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Abstract applications and settings. The following factors contribute
to the difficulties of this problem. First, there is the dilemma
Data mining promises to discover valid and potentially that user knowledge should be acquired to define actionabil-
useful patterns in data. Often, discovered patterns are notity, but the ability to provide such knowledge tends to inval-
useful to the user. "Actionability” addresses this problem in idate the need for mining actionable patterns. Second, it is
that a pattern is deemed actionable if the user can act uponvery hard to model the “usefulness” of a pattern. Strictly
it in her favor. We introduce the notion of “action” as a speaking, this information is not available until after pat-
domain-independent way to model the domain knowledgeterns are deployed in the real world; on the other hand, the
Given a data set about actionable features and an utility data mining algorithm needs to tell if a pattern is actionable
measure, a pattern iactionableif it summarizes a popu- beforeit is deployed. Finally, the search space is likely to
lation that can be acted upon towards a more promising be large and a scalable method must exploit the notion of
population observed with a higher utility. We present sev- actionability to prune the search as early as possible.
eral pruning strategies taking into account the actionability
requirement to reduce the search space, and algorithms for1.2  Our Contributions
mining all actionable patterns as well as mining the top
actionable patterns. We evaluate the usefulness of patterns We propose an actionability mining approach that ad-
and the focus of search on a real-world application domain. dresses three goals. (1) Find the right balance between pro-
viding enough domain knowledge and making the problem
scalable, tractable and non-trivial. (2) Model actionability
in a domain-independent manner and provide a way to es-
timate the success of actionable patterns. (3) Utilize user
knowledge early in the search of actionable patterns. The
main idea is as follows. Suppose that a database contains
historical observations about sevei@hturesand a success
measure called thetility. Also, suppose that we know some
actionscan influence features in certain (simple) ways. If
some features are correlated with the utility in some pop-

e ! , ulation of the data, a change in those features would im-
has mostly focussed on the "valid” and "understandable” |y 5 change in the utility. Now if some actions can influ-

measures that can be definedbjectiveterms, such asthe ¢ ce those features, this influence will cascade to the utility
confidence/support measure [2] and the size/number of paty,rough the correlation. We are interested in the patterns
terns. Due to the lack of modeling user knowledge, dis- that summarize those actions and populations where such

covered patterns often are known or not useful to the user..ascaded influences increase the utility. An example ex-
To model the "novel” and "useful” aspectsbjectivemea- plains these points.

sures are needed [7, 10]. [10] classified subjective measures .
into unexpectednesand actionability. A pattern isunex- ~ Example 1.1 (Phone call charge exampleLonsider

1 Introduction

1.1 Background

Knowledge discovery in databases is the non-trivial pro-
cess of identifyingvalid, nove] potentiallyusefu] and ul-
timately understandabl@atterns in data [4]. The literature

pectedif it is surprising to the user. A pattern &ctionable
if the user can act upon it to her advantage.

Despite the efforts of initial works on actionability min-
ing (more details in Related Work), it turned out to be very
hard to capture formally the “elusive” nature of actionabil-

a customer database in the long distance phone call
application:

C(CustID, Rate, Married,--- ,U).

U is the utility representing the profit generated on a cus-

ity in all of its manifestations and across different types of tomer. For simplicitylJ has the domaifiLow, High}. The



featureRate represents the rate charged to a customer andthe topk actionable patterns. We evaluate the usefulness of
has the domaig Normal, Special}, with Normal denot- patterns and the focus of search on a real-world application
ing the normal rate andpecial denoting the promotional  domain.
rate. Suppose that we observed the following two patterns Inthe rest of the paper, we review related work in Section
in the data 2, introduce our action model in Section 3, define the action-
D : Rate = Normal, Married = No — U = Low, ablllty problem in Section 4, present mining a_lgonthm_s in
D' Rate = Special, Married = No — U = High. Section 5, and evaluate our approach in Section 6. Finally
we conclude the paper.
The customers ith’ generated a higher profit because they
made more calls at the lower rate. Comparing these tWoos  Related Work
patterns reveals that the telephone company can make more
profit by taking the action of offering the special rate to the I . . .
customers ing. The increase is ex;?ected ICE)ecause a higher, Some |n|t|_al work _has b_e_en done on a_lctl_onablllty min-
profit was observed on the customers (i) who shared Q. [7] defined a_Ct'OHab'“ty Of a_key f_|nd|ng (pat_tern)
similar characteristics (i.e., unmarried) but were offered the In terms of the estimated be_ne_flts n taklng corrective ac-
special ratem tion(s) that restores the deviation pqck to its norm. T_hls
approach worked well for the specific healthcare applica-
The example conveys several points. (1) In many real life tion, but could not be generalized to other application do-
applications, the user knows some simple action/feature redmains. A domain independent approach was presented in
lationship (e.g., offering special rate can chaifilyge from [1], where a hierarchy of actions was introduced and certain
Normal to Special). (2) The user is interested in find- types of patterns are assigned to the nodes in the hierarchy,
ing the action/utility relationship, i.e., how actions would and actionable patterns were discovered by executing pat-
affect the utility. Since several actions and features could tern templates at the nodes of the hierarchy.
be involved in a complex relationship to affect the utility, Kleinberg et al. [6] presented the microeconomic view
finding such relationships requires examining both the ac-of data mining. They regarded data mining as an opti-
tion knowledge and the data, therefore, is non-trivial. (3) mization problem where the “utility” of decisions is the
A pattern is actionable if it summarizes a population that objective function: partition the customer baég into
can be affected, by taking actions, toward another popula-k partsCy,--- ,C} to maximize the sum of the optima
tion observed with a higher utility. In a sense, the second Zlfmal'xepziecj ¢; - x, wherec; - z denotes the utility of a
population serves the "role model” of the first one. decisionz on a customet. In our setting, howevetr; - = is
Can this problem be solved by a standard method, suchunknown because it corresponds to the actionabilitinef
as a classification algorithm to learn actions that influence creasingthe utility on a customerrby taking a set of actions
the utility? Unfortunately, standard learning methods can- x. Modeling this notion of actionability is our contribution.
not easily incorporate the action knowledge. Without this  Ras et al. [8] presented an algorithm for finding action
knowledge, these methods can learn the rules that summarules. They considerestableattributes whose values can-
rize the data, but not the rules that change the state of thenot be changed, arftexibleattributes whose values can be
data. This comment equally applies to association rule min-changed. An “action rule” is a pair of regular rules that
ing [2] and other rules learnt purely from the data. In prin- agree on all stable attributes and differ in some flexible at-
ciple the actionability problem is a learning problem, but tributes and the utility. They did not model actions nor at-
the presence of action knowledge and the focus on changetributes where actions affect only certain ranges, and could
make it a whole new learning problem that standard meth-not optimize the set of actions for a better actionability. The
ods are not designed to handle. search of action rules is done in a post-processing after find-
The contributions of this paper are as follows. We intro- ing all regular rules.
duce the notion of "action” as a domain-independent way  The action model was first proposed in [5] with the focus
to model some important domain knowledge. An action de- on constructing a model for optimizing the actionability for
scribes the condition under which it applies and the effect future cases. The work in [12] presented a profit-motivated
it has on a feature. We formulate a new data mining prob- product recommender approach, in the presence of an in-
lem where actions are the first class objects and actionableverse correlation between the chance of selling an item and
patterns are summarizations of opportunities for actions tothe profit generated from the sales. The work in [13] as-
boost the utility. We show that mining actionable patterns sumed that the user is able to provide the “cost” for chang-
is at least as hard as mining frequent itemsets of [2]. Weing a feature value. In practice, obtaining such cost will be
present several pruning strategies taking into account the acthe bottleneck. For example, it is difficult for the user to
tionability requirement to reduce the search space, and algodetermine the “cost” for converting a customer from the at-
rithms for mining all actionable patterns as well as mining trition state to the loyal state. A key and non-trivial issue



in actionability mining is acquiring the user knowledge in a

scalablemanner without overloading the user. We believe

that our action model is an effective way to address this is-
sue.

3 The Action Model

An action model for representing the user knowledge
about actions was recently introduced in [5]. Consider a
data set stored in a table

C(F17 "'7F’ma U)

F; arefeaturesand U is the utility to be maximized. We
consider aanked domairfor every featurer’; and the util-

ity U, consisting of a small number of linearly ordered
scales, represented by a few ordinals 0,1,... For example
donation scale, skill level, letter grade, performance evalu-
ation, all can be abstracted into a ranked domédma(F})
anddom(U) denote the domain af; andU. Note that the
average of several utility values can be a decira@d;] and
c[U] denote the value of a casein C for F; andU. |z
denotes the number of elements in aise$ AT (x) denotes
the set of cases i@ satisfying a conditior.

3.1 The Influence Matrix

Consider severadctions denoted4,,--- , A,,. An ac-
tion can influence the values of featutgs - - - , F,,. The
influence is specified by thiafluence matrix{E;;}, 1 <
i <n,1 <5< m. By, theinfluence rangef A; on Fj,
has the fornia, b], where

1. a = b= —,if A; has no influence o#;.

2. a < b, if A; increases the current valyfein [a, b] for
F; to some value in thdestination rangéf, b].

3. a > b, if A; decreases current valifein [a, b] for F;
to some value in thdestination rangéb, f].

By default, if A; has no influence o, or if f is not
in [a,b], A; changes the current valyéto the destination

range[f, f].

Example 3.1 (Teaching example)We shall use the real

Features:
F1:
F2:
F3:

Present course materials in an organized fashion
Stimulate student interest in the course
Explain difficult concepts effectively

F4: Respond well to questions and comments
F5: Enthusiastic
F6: Provide practical examples
F7: Show an interest in students
F8: Grade fairly
F9: Provide sufficient feedback
F10: There was sufficient class participation
F11: The class sessions were worthwhile
F12: This was a demanding course
F13: The material I learned will be useful to me
F14: The text and other reading materials were worthwhile
Utility
U: Overall, I would recommend this instructor
Actions

Al: Post all materials on the Web before class
A2: Include some materials beyond the textbook
A3: Take part in communication skill workshops
A4: Increase office hour

, AS: Provide the instructor with more TA support
A6: Change the content of the course
AT: Change the textbook of the course

Figure 1. The teaching evaluation case study

(1) The action has no influence on the communication
skill level less than 1 or more than 5. (2) The new level is
in the rangd f, 5], but the exact level is not specified. Such
range-based specification is essential because typically only
some range is known. (3) No prior assumption is made
about the distribution of the new value jifi, 5]. One ap-
proach is asking the user to provide this information, at the
cost of more burden on the user. Our approach is letting
the data itself provide this information. (4) This knowledge
does not specify the effect on the utility; the influence
matrix is only intended to capture the simple action/feature
relationships known to the usa.

Remarks The influence matrix is usually sparse in that
the user may not have any knowledge for many entries. The
user only has to specify those entries that have a known
action/feature relationship. The above action model implic-
itly assumes that the influence of an action on a feature is
independent of the state of other features and the influence
of other actions. We make thindependence assumption
because the human user tends to work better when dealing
with one thing at a time. In practice, the user knowledge
is largely imprecise and approximating due to the human

life teaching evaluation domain in Figure 1 as our case bottleneck, and capturing complete user knowledge is nei-
study. EachF; represents the score on one aspect of teach-ther necessary nor tractable. The naive Bayes classifier [3]
ing. U represents the overall score. All scores are in the is an example of making an independence assumption and

0-6 discrete scale, the higher the better. E4¢chepresents

a possible action. For example, if attending the commu-
nication workshop 43) increases any communication skill
level (F3) f in the rang€[1, 5] to a new level in[f, 5], we
represent this knowledge by the enfiy; = [1,5] in the
influence matrix, with the following implications.

achieving good results.
3.2 The Influence of Actionsets

We now consider the influence of a set of actions, or an
actionset Under the independence assumption, the destina-



tion range of an actionset is the “union” of the destination

ranges of all actions in the set. For example, if the destina-

tion range off = 3 underA4, is [2, f] and the destination
range off underA; is [f, 5], the destination range gfun-
der the actionsefA;, A2} is [2,5]. Note that there is no
gap in the “union” range becaugemust be in all ranges.

Definition 3.1 (Destination range) Consider an actionset
« and a feature valu& = f. Let[l;, h;] be the destina-
tion range ofF = f under an actiom; € «. Leti(q, f)
denotemin(l;) and leth(a, f) denotemax(h;). Thedesti-
nation rangeof F' = f underais [[(a, f), h(a, f)]. A; €
is abounding actiorof F' = f under« if eitherl; = I(«, f)
orh; =h(a, f). m

In other words, the bounding actions completely deter-

mine the destination range. We shall consider only bound-
e

ing actions for a destination range. Under the independenc

assumption, we can further define the influence of an ac-

tionset on several features.

Definition 3.2 (Destination space)Consider an actionset
« and a feature vectof = (f1,..., fr) on the features
Fy, ..., F. Thedestination spacef f= (f1,--+, fr)un-
derais DS1 ;= ([li, Pl ..., [lk, hi]), where[l;, h;] is
the destination range df; = f; undera.

Let o; be the bounding actions éf; = f; undera, 1 <
j < k. Leto® denoten; U- - - U g, o can be replaced with
o without affectingD.S; ;, becausdl;, h;] is determined
completely by the bounding actions;. In other words,
l(aa f]) = l(akmfj) andh(avfj) = h(akafj)' From now
on, we consider only an actionsebf the forma*.

Example 3.2 Consider the influence matrix in Table 1.
dom(Fy) isin the 1-5 scale andom (F5) is in the 1-6 scale.
Consider a vectofF; = 3, F» = 3). A; increased; = 3
to a value in[3, 5] and increase$, = 3 to a value in3, 6].
A, decrease$’ = 3to avalue in2, 3] and has no effect on
F». Thus, the destination space(df; = 3, F» = 3) under
a = {A41,A2}is ([2,5],[3,6]) on Fy andF5. In words, by
applying A, and A, to a case matchingfy, = 3, F;, = 3),
the new feature values of the case fall i, 5], [3, 6]) on
Fy andFs. A; and A, are the bounding actions éf; = 3
undera; A, is the bounding action af; = 3 undera. m

R Ey
Ay | [1,5] | [1,6]
A2 [412] ['1_]

Table 1. An example of influence matrix

4 Patterns and Actionability

An actionset changes the values of features. Ultimately,
we are interested in the actionability of this change in terms
of increasing the utility/. Consider the populatioR in the
dataC described by the vectgt = (f1,-.., fr) onfeatures
Fy, ..., Fx. An actionsetr will change any casein P to
the destination spac®S:x = ([l1, k1], ..., [lk, hi]) de-
fined in Definition 3.2. To estimate the new utility oflue
to the change, our approach is examining the existing cases
in the destination spad®S; ;, = ([l1, k1], - - -, [lx, h]) and
using their utility as the estimate. The assumption is that
the user trusts the historical data for such estimation. If the
destination space is correlated to a higher utility, we have
a “profitable” change. We now formalize this notion of ac-
tionability.

4.1 Patterns

Consider the data population described by

whereu is a utility value and eaclfi; is a value for a distinct
feature F;. An actionsetn will change each case in this
population to the destination space

B:(U7f1,"

@)

wherel; = l(a, f;) andh; = h(a, f;). If a higher aver-
age utilityu’ > u was observed in the population described
by M, the triple(B, M, o)) summarizes an opportunity for
actions: by applyingy to the population described by,

their expected utility will increase fromato »’. How much

this statement is valid depends on how much the user be-
lieves her knowledge and the historical estimate\We are
interested in finding all patterns represented by the triples
(B, M, «) such that,’ — u is above some minimum thresh-
old.

The above B, M, «) representation, however, does not
convey the “growth” of a longer pattern from a shorter one,
which is important for organizing the search space in the
next section. Below, we present an equivalent representa-
tion that facilitates such organization. The idea is repre-
senting a patter(B, M, ) as a set of “items”, where each
item describes the actions and the change on one feature.

M ([l ha], s [l i)

Definition 4.1 (Item) An itemfor a featureF; has the form
(fir . [l hyl),

where f; is a value forF}, I; = I(ay, f;) and h;
h(a;, f;), ande; contains only the bounding actions ff
(undera;). Itemp, () denotes the set of all items far;. m



Suppose that there ageactions. For each valug; of
F}, there are at most + 1 distinctl; and at mosp + 1
distincth;. 1is added forf; itself beingl; or h;. Therefore,
there are at mostp + 1)? distinct rangesi;, h;] for f;.
Each rangél;, h;] uniquely determines the set of bounding
actionsa;. Therefore, there are at magt + 1)? items of
the form(f;, a5, [I;, h;]) involving f;.

Example 4.1 Consider Example 3.2.Jtemg, () contains
the following items, ordered by;:

(1, {41}, [1,5)), (1,0, [1,1]),

(2. (A1, Az}, [2.5]), (2. {Aa}. [2.2)),

(3, {41}, [3,5)), (3, {42}, 2,3]), (3, {41, A2}, [2,5)),
(37@7[ 73])7

(4, {A1}, [4,5]), (4,{A2},[2,4]), (4, {41, A2}, [2,5]),
(4,0,[4,4])

(5, {41}, [5,5)). m

Definition 4.2 (Itemset) An itemsetof lengthk (kK > 0)
has the form

{U|I],"' ,Ik},

wherew is a utility value andl; = (f;, «;,[l;, h;]) is an
item from Item, () for a distinct featureF;. o* is called
theactionsewf the itemsetm

To ensure that an itemsét. | I4,--- , I}, wherel; =
(fj, a5, 15, hj]), represents a valid tripleB, M, «) as de-
scribed in Equation (1) and ()1, k1], - -, [l, hx]) Must
be the destination space ¢f;,--- , fx) undera = o*.
This requirement is stated below.

Definition 4.3 (Bounding-preservation) An itemset{u |
Il,... 7Ik}; where Ij = (fj,aj,[lj,hj]), is bound-
preservingf, for 1 < j <k,

War, f;) = Uey, f;) = 1, h(a®, ) = h(ay, ;) = h;. ®

In other words,{u | I,---,Ix} is bound-preserving
if a; has represented the influence @f on Fj. Hence,
[, h;] will remain unchanged whether; or o* is consid-

I = (F1 = 3,{A:},[3,5]),

) (Fz = 3,{A:},[3,6]), or
I = (F =3, {4, A3}, 2,

I )
5] = (Fy =3, {Al} 3,6]). m

), I}
Definition 4.4 (Pattern) A patternis a bound-preserving
itemset. LetP be a pattern:
{ullla"'alk}a (3)
whereI; = (fj,aj,[lj,hy]). oF is the actionset ofP.
B(P) = (u,f1,- -, fx) is called thebaseof P, and
SAT(B(P)) is called thebase population M(P) =

(t1,ha], -+, [lk, hi]) is called the model of P, and
SAT(M(P)) is called themodel populationm

The patternP above is interpreted as follows. Assuming
that the user knowledge given by the influence makfiis
valid, the actionset’* would transform a case matching
the profile B(P) to fit the profileM (P); further assuming
that the observed average utilityon the model population
SAT(M(P)) is a valid estimate, this transformation would
produce the change af —« on the utility for a random case
¢ drawn from the base populatictAT(B(P)). If v/ —uis
large enoughP suggests a way to boost the utility from
tow’, i.e., by applyingx* to the cases IS AT (B(P)).

Example 4.3 Continue with teaching evaluation data in
Figure 1. Suppose that, and A5 improve Fy, and A;
improvesFs, i.e., Eyg = Ess = E59 = [0, 6]. Consider the
patternpP:

{0] I, 12}

wherel; = (Fg3 = 0,{A45},[0,6]) and I, =
0,{ A4, As5},10,6]).

P says that, by increasing the office hout,§ and pro-
viding more TA support 45), an instructor matching the
profile B(P) : (U =0, Fg = 0, Fy = 0) is able to increase
the overall score from 0 t6.12 on average. 5.12 is the
average overall score observed for the instructors matching
the profileM (P) : (Fs = [0, 6], Fy = [0,6]). SAT(B(P))
andSAT (M (P)) account for 0.1% and 94.67% of the data,

(0.1%, 94.67%, 5.12),

ered. Since only bound-preserving itemsets represent Va“qespectlvelyl

triples (B, M, «) as described in Equation (1) and (2), we
shall consider only bound-preserving itemsets.

Example 4.2 Refer to Table 1. Let
I =(F, =3,{41},[3,9)), I = (F» = 3,0,[3, 3]).

Note thatay; = {A4;} andas = (). The itemsetdw | I}
and{u | I,} are bound-preserving{u | I,I>} is not
bound-preserving because the presence;céffects(3, 3]
of Iy: h(ay U g, Fs = 3) = 6 # 3. This example

4.2 Problem Statements

Definition 4.5 Given a tableC and a patternP, {u |
]1’ A 7Ik},

e thebase supporof P, bs(P), is|SAT(B(P))|/|C|,

e the
|SAT (M

model  support of

(P)I/1C],

P, ms(P), s

shows that adding an item does not preserve the bound-

preserving property. One can verify thet | I, I} is
bound-preserving, where

o the utility supportof P, us(P), is Xc[U]/|C|, where
c € SAT(M(P)),



e the actionability degree of P, ad(P), is an algorithm that cafocuson actionable patterns by tak-
us(P)/ms(P) —u. ing into account these information. It boils down to how to

o ) enumerate patterns and how to prune the search space.
A largerms(P) means a more statistically valid model

population. A largebs(P) means a larger base population
for actions. us(P) measures the utility sum of the model
population. ad(P) measures the expected increase of the )
utility by applying the actionset of the pattern to a case in e need a procedure to enumerate all patterns. Since
the base populationP is interesting ifbs(P), ms(P) and each pattern is an itemset, we can enumerate patterns as

ad(P) are large enough as perceived by the user. itemsets. The problem is that many itemsets do not rep-
resent patterns because they do not satisfy the bound-

Definition 4.6 (Actionability mining) Given a table”, an preservation requirement, and enumerating all itemsets is

5.1 Enumeration Strategies

influence matrixF, and thresholds, o5 in [0, 1] andos > an over-kill. Below, we first discuss the depth-first enumer-
0, a patternP is actionableif bs(P) > o1, ms(P) > o2, ation of all itemsets, and then modify it to enumeratend
andad(P) > o3. Theactionability mining problenis find- only patterns.

ing all actionable patterns ltemsets can be enumerated by the standafth-first

enumeratiorbased on a pre-determined lexicographical or-

The frequgnt jtemset mining [2] has .a-ttracted a great yor on itemsets [9]. Consider the enumeration in the space
deal of attention in database and data mining research. W f three featurest, B, C in Figure 2. {u; | I,} for UA

show t.hat actioqapility mining is as Ieast as ha}rd as fre- wr | Ia, Iy} for UAB, {ur | In I, L}, -, {ur |
quent itemset mining in that the_ latter is a special case OfIa,Ib,Ié} for UABC. This finishes all itemsets starting
the former. Consider the special case thatn(U) has i, 1.7, Similarly, it enumerates other itemsets start-
the single value 0 and there is no action. In this Spe-inq \ith 4, 7,, I7. Next, it enumerates all itemsets starting
cial case, every ited; now has the form(f;, 0,5, fil).  withuy, 1,, 1., - -, us, L, I', finishing all itemsets starting
andP = {0 | In,--- Iy}, M(P) = (f1,---,fi) and with uy, I,. Similarly, it enumerates all itemsets starting
B(P)= (0, fi,---, fx) are reduced t§ i, - -, fi}. with uy, I’ for otherI’. Next, it enumerates all itemsets

Theorem 4.1 {f1,--- , fi} on the features?, -- - , F}, is starting withwuy, I, ---, ug,I;, then all itemsets starting

frequent for a minimum suppot, as defined in [2] ifand ~ With w1, I, -, w1, It. By now, all itemsets starting with
uy are enumerated. All itemsets starting with otherare

onlyif {0 | I,---, I} is actionable for; = o2 andos = a
0, wherel; = (f;,0,[f;, f;]). ® enumerated similarly.
Sometimes, the user is interested in ohlynost action- 0

able patterns for some user-specifiedIf & is small, it is /[\

not efficient to search all actionable patterns and perform LA 5B .

the filtering at the end of the search. A better strategy is ex- / \ \

ploiting the top-k requirement to prune the search space as

. 2:AB 4:AC 6:BC

early as possible. /

Definition 4.7 (Top-k actionability mining) Given a table S ABG

C, aninfluence matri¥’, o1, 02 in [0, 1] andos > 0, and an

integerk, thetop-k actionability mining probleris finding Figure 2. The lexicographic tree

the k£, or all if there are less thah, actionable pattern®

with largestad(P). m Below, we modify the above enumeration to enumerate
only and all patterns. First observe that adding an ifgm

5 The Mining Algorithms from Itemp, () to an existing patterdu | Ir,---,I;}
does not guarantee thét | Iy,--- , Iy, Ix11} IS a pattern,

One obvious approach is enumerating all combinationsi.e, bound-preserving. Example 4.2 is an example.

(B, M, «) of a base populatiof3, a model populatiod/ To ensure that adding/,,; to a pattern P, =

and an actionset. This approach is not efficient because {u | Ii,---,I;} leads to a patternP,; = {u |

many combinations do not represent patterns (see Exampldi, - - - , Iy, Ix+1}, we consider only those itemg,; in

4.2), due to the bound-preservation requirement, or are not/temp, , () such thatP, ., is bound-preserving.
actionable, due to the threshold requirement. Essentially,

this approach ignores the “structure”(@, M, «) as apat-  Definition 5.1 (ltemp,,, (Px)) Assume thatP; is a pat-
tern and the “relationship” between patterns. We presenttern not involving a featurefy, ;. Itemp,  (Py) de-



notes the set of itemg,, from Itemp, () such that
Py, U {Iy41} is bound-preservinga

The depth-first pattern enumeration. We modify the
above depth-first enumeration by replacifitemp, ()
with Itemp, ,, (Py) when expanding a patterR,. This

Example 5.1 Refertoltemp, () andItemp, () in Example
4.1. |n|t|a”y, ACtZOTL() = {Al,Ag}. Let P, = {U | Il},
wherel; = (3,{4:1},[3,5]) is an item fromItemp, ().
Action(Py) = {A1} becaused interferes with the range
[3,5] of Iy: l({Al,AQ},3) =2 7é l({Al},3) = 3, violat-
ing FNLI. Item g, (P;) contains the item§fa, {41}, [f2, 6])

modification enumerates only patterns. Two questions mustfrom Itemp, (), 1 < f» < 6, because these items pass both

be answered: caftemp, ,,(Py) be efficiently computed?

FNI and BNI checking./tem g, (P;) does not contain any

More importantly, does this modification guarantee to enu- item (f2,0, [f2, f2]) from Itemp, (), 1 < f» < 5, because

merate all patterns? We answer these questions below.
Computing Itemp, , (Pk). Let Ipiq =
(fre+1> i1y D1, haen]) and ;= (f5, a5, [y, hyl)
forl < j < k. Let afF = a3 U -+ U ag. For
Piy1 = Py U {I;+1} to be bound-preserving, the newly
added itemI;,; must not “interfere” with the items
I;,1 < j < k in the prefix in terms of the bound-
preservation requirement.
conditions must hold:

e Forward Non-Interference (FNi)x,,; contains only
the actions4; such that, forl < j < k, o; remains
the bounding actions of; after adding4,, i.e.,

lj = l(Oék U {Az}, fj)v

hj = h(O{k U {AZ}7 f])

Let Action(Py) denote the set of such;. Note that
Action() contains all actions.

e Backward Non-Interference (BNl ; remains the
bounding actions ofj 1 in P11, i.e.,

lit1 = U(a® Uagit, frr1),
his1 = h(a® Ui, fri1)

In computation, Itemp, , (Py) is the set of items
Ik+1 = (fk+17 Qpy1, [lk+1, hk+1]) from ItekaJrl () such
that a11 contains only those actions fromction(FPy),
and BNI holds.

Inductively, Action(Pxy1) is computed from
Action(Py) as follows. First,Action(Pxy1) IS @ subset
of Action(Py) because if an action violates FNI df, it
also violates FNI onP; ;. In addition, to ensure FNI on
the new itemly 1 in Py, Action(Py4+1) contains only
those actions; from Action(Py) such thatv; remains
the bounding actions of;; after adding4;, i.e.,

Ly = LT U{AY, frg),
hir1 = h(a®TH U {4}, frg),

wherea*t! = o U a4, is the actionset oP,;. Note

thata; (1 < j < k) still remains the bounding actions since

A; € Action(Py,).

Precisely, the following two

these items fail to pass BNiL

Theorem 5.1 (Soundness and completenesthe depth-
first pattern enumeration enumerates all and only patterns
(The proof is given in the full paper [11]).

5.2 Pruning Strategies

Even though the proposed enumeration has focused on
patterns, many patterns do not pass the interestingness
thresholds and should be pruned. We say that; is a
child patternof Py, if Pry; = P, U {I;x4+1}. The descen-
dant relationship is the transitive closure of the child rela-
tionship. The general idea is establishing some necessary
condition of actionable patterns so that the failure by a pat-
tern implies the failure by all descendant patterns. Follow-
ing the “anti-monotonicity” [2] of support (i.e., the support
of a child pattern is no more than the support of a parent
pattern), we have

Theorem 5.2 (Base/model support pruning)If bs(P) <
o1, bs(P’) < o for all descendant®”’ of P. If ms(P) <
o2, ms(P') < o4 for all descendant®’ of P. m

If P fails to pass either, or o5, we do not need to search
into the subtree below?. If P passes both; andos, we
check whether it passes the actionability constraintu >
o3, whereuw' = us(P)/ms(P) is the average utility of the
cases inSAT (M (P)). Unfortunately, since the averagé
could either increase or decrease at a child pattern, even if
P fails this constraint, we cannot prune the subtree below
P.

Our approach is to replace the averagevith alarger

estimate.” that isnon-increasingat a child pattern. It —
u > o3 fails on a patterrP, it fails on all descendants @?
because’ is non-increasing at a child pattern, aid-u >
o3 fails on these descendants as well becalise v”. In
short, if P fails to pass.” — u > o3, all descendants ap
are not actionable and can be pruned.

The maximum utility inSAT (M (P)) has the property
required ofu”, but it could over-estimate’ so much that
many patterns failing’ — « > o3 can satisfyw” — v > o3,
which means little pruning. To have a tighter (i.e., smaller)
u”, we consider all of the togo|C|] utility values in
SAT(M(P))and use their average utility a8. We choose



the numbef o, |C|] because&S AT (M (P)) must containat 5.3  Algorithms
least this number of cases in order to pass the threshold

o9. In other wordsy” = us’(P)/u, whereus’(P) denote To computebs(P), ms(P), us(P) and us'(P), we

the sum of the tofa2[C|] utility values in.SAT (M (P)) maintain the base and model populations foon the cur-
(with duplicates counted), and = [05[C|]. Note that  rent path in the depth-first enumeration, denotéd M).

p is a constant. The following lemma shows thétis o the shortest patterds: |}, B is the set of cases having
an over-estimate of’ = us(P)/ms(P) and has the anti-  he ility valueu and M is the whole databasg. At a
monotonicity. child patternP’ = PU{I}, wherel = (f, a, [l, h]) is from
Lemma 5.1 Assume thatns(P) > oy. (1) us'(P) Itemp(P), (B’, M') for P’ is constructed by scanning
us(P)/ms(P). (2) If P’ is a child pattern o, us’(P") and M. B’ contains the cases iB that have the valug
us'(P). m on I, andM’ contains the cases W that have the values

in the rangd!, k] on F'. We can creat¢B’, M) for all the
child patternsP’ in the same scan a8 and M, assuming
that the memory can hold all su¢’, M’). Alternatively,

B and M can be stored as the partitiods, - - - , B, and
M, ---,M,, whereB; and M; correspond to the value

1 of F', and only related partitions are scanned to create
(B’,M"). The algorithm for finding the tog actionable
patterns is similar, except that it also applies Theorem 5.4
for pruning as discussed in Section 5.2. The detailed algo-
Theorem 5.3 (Actionability pruning) If us’(P)/u—u < rithms are reported in [11].

o3, P and its descendants are not actionable.

>
<

We give an example to convey the intuition behind
Lemma 5.1(1). Suppose th8T'(M (P)) contains 5 cases
with the utility values{4,4,3,2,1}. us(P)/ms(P) =
(4+4+3+241)/5 = 2.8. Suppose thai = 3. The average
of the top 3 utility valuesyus’(P)/3,is (4+4+3)/3 = 3.6,
which is larger than the actual average ST (M (P)).
Lemma 5.1(2) follows because the sum of the toptil-
ity values shrinks on a subset.

Proof. Assume thatns(P) > o4 (otherwise we are done). —; [(i'é] T e e e BN EER I S
From Lemma 5.1(1)us’ (P)/pn > v'. Sinceus’(P)/u — 2 [0.6] [0.6]
u < o3, v’ —u < o3, therefore,P is not actionable. The | % [0.6] [0.6]
second part follows from the first part and Lemma 5.1). :: 0] {22
A pattern not pruned by Theorem 5.3 may still fail| as [0.6] | [0.6]
u’ —u > o3. The size of this gap depends on how closely *’ [06]
the average of the top utility values inSAT (M (P)) ap- ) ) )
proximates the actual averagé The larger the minimum Figure 3. The influence matrix

model support; is and the smaller the variance of the util-
ity in SAT (M (P) is, the closer the approximation is.
Belqw, we cpnsidelr the top-ggtionabilit.y.mining 'prob- 6 Evaluation
lem. Since typicallyk is small, it is not efficient to find all
actionable patterns and filtering all but the fopatterns. A
better strategy is maintaining the minimumi required to The evaluation focused on answering two questions,
be among the top actionable patterns and using it as the hamely, whether the proposed method can find useful pat-
minimum bound for.”. We can keep the set &f largest terns and whether it scales up on large data sets. The al-

ad of the actionable patterns seen so far, denotediby ~ gorithm was implemented in VC++ on a Pentium 4 with
On generating a new pattet, if ad(P) > min(AD), 2.4GHz CPU and 512MB memory running Windows XP.

we replace the minimum element ihD with ad(P); if It is hard to find a data set together with domain ex-
ad(P) < min(AD), we apply the following pruning to  perts to provide the knowledge on actions. Hence, we con-
check if the subtree & can be pruned. ducted our experiments on the teaching evaluation domain

for which we are experts ourselves. The data set was col-
lected from Fall 1996 to Spring 2003 from a major univer-
sity in North America, with 5,895 evaluations on 14 features
Fy — Fy4 and the utilityU. Figure 1 describes the features,
Proof. Note thatad(P) = us(P)/ms(P) — u. From utility, and actions. Figure 3 shows the influence matrix. All
us'(P)/p —u < min(AD) and Lemma 5.1(1)ed(P) < scores are in the 0-6 scale. We choose the maximum influ-
min(AD). From Lemma 5.1(2), for any descenddtitof ence ranger;; = [0, 6] because it represents the most gen-
P, us'(P")/u < us’(P)/u. By repeating the same argu- eral knowledge of boosting score and creates a larger search
ment as forP, we havend(P’) < min(AD). So,P andP’ space. Other choices of influence ranges will be examined
cannot be among the toppatterna as well. Figure 6 shows the distribution of the utilityin

Theorem 5.4 (Top-k pruning) If us’(P)/u — w
min(AD), P or all its descendants cannot be among the
top k actionable patterns.
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o1 = 0.1% and o9 = 1%

log scale. We observed a similar distribution for the fea- reported our findings with the settings ®f = 0.1% and

turesFy, - - -

, F14. Therefore, there is a strong correlation o, = 1%. Here are the five actionable patterns that come at

between the utility and features, as expected in this domain the top, ranked byd(P):
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Figure 6. The distribution of utility

6.1 Usefulness

It is typical to use a small base minimum supportbut
a large model minimum suppart for identifying “outlier”

P {0] (Fy = 0,{As, As},[0,6])} (0.1%,98.68%, 5.12)

Po: {0 (Fy = 0.{As},[0,6])} (0.1%, 94.67%, 5.12)

Pyr {0 (Fs =0,{A5},[0,6]), (Fo =0,{A4, A5}, 0,6])}
(0.1%, 94.67%, 5.12)

Py {2 (Fio = 3,{42},[3,6]), (F12 =5,{4s},[5,6]),

(Fia = 4, {As}, [4,6))} (0.1%, 10.89%, 3.71)

Ps: {2 (Fi2 = 5,{A6},[5,6]), (Fia = 4,{A7},[4,6])}

(0.1%, 10.98%, 3.70).

In general, these patterns identify a base of a small utility
value and a role model of overwhelming support. In other
words, for the small number of instructors not doing well,
many instructors can serve as a role model for them to fol-
low, and each pattern suggests the concrete actions to take.
Patterns further down the list tend to have a larger base sup-
port but a smaller actionability degree.

Let us examingP; in details. This pattern suggests that,
by increasing office hours (i.e4,) and providing more TA
support (i.e,As), an instructor doing poorly in the feed-
back evaluation (i.e.Fy = 0) and the overall evaluation

bases that have “overwhelming” role models. Given that (i.e., U = 0) could increase the overall evaluation to 5.12

only 6 cases have the utility valued; = 0.1% is the max-

on average. First of all, these actions indeed address the

imum to find actionable patterns for such cases. So, weright problems, according to the knowledge in this domain.



At first glance, the increase of 5.12 seems a bit too drastic.on top of all other pruning.
However, if we consider what the user has in mind and what

the data has recorded, this increase makes sense. In fact, thﬁ Conclusion

user believes that, and A5 can changdy from 0 to some

value in[0, 6]. When examining the instructors in the range Data mining based on actionability is an important but

Fy = [0, 6], we find the average overall evaluation of 5.12. : . ; .
If the user trusts her knowledge and the historical data, sheunder studied topic. Unless this topic is addressed prop

should believe that the estimation 5.12 provided by the dataerly’ the usefuln_egs issue of data mining re_s_ults will keep
is achievable. haunting data mining researchers and practitioners. A main

contribution of this work is the introduction of “actions” as

a way to address this issue. We presented a new concept of

actionability and the algorithms for its discovery. On a real-

world application domain, our approach demonstrates the

effectiveness of finding useful patterns and applying prun-

We are not aware of any algorithms that model the notion ing strategies. In the future work, we intend to enhance em-

of actions and push the actionability requirement to prune pirical studies on more datasets and application domains.

the search space. The closest strategy that can be compared
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