth-first enumeration by replacingItemFk+1()
with ItemFk+1(Pk) when expanding a patternPk. This
modification enumerates only patterns. Two questions must
be answered: canItemFk+1(Pk) be efficiently computed?
More importantly, does this modification guarantee to enu-
merate all patterns? We answer these questions below.

Computing ItemFk+1(Pk). Let Ik+1 =
(fk+1, αk+1, [lk+1, hk+1]) and Ij = (fj , αj , [lj , hj ])
for 1 ≤ j ≤ k. Let αk = α1 ∪ · · · ∪ αk. For
Pk+1 = Pk ∪ {Ik+1} to be bound-preserving, the newly
added itemIk+1 must not “interfere” with the items
Ij , 1 ≤ j ≤ k in the prefix in terms of the bound-
preservation requirement. Precisely, the following two
conditions must hold:

• Forward Non-Interference (FNI): αk+1 contains only
the actionsAi such that, for1 ≤ j ≤ k, αj remains
the bounding actions offj after addingAi, i.e.,

lj = l(αk ∪ {Ai}, fj),
hj = h(αk ∪ {Ai}, fj).

Let Action(Pk) denote the set of suchAi. Note that
Action() contains all actions.

• Backward Non-Interference (BNI): αk+1 remains the
bounding actions offk+1 in Pk+1, i.e.,

lk+1 = l(αk ∪ αk+1, fk+1),
hk+1 = h(αk ∪ αk+1, fk+1)

In computation, ItemFk+1(Pk) is the set of items
Ik+1 = (fk+1, αk+1, [lk+1, hk+1]) from ItemFk+1() such
that αk+1 contains only those actions fromAction(Pk),
and BNI holds.

Inductively, Action(Pk+1) is computed from
Action(Pk) as follows. First,Action(Pk+1) is a subset
of Action(Pk) because if an action violates FNI onPk, it
also violates FNI onPk+1. In addition, to ensure FNI on
the new itemIk+1 in Pk+1, Action(Pk+1) contains only
those actionsAi from Action(Pk) such thatαk+1 remains
the bounding actions offk+1 after addingAi, i.e.,

lk+1 = l(αk+1 ∪ {Ai}, fk+1),
hk+1 = h(αk+1 ∪ {Ai}, fk+1),

whereαk+1 = αk ∪ αk+1 is the actionset ofPk+1. Note
thatαj(1 ≤ j ≤ k) still remains the bounding actions since
Ai ∈ Action(Pk).

Example 5.1 Refer toItemF1() andItemF2() in Example
4.1. Initially, Action() = {A1, A2}. Let P1 = {u | I1},
where I1 = (3, {A1}, [3, 5]) is an item fromItemF1().
Action(P1) = {A1} becauseA2 interferes with the range
[3, 5] of I1: l({A1, A2}, 3) = 2 6= l({A1}, 3) = 3, violat-
ing FNI. ItemF2(P1) contains the items(f2, {A1}, [f2, 6])
from ItemF2(), 1 ≤ f2 ≤ 6, because these items pass both
FNI and BNI checking.ItemF2(P1) does not contain any
item (f2, ∅, [f2, f2]) from ItemF2(), 1 ≤ f2 ≤ 5, because
these items fail to pass BNI.

Theorem 5.1 (Soundness and completeness)The depth-
first pattern enumeration enumerates all and only patterns
(The proof is given in the full paper [11]).

5.2 Pruning Strategies

Even though the proposed enumeration has focused on
patterns, many patterns do not pass the interestingness
thresholds and should be pruned. We say thatPk+1 is a
child patternof Pk if Pk+1 = Pk ∪ {Ik+1}. The descen-
dant relationship is the transitive closure of the child rela-
tionship. The general idea is establishing some necessary
condition of actionable patterns so that the failure by a pat-
tern implies the failure by all descendant patterns. Follow-
ing the “anti-monotonicity” [2] of support (i.e., the support
of a child pattern is no more than the support of a parent
pattern), we have

Theorem 5.2 (Base/model support pruning)If bs(P ) <
σ1, bs(P ′) < σ1 for all descendantsP ′ of P . If ms(P ) <
σ2, ms(P ′) < σ2 for all descendantsP ′ of P .

If P fails to pass eitherσ1 orσ2, we do not need to search
into the subtree belowP . If P passes bothσ1 andσ2, we
check whether it passes the actionability constraint,u′−u ≥
σ3, whereu′ = us(P )/ms(P ) is the average utility of the
cases inSAT (M(P )). Unfortunately, since the averageu′

could either increase or decrease at a child pattern, even if
P fails this constraint, we cannot prune the subtree below
P .

Our approach is to replace the averageu′ with a larger
estimateu′′ that isnon-increasingat a child pattern. Ifu′′−
u ≥ σ3 fails on a patternP , it fails on all descendants ofP
becauseu′′ is non-increasing at a child pattern, andu′−u ≥
σ3 fails on these descendants as well becauseu′ ≤ u′′. In
short, ifP fails to passu′′ − u ≥ σ3, all descendants ofP
are not actionable and can be pruned.

The maximum utility inSAT (M(P )) has the property
required ofu′′, but it could over-estimateu′ so much that
many patterns failingu′− u ≥ σ3 can satisfyu′′− u ≥ σ3,
which means little pruning. To have a tighter (i.e., smaller)
u′′, we consider all of the topdσ2|C|e utility values in
SAT (M(P )) and use their average utility asu′′. We choose
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the numberdσ2|C|e becauseSAT (M(P )) must contain at
least this number of cases in order to pass the threshold
σ2. In other words,u′′ = us′(P )/µ, whereus′(P ) denote
the sum of the topdσ2|C|e utility values inSAT (M(P ))
(with duplicates counted), andµ = dσ2|C|e. Note that
µ is a constant. The following lemma shows thatu′′ is
an over-estimate ofu′ = us(P )/ms(P ) and has the anti-
monotonicity.

Lemma 5.1 Assume thatms(P ) ≥ σ2. (1) us′(P )/µ ≥
us(P )/ms(P ). (2) If P ′ is a child pattern ofP , us′(P ′) ≤
us′(P ).

We give an example to convey the intuition behind
Lemma 5.1(1). Suppose thatSAT (M(P )) contains 5 cases
with the utility values{4, 4, 3, 2, 1}. us(P )/ms(P ) =
(4+4+3+2+1)/5 = 2.8. Suppose thatµ = 3. The average
of the top 3 utility values,us′(P )/3, is (4+4+3)/3 = 3.6,
which is larger than the actual average inSAT (M(P )).
Lemma 5.1(2) follows because the sum of the topµ util-
ity values shrinks on a subset.

Theorem 5.3 (Actionability pruning) If us′(P )/µ− u <
σ3, P and its descendants are not actionable.

Proof. Assume thatms(P ) ≥ σ2 (otherwise we are done).
From Lemma 5.1(1),us′(P )/µ ≥ u′. Sinceus′(P )/µ −
u < σ3, u′ − u < σ3, therefore,P is not actionable. The
second part follows from the first part and Lemma 5.1(2).

A pattern not pruned by Theorem 5.3 may still fail
u′ − u ≥ σ3. The size of this gap depends on how closely
the average of the topµ utility values inSAT (M(P )) ap-
proximates the actual averageu′. The larger the minimum
model supportσ2 is and the smaller the variance of the util-
ity in SAT (M(P ) is, the closer the approximation is.

Below, we consider the top-k actionability mining prob-
lem. Since typicallyk is small, it is not efficient to find all
actionable patterns and filtering all but the topk patterns. A
better strategy is maintaining the minimumad required to
be among the topk actionable patterns and using it as the
minimum bound foru′′. We can keep the set ofk largest
ad of the actionable patterns seen so far, denoted byAD.
On generating a new patternP , if ad(P ) > min(AD),
we replace the minimum element inAD with ad(P ); if
ad(P ) ≤ min(AD), we apply the following pruning to
check if the subtree atP can be pruned.

Theorem 5.4 (Top-k pruning) If us′(P )/µ − u <
min(AD), P or all its descendants cannot be among the
topk actionable patterns.

Proof. Note thatad(P ) = us(P )/ms(P ) − u. From
us′(P )/µ − u < min(AD) and Lemma 5.1(1),ad(P ) <
min(AD). From Lemma 5.1(2), for any descendantP ′ of
P , us′(P ′)/µ ≤ us′(P )/µ. By repeating the same argu-
ment as forP , we havead(P ′) < min(AD). So,P andP ′

cannot be among the top-k patterns.

5.3 Algorithms

To computebs(P ), ms(P ), us(P ) and us′(P ), we
maintain the base and model populations forP on the cur-
rent path in the depth-first enumeration, denoted(B,M).
For the shortest patterns{u |}, B is the set of cases having
the utility valueu andM is the whole databaseC. At a
child patternP ′ = P ∪{I}, whereI = (f, α, [l, h]) is from
ItemF (P ), (B′, M ′) for P ′ is constructed by scanningB
andM . B′ contains the cases inB that have the valuef
on F , andM ′ contains the cases inM that have the values
in the range[l, h] on F . We can create(B′,M ′) for all the
child patternsP ′ in the same scan ofB andM , assuming
that the memory can hold all such(B′,M ′). Alternatively,
B andM can be stored as the partitionsB1, · · · , Bp and
M1, · · · ,Mp, whereBi and Mi correspond to the value
i of F , and only related partitions are scanned to create
(B′,M ′). The algorithm for finding the topk actionable
patterns is similar, except that it also applies Theorem 5.4
for pruning as discussed in Section 5.2. The detailed algo-
rithms are reported in [11].

 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 

A1 [0,6]              

A2      [0,6]    [0,6]     

A3   [0,6]  [0,6]          

A4         [0,6]      

A5        [0,6] [0,6]      

A6            [0,6] [0,6]  

A7              [0,6] 

 

Figure 3. The influence matrix

6 Evaluation

The evaluation focused on answering two questions,
namely, whether the proposed method can find useful pat-
terns and whether it scales up on large data sets. The al-
gorithm was implemented in VC++ on a Pentium 4 with
2.4GHz CPU and 512MB memory running Windows XP.

It is hard to find a data set together with domain ex-
perts to provide the knowledge on actions. Hence, we con-
ducted our experiments on the teaching evaluation domain
for which we are experts ourselves. The data set was col-
lected from Fall 1996 to Spring 2003 from a major univer-
sity in North America, with 5,895 evaluations on 14 features
F1 − F14 and the utilityU . Figure 1 describes the features,
utility, and actions. Figure 3 shows the influence matrix. All
scores are in the 0-6 scale. We choose the maximum influ-
ence rangeEij = [0, 6] because it represents the most gen-
eral knowledge of boosting score and creates a larger search
space. Other choices of influence ranges will be examined
as well. Figure 6 shows the distribution of the utilityU in
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Figure 5. Top- k pattern mining: Time and pattern No. enumerated, σ1 = 0.1% and σ2 = 1%

log scale. We observed a similar distribution for the fea-
turesF1, · · · , F14. Therefore, there is a strong correlation
between the utility and features, as expected in this domain.
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Figure 6. The distribution of utility

6.1 Usefulness

It is typical to use a small base minimum supportσ1 but
a large model minimum supportσ2 for identifying “outlier”
bases that have “overwhelming” role models. Given that
only 6 cases have the utility value 1,σ1 = 0.1% is the max-
imum to find actionable patterns for such cases. So, we

reported our findings with the settings ofσ1 = 0.1% and
σ2 = 1%. Here are the five actionable patterns that come at
the top, ranked byad(P ):

P1: {0 | (F9 = 0, {A4, A5}, [0, 6])} (0.1%, 98.68%, 5.12)
P2: {0 | (F8 = 0, {A5}, [0, 6])} (0.1%, 94.67%, 5.12)
P3: {0 | (F8 = 0, {A5}, [0, 6]), (F9 = 0, {A4, A5}, [0, 6])}

(0.1%, 94.67%, 5.12)
P4: {2 | (F10 = 3, {A2}, [3, 6]), (F12 = 5, {A6}, [5, 6]),

(F14 = 4, {A7}, [4, 6])} (0.1%, 10.89%, 3.71)
P5: {2 | (F12 = 5, {A6}, [5, 6]), (F14 = 4, {A7}, [4, 6])}

(0.1%, 10.98%, 3.70).

In general, these patterns identify a base of a small utility
value and a role model of overwhelming support. In other
words, for the small number of instructors not doing well,
many instructors can serve as a role model for them to fol-
low, and each pattern suggests the concrete actions to take.
Patterns further down the list tend to have a larger base sup-
port but a smaller actionability degree.

Let us examineP1 in details. This pattern suggests that,
by increasing office hours (i.e.,A4) and providing more TA
support (i.e,A5), an instructor doing poorly in the feed-
back evaluation (i.e.,F9 = 0) and the overall evaluation
(i.e., U = 0) could increase the overall evaluation to 5.12
on average. First of all, these actions indeed address the
right problems, according to the knowledge in this domain.
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At first glance, the increase of 5.12 seems a bit too drastic.
However, if we consider what the user has in mind and what
the data has recorded, this increase makes sense. In fact, the
user believes thatA4 andA5 can changeF9 from 0 to some
value in[0, 6]. When examining the instructors in the range
F9 = [0, 6], we find the average overall evaluation of 5.12.
If the user trusts her knowledge and the historical data, she
should believe that the estimation 5.12 provided by the data
is achievable.

6.2 Efficiency

6.2.1 Pruning strategies

We are not aware of any algorithms that model the notion
of actions and push the actionability requirement to prune
the search space. The closest strategy that can be compared
with is the Apriori pruning based on the anti-monotonicity
of support [2]. In our setting, this strategy has the form
of the base and model support pruning, given by Theorem
5.2. Therefore, we focus on theadditional benefits of the
actionability pruning (Theorem 5.3) and the top-k pruning
(Theorem 5.4).

Actionability pruning . Figure 4 plots the execution
time and the number of patterns enumerated (both in log
scale) forσ1 = 0.1% . σ2 is varied from 0% to 50%
along thex-axis. The level of actionability pruning is rep-
resented by the four curves corresponding to differentσ3

thresholds. In particular,σ3 = 0 corresponds to turning off
the actionability pruning. For a largerσ3, the time spent is
significantly shorter and much fewer patterns are enumer-
ated. For example, withσ3 = 3 it took only 10 seconds
for all σ2, whereas withσ3 = 0 it took up to 700 seconds.
The speedup is 70 times! Asσ2 increases, this speedup de-
creases because there are fewer patterns. This study clearly
shows that the actionability pruning is highly effective, es-
pecially for a small minimum model supportσ2.

Top-k pruning . We evaluated the benefit of the top-k
pruning (Theorem 5.4) in Figure 5 where thex-axis repre-
sents thek value. Let us compare the case ofk = 10 in Fig-
ure 5 with the case ofσ2 = 1% in Figure 4. They both use
σ1 = 0.1% andσ2 = 1%, but one applies the top-k prun-
ing and one does not. The comparison shows that the top-
k pruning substantially reduces the time and search space.
This advantage is also observed by comparingk = 10 with
k = ∞ in Figure 5, wherek = ∞ has the effect of turning
off the top-k pruning. The advantage slowly reduces ask
increases. In practice, however,k is typically a small num-
ber. The top-k pruning has substantially reduced the gap
among differentσ3. For example, even withσ3 = 0, it took
about only 10 seconds fork = 100.

In summary, the above experiments show the actionabil-
ity pruning has additional benefits on top of the support-
based pruning, and the top-k pruning has additional benefits

on top of all other pruning.

7 Conclusion

Data mining based on actionability is an important but
under-studied topic. Unless this topic is addressed prop-
erly, the usefulness issue of data mining results will keep
haunting data mining researchers and practitioners. A main
contribution of this work is the introduction of “actions” as
a way to address this issue. We presented a new concept of
actionability and the algorithms for its discovery. On a real-
world application domain, our approach demonstrates the
effectiveness of finding useful patterns and applying prun-
ing strategies. In the future work, we intend to enhance em-
pirical studies on more datasets and application domains.
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