
Profit Mining: From Patterns to Actions ?

Ke Wang1, Senqiang Zhou1, and Jiawei Han2

1 Simon Fraser University
{wangk,szhou}@cs.sfu.ca

2 University of Illinois at Urbana-Champaign
hanj@cs.uiuc.edu

Abstract. A major obstacle in data mining applications is the gap be-
tween the statistic-based pattern extraction and the value-based decision
making. We present a profit mining approach to reduce this gap. In profit
mining, we are given a set of past transactions and pre-selected target
items, and we like to build a model for recommending target items and
promotion strategies to new customers, with the goal of maximizing the
net profit. We identify several issues in profit mining and propose solu-
tions. We evaluate the effectiveness of this approach using data sets of a
wide range of characteristics.

1 Introduction

Data management today is required of the ability to extract interesting pat-
terns from large and raw data to help decision making, i.e., data mining. Of-
ten, patterns are deemed “interesting” on the basis of passing certain statisti-
cal tests such as support/confidence [AIS93,AMSTV96,AS94]. To an enterprise,
however, it remains unclear how such patterns can be used to maximize a busi-
ness objective. For example, knowing association rules {Perfume} → Lipstick,
{Perfume} → Diamond, . . . that are related to Perfume, a store manager
wishing to maximize the profit margin still cannot tell which of Lipstick,Diamond,
. . ., and what price, should be recommended to a customer buying Perfume.
Simply recommending all items will overwhelm the customer and defeat the
purpose of recommendation. Simply recommending the most profitable item,
say Diamond, or the most likely item, say Lipstick, does not maximize the
profit because there is often an inverse correlation between the likelihood to buy
and the dollar amount to spend. The major obstacle lies at the gap between
individual, statistic-based summaries extracted by traditional rule mining and a
global, profit-driven action required by business decision making.

1.1 The profit mining problem

We propose the profit mining approach to address this issue. In profit mining,
we are given a collection of past transactions, target items and non-target items,
? Research was supported in part by research grants from the Natural Science and

Engineering Research Council of Canada.

and promotion codes containing the pricing and cost information of items. A
transaction contains one target sale of the form 〈I, P,Q〉, for some target item I,
and several non-target sales of the form 〈I ′, P,Q〉, for non-target items I ′. The
presence of 〈I, P, Q〉 (or 〈I ′, P, Q〉) in a transaction conveys that I (or I ′) was
sold in the quantity of Q under the promotion code P . Profit mining is to build
a model, called the recommender, that recommends a pair of target item I and
promotion code P to future customers whenever they buy non-target items. A
successful recommendation generates (Price(P) − Cost(P)) × Q profit, where
Price(P) and Cost(P) are the price and cost represented by P , and Q is the
quantity sold because of the recommendation. The goal is to maximize the total
profit of target items on future customers.

Unlike a basic prediction model that “repeats the past”, profit mining is
expected to “get smarter from the past”. An example illustrates the point. Sup-
pose that 100 customers each bought 1 pack of Egg at the pack price of $1/pack,
and another 100 customers each bought one package of 4-pack at the package
price of $3.2/4-pack. Assume that each pack costs $0.5 in both cases. The first
100 customers generate the profit of 100 × (1 − 0.5) = $50, and the second 100
customers generate the profit of 100× (3.2− 2) = $120. The total profit is $170.
With no inherent difference between the two groups of customers, to the next
200 new customers a basic prediction model will recommend the pack price in
one half case and the package price in the other half case. This will repeat the
profit of $170. In contrast, profit mining is expected to reveal that the profit
has increased at the package price and recommend this price to all the next 200
customers. This will generate the profit of $240.

A “quick solution” to profit mining is to find several most probable recom-
mendations using a basic prediction model, and re-rank them by taking into
account both probability and profit. In this solution, the profit is considered as
an afterthought. For example, for the decision tree [Q93] (as the basic predica-
tion model), whether a rule is extracted as a pattern or is pruned as a noise
is solely based on the frequency information. The study in [MS96] shows that
pushing the profit objective into model building is a significant win over the
afterthought strategy.

1.2 The issues

The key to profit mining is to recommend “right” items and “right” prices. If the
price is too high, the customer will go away without generating any profit; if the
price is too low or if the item is not profitable, the profit will not be maximized.
Our approach is to exploit data mining to extract the patterns for right items
and right prices. Let us examine the issues/requirements in this context.

1. Profit-based patterns. A pure statistic-based approach will favor the rule
{Perfume} → Lipstick because of higher confidence, and a pure profit-
based approach will favor rule {Perfume} → Diamond because of higher
profit. Neither necessarily maximizes the profit. Indeed, items of high profit
are often statistically insignificant because fewer people buy expensive stuffs.

To maximize profit, the rule extraction needs to take into account both
statistical significance and profit significance.

2. Shopping on unavailability. To maximize profit, it is important to recog-
nize that paying a higher price does not imply that the customer will not
pay a lower price; rather, it is because no lower price was available at the
transaction time. This behavior is called shopping on unavailability. Taking
into account this behavior in rule extraction will bring new opportunities for
increasing the profit.

3. Explosive search space. A typical application has thousands of items and
much more sales, any combination of which could be a trigger of recom-
mendation. Any table-based representation such as decision tree and neural
network require thousands of columns or input nodes to encode items and
sales. To make matters worse, patterns are often searched at alternative
concepts (e.g., food, meat, etc.) and prices of items.

4. Optimality of recommendation. Given the large search space, finding
the exact optimal recommender is infeasible. Still, it is important, both the-
oretically and practically, to obtain some optimality guarantee within some
important classes of recommenders.

5. Interpretability of recommendation. It is highly desirable or even nec-
essary to have a recommender that is able to explain the rationale of rec-
ommendation in a human understandable way. For example, knowing what
triggers the recommendation of certain target items could be useful for set-
ting up a cross-selling plan.

1.3 Our approaches

To address the scalability and interpretability in Requirements 3 and 5, we ex-
ploit association rules [AIS93,AS94] for constructing the recommender. By some
extension of association rules, we are able to incorporate the customer prefer-
ence into the mining. This addresses Requirement 2. However, association rules
alone do not maximize the profit because they are not profit-sensitive and do
not optimize a global objective. One technical contribution of this work is to
combine individually extracted association rules into a single model that maxi-
mizes the projected profit on future customers. The novelty of this approach is
the selection of association rules based on both statistical significance and profit
significance. We show that the recommender constructed is optimal within an
important class of recommenders. Experiments show encouraging results.

In Section 2, we define the profit mining problem. In Section 3, we construct
a recommender using extended association rules. In Section 4, we simplify the
recommender to increase the projected profit on future transactions. In Section
5, we study the effectiveness of the approach. We review related work in Section
6. Finally, we conclude the paper.

2 Problem definition

In profit mining, we like to promote the sales of target items based on the sales
of non-target items. Every item has one or more promotion codes. A promotion
codes contain the price and cost information for a promotion package. A target
sale (resp. non-target sale) has the form 〈I, P, Q〉, representing a sale of quantity
Q of item I under promotion code P . A transaction, written as {s1, . . . , sk, s},
consists of one target sale s and several non-target sales s1, . . . , sk. A recom-
mender recommends a target item I and a promotion code P (of I) to future
customers whenever they buy some non-target items. If the recommendation is
successful, i.e., the customer actually buys some quantity Q of item I under P ,
it generates (Price(P)−Cost(P))×Q profit, where Price(P) and Cost(P) are
the price and cost represented by P .

Example 1. Suppose that an item 2% Milk has four promotion codes (not neces-
sarily offered at the same time): ($3.2/4-pack,$2), ($3.0/4-pack,$1.8), ($1.2/pack,
$0.5), and ($1/pack, $0.5), where the first element denotes the price and the sec-
ond element denotes the cost. Let P denote ($3.2/4-pack,$2). A sale 〈Egg, P, 5〉
generates of 5 × (3.2 − 2) = $6 profit. Note that the price, cost and quantity in
a sale refer to the same packing (e.g., 4-pack).

Some (descriptive) items, such as Gender = Male, do not have a natural
notion of promotion code. For such items, we set Price(P) and Q to 1 and
Cost(P) to 0, and the notion of profit becomes the notion of support. In this
paper, we assume that all target items have a natural notion of promotion code.

Definition 1 (Profit mining). Given a collection of past transactions (over
some specified target and non-target items), the problem of profit mining is to
find a recommender that generates as much profit as possible on target items
over future transactions. ∇

This problem implicitly assumes that the given transactions are representa-
tive in recommendation structure of the entire population. To define the profit
mining problem precisely, we need to specify the representation of recommenders.
Our first consideration is that recommendation often depends on some categories
(or concepts) of items. The categorization of items can be specified by a concept
hierarchy [HF95,SA95].

A concept hierarchy , denoted H, is a rooted, directed acyclic graph, with
each leaf node representing an item and a non-leaf node representing a con-
cept. For example, assume that an item Flake Chicken belongs to categories
Chicken, Meat, Food, ANY . If a customer bought Flake Chicken, obviously
the customer also “bought” Chicken, Meat, Food, Any. For non-target items,
such generalization allows us to search for the best category that capture certain
recommendations. We do not consider categories for target items because it does
not make sense to recommend a concept and a price (such as Applicance for$100)
unless the concept refers to a specific item known to the customer. Therefore, in
the concept hierarchy, target items are (immediate) children of the root ANY .

Our second consideration has to do with the shopping on unavailability men-
tioned in Introduction. Consider a customer who has bought one 2-pack of Egg
for 3.80$. If the lower price 3.50$/2-pack has been offered (for the same item)
before his/her purchase, clearly the customer would have taken the offer, even
though there is a mismatch in the two prices. This suggests that the acceptance
of recommendation should be based on the “intention” of customers, rather than
on the exact match of price. We say that a promotion code P is more favorable
than a promotion code P ′, denoted P ≺ P ′, if P offers more value (to the cus-
tomer) for the same or lower price, or offers a lower price for the same or more
value, than P ′ does.

For example, $3.50/2-pack offers a lower price than $3.80/2-pack for the same
value, and $3.50/2-pack offers more value than $3.50/1-pack for the same price.
In both cases, the former is more favorable than the latter. However, $3.80/2-
pack is not (always) more favorable than $3.50/pack because it is not favorable
to pay more for unwanted quantity.

Mining on availability - MOA. If a customer is willing to buy an item
under some promotion code, we assume that the customer will buy the item
under a more favorable promotion code. This assumption is called the mining
on availability, or simply MOA. To incorporate the knowledge of MOA into
search, we treat a more favorable promotion code P as a “concept” of a less
favorable one P ′. The effect is that a sale under P ′ implies a sale under P . This
can be done by extending the concept hierarchy H as follows.

Definition 2 (MOA(H)). For each item I, let (≺, I) denote the hierarchy of
pairs 〈I, P 〉 induced by ≺ on the promotion codes P for I, with I being added
as the root. MOA(H) is the hierarchy obtained by making each leaf node I in
H as the root of the hierarchy (≺, I). ∇

A transaction is generalized by generalizing its sales using MOA(H) as de-
scribed below.

Definition 3 (Generalized sales). In MOA(H), (i) every parent node is a
generalized sale of every child node; (ii) every node of the form 〈I, P 〉 is a gen-
eralized sale of a sale of the form 〈I, P, Q〉; (iii) “is a generalized sale of” is
transitive. A set of generalized sales G = {g1, . . . , gk} matches a set of sales
S = {s1, . . . , sp} if each gi is a generalized sale of some sj . ∇

(i) generalizes a sale using concepts and favorable promotion codes. (ii) gen-
eralizes a sale by ignoring the quantity of the sale. A generalized sale has one of
the forms 〈I, P 〉, or I, or C, where P is a promotion code, I is an item, C is a
concept. For a target item I, we consider only generalized sales of the form 〈I, P 〉
because only this form represents our recommendation of a pair of target item
and promotion code. Note that a generalized sale of the form 〈I, P 〉 contains the
packing quantity defined by the promotion code P . The quantity of individual
sales will be factored in the profit of rules.

Example 2. Consider a non-target item Flaked Chicken, abbreviated as FC,
and a target item Sunchip. Figure 1(a) shows the concept hierarchy H. Sup-
pose that FC has three promotion codes: $3, $3.5, and $3.8, and Sunchip has

three promotion codes: $3.8, $4.5, and $5. For simplicity, we omit the cost
and assume that the packing quantity for all promotion codes is 1. Figure 1(b)
shows MOA(H). 〈FC, $3.8〉 and its ancestors are generalized sales of sales
〈FC, $3.8, Q〉. 〈FC, $3.5〉 and its ancestors are generalized sales of sales 〈FC, $3.5, Q〉
or 〈FC, $3.8, Q〉. 〈FC, $3〉 and its ancestors are generalized sales of sales 〈FC, $3, Q〉,
or 〈FC, $3.5, Q〉, or 〈FC, $3.8, Q〉. Similar generalization exists for target item
Sunchip.

ANY

FOOD

<FC,$3.8>

<FC,$3.5>

<FC,$3>

FC

MEAT

ANY

FOOD

MEAT

FC

(a) H
(b) MOA(H)

<SUNCHIP,$4.5>

<SUNCHIP,$3.8>

<SUNCHIP,$5>

SUNCHIPSUNCHIP

Fig. 1. H and MOA(H)

Definition 4 (Recommenders). A rule has the form {g1, . . . , gk} → 〈I, P 〉,
where g1, . . . , gk are generalized non-target sales such that no gi is a generalized
sale of other gj , and 〈I, P 〉 is a generalized target sale. Consider a customer
represented by a set of non-target sales {s1, . . . , sp}. A rule {g1, . . . , gk} → 〈I, P 〉
matches the customer if {g1, . . . , gk} generalizes {s1, . . . , sp}. If a matching rule
{g1, . . . , gk} → 〈I, P 〉 is selected to make recommendation and if the customer
buys some quantity Q of I under the recommended promotion code, the profit
generated is (Price(P)− Cost(P))×Q. A recommender is a set of rules plus a
method for selecting rules to make recommendation to future customers. ∇

Note that the condition that no gi is a generalized sale of other gj implies that
k ≤ p. In the above framework, each transaction contains one target sale and
each rule recommends one pair of target item and promotion code. To apply to
transactions containing several target sales and recommendation of several pairs

of target item and promotion code, we can generate the same type of rules but
we select several rules for each recommendation. The number of rules selected
per recommendation can be specified by the user. Therefore, our framework is
not a restriction.

3 Constructing the initial recommender

We construct a recommender in two steps. In the first step, we generate asso-
ciation rules and specify the method for selecting recommendation rules. This
recommender does not necessarily produce a high profit on future transactions
because many rules are too specific. In the second step, we remove such rules
on a basis of increasing the projected profit on future customers. This section
focuses on the first step.

3.1 Generating rules

Since the space of candidate rules is extremely large, we must focus on rules of
some minimum “worth”. The worth is a measure of how well a rule captures
the “customer intention”. Suppose that a rule r : {g1, . . . , gk} → 〈I, P 〉 matches
a given transaction t : {s1, . . . , sp, 〈It, Pt, Qt〉}, where 〈It, Pt, Qt〉 is the target
sale. If 〈I, P 〉 generalizes 〈It, Pt, Qt〉, that is, I = It and P ≺ Pt, then r has
captured the intention of t. In this case, we credit the worth of r by the profit
of r generated on t. To estimate this profit, we regard t as a future customer
and determine the quantity Q the customer will buy under the more favorable
promotion code P . The generated profit of r on t is defined as

– p(r, t) = (Price(P)− Cost(P))×Q, if 〈I, P 〉 generalizes 〈It, Pt, Qt〉, or
– p(r, t) = 0, otherwise.

We consider two methods of estimating the actual purchase quantity Q for
the more favorable promotion code P under MOA. Saving MOA assumes that
the customer keeps the original quantity Qt unchanged, thus, saving money.
Buying MOA assumes that the customer keeps the original spending Pt ×Qt

unchanged, thus, increasing the quantity to Q = Pt ×Qt/P . Both assumptions
are conservative by not increasing the spending at a favorable promotion. These
assumptions are favorable to the customer in that the customer either spends
less for the same quantity or spends the same for more quantity. A more greedy
estimation could associate the increase of spending with the relative favorability
of P over Pt and the uncertainty of customer behaviors. We will consider such
estimation in our experiments.

Definition 5 (Worth of a rule). For any set of generalized sales X, let
Supp(X) denote the percentage of the transactions matched by X. Consider
a rule G → g.

– Supp(G → g): The support of G → g, defined as Supp(G ∪ {g}).

– Conf(G → g): The confidence of G → g, defined as Supp(G∪{g})/Supp(G).
– Profru(G → g): The rule profit of G → g, defined as Σtp(G → g, t), where

t is a transaction matched by G → g.
– Profre(G → g): The recommendation profit of G → g, defined as Profru(G →

g)/N , where N is the number of transactions matched by G → g. ∇

The recommendation profit is on a per-recommendation basis and factors in
both the hit rate (i.e., confidence) and the profit of the recommended item. It is
possible that a rule of high recommendation profit matches only a small number
of transactions that have large profit. Determining whether such rules should be
used is a tricky issue and will be examined in Section 4.

To find rules of minimum worth, the user can specify minimum thresholds on
these measures. The minimum support must be specified to take advantage of
the support-based pruning [AS94]. If all target items have non-negative profit,
a similar pruning is possible for rule profit and the minimum support can be
replaced with the minimum rule profit. We follow [SA95,HF95] to find association
rules, with MOA(H) being the input concept hierarchy.

In the rest of discussion, let R denotes the set of rules generated as above,
plus the default rule ∅ → g, where g is the generalized target sale that maximizes
Profre(∅ → g). Adding the default rule ensures that any set of non-target sales
has at least one matching rule in R.

3.2 Specifying recommendation rules

A key for making recommendation is to select a recommendation rule from R
for a given customer. Our selection criterion is maximizing the recommendation
profit of the selected rule, as stated below.

Definition 6 (Coverage of rules). Let body(r) denote the set of generalized
sales in the body of r, and let |body(r)| denote the number of such generalized
sales. For any two rules r and r′, we say that r is ranked higher than r′

– (Profit per recommendation) if Profre(r) > Profre(r′), or
– (Generality) if Profre(r) = Profre(r′), but Supp(r) > Supp(r′), or
– (Simplicity) if Supp(r) = Supp(r′), but |body(r)| < |body(r′)|, or
– (Totality of order) if |body(r)| = |body(r′)|, but r is generated before r′,

in that order. Given a set B of non-target sales, a rule r in R is the recommen-
dation rule for B if r matches B and has highest possible rank. This is called the
most-profitable-first selection, or MPF. We also say that recommendation rule r
covers B. ∇

Confidence is not mentioned here because it is indirectly factored in the
recommendation profit.

Definition 7 (MPF recommender). The MPF recommender is the set of
rules R plus the MPF for recommendation rules. ∇

4 Optimizing the MPF recommender

However, the MPF does not deal with the overfitting of rules because a high
recommendation profit does not imply a high support. It does not work to simply
remove rules of low support by a high minimum support because high-profit
items typically have a low support. Our approach is to prune rules on the basis
of increasing the projected profit on future customers: Suppose that we know how
to estimate the projected profit of a rule r using the given transactions covered
by r, denoted by Cover(r). We can prune one rule at a time if doing so increases
the projected profit of the recommender, defined as the sum of the projected
profit of all rules in the recommender. This approach must answer the following
questions:

– Question 1: If some rule is pruned, which remaining rules will cover those
transactions that were previously covered by the pruned rule? This informa-
tion is necessary for subsequent prunings.

– Question 2: How do we select the rule for pruning at each step? Does the
pruning order matter? Does such pruning produce an “optimal” recom-
mender?

– Question 3: How do we estimate the projected profit of a rule?

We answer these questions in the rest of this section.

4.1 The covering relationship

If a rule is pruned, we choose the “next best” rule to take over the coverage of its
transactions. To define this notion of “next best”, we say that r is more general
than r′, or r′ is more special than r, if body(r) generalizes body(r′). r and r′ do
not necessarily have the same head. If a rule is more special and ranked lower
than some other rule in R, this rule will never be used as a recommendation rule
because some general rule of a higher rank will cover whatever it matches. From
now on, we assume that all such rules are removed from R.

Definition 8. In the covering tree of R, denoted CT , a rule r is the parent of a
rule r′ if r is more general than r′ and has the highest possible rank. If a rule r
is pruned, the parent of r will cover the transactions covered by r ∇

In CT , rules are increasingly more specific and ranked higher walking down
the tree. Therefore, it makes sense to prune specific rules in the bottom-up order.
The effect is to “cut off” some subtrees to maximize the projected profit.

4.2 The cut-optimal recommender

By “cutting off” the subtree at a rule r, r becomes a leaf node and covers all
the transactions previously covered by (the rules in) the subtree, according to
the covering tree. The “best cut” should yield the maximum projected profit,
defined below.

f g

h i

a

b

d e

c

a

b c

d e

Fig. 2. Cuts

Definition 9. A cut of CT contains exactly one node on each root-to-leaf path
in CT . For a cut C, CT C denotes the tree obtained from CT by pruning all
subtrees at the nodes in C. A cut C is optimal if CT C has the maximum (es-
timated) projected profit and C is as small as possible. CT C is the cut-optimal
recommender if C is an optimal cut. ∇

The essence of cuts is that either all children are pruned or none is pruned.
By cutting the tree this way, we avoid the sensitivity caused by different orders of
pruning child nodes. Consider the covering tree CT on the left in Figure 2. Exam-
ples of cuts are {a}, {b, c}, {d, e, c}, {b, f, g}, {b, h, i, g}, {d, e, f, g}, {d, e, h, i, g}.
{a, b} and {d, e, f} are not a cut because they contain two nodes or no node on
some root-to-leaf path. On the right in Figure 2 is CT C for C = {d, e, c}.

We can show that the optimal cut is unique.

Theorem 1. A covering tree has exactly one optimal cut (therefore, exactly
one cut-optimal recommender). ∇
Proof: If there are two optimal cuts C1 and C2, they must cross over in the
sense that some portion of C1, say C1, is above C2, and some portion of C2, say
C2, is above C2. Then it can be shown that the smaller cut formed by C1 and
C2 yields a recommender that has no less projected profit than CT C1 or CT C2 ,
contradicting that Ci’s are optimal cuts. ∇

To find the optimal cut of CT , one can start with the root of CT and consider
every possible subset of child nodes for expanding the current node, and for each
subset considered, recursively repeat this expansion for each node in the subset.
This method examines an exponential number of subsets of child nodes and
is not scalable for large recommenders. We present a linear time algorithm for
finding the optimal cut of a given covering tree.

Finding the cut-optimal recommender. The algorithm finds the opti-
mal cut of CT in a bottom-up traversal of the tree. Consider the current non-
leaf node r. Let Tree Prof(r) denote the projected profit of the subtree at r.

Let Leaf Prof(r) denote the projected profit of r as a leaf node. The estima-
tion of of these profits will be explained shortly. Intuitively, Tree Prof(r) and
Leaf Prof(r) are the projected profit before and after pruning the subtree at
r. If Leaf Prof(r) ≤ Tree Prof(r), we prune the subtree at r immediately;
otherwise, we do nothing at r. “Pruning the subtree at r” means deleting the
nodes and edges below r and modifying the coverage Cover(r) to contain all
transactions previously covered by the nodes in the subtree. After all nodes are
traversed, the unpruned top portion of CT is the cut-optimal recommender, as
stated in Theorem 2 below.

Theorem 2. The recommender CT at the end of the above bottom-up traversal
is cut-optimal. ∇
Proof: Note that the pruning at each node does not affect the pruning at other
nodes. Therefore, if the test at a node is in favor of pruning the subtree at the
node to increase the projected profit of the recommender, an optimal cut will
never contain this subtree. ∇

Now we sketch the idea of estimating the projected profit of a rule r, denoted
Profpr(r). We estimate Profpr(r) by X × Y . X is the (estimated) # of “hits”
of r, i.e., # of acceptances of the recommendation, in a random population of
N = |Cover(r)| customers that are covered by r. Y is the observed average
profit per hit. We compute X using the pessimistic estimation borrowed from
[CP34,Q93]: Suppose that E of the N transactions covered by r are not hit by
the recommendation of r, i.e., do not match the righ-hand side of r. If this is
regarded as a sample of a binomial distribution over the entire population of
transactions, for a given confidence level CF the upper limit of the probability
of non-hit in the entire population is estimated by UCF (N, E) as computed in
[CP34,Q93]. Then, X = N × (1− UCF (N, E)). Y is estimated by

Σt∈Cover(r)p(r, t)
of hits in Cover(r)

. (1)

Recall that p(r, t) is the generated profit of r on transaction t (defined in Section
2). Tree Prof(r) is computed as the sum of Profpr(u) over all nodes u in the
subtree at r. This sum can be computed incrementally in the bottom-up traversal
of the tree. Leaf Prof(r) is computed as Profpr(r) by assuming that r covers
all the transactions covered by the subtree at r.

5 Evaluation

We like to validate two claims: the cut-optimal recommender is profitable, and
incorporating profit and MOA into model building is essential for achieving this
profitability.

5.1 The methodology

We perform 5 runs on each dataset using the 5-fold cross-validation. In particular,
the dataset is divided into 5 partitions of equal size, and each run holds back one

(distinct) partition for validating the model and uses the other 4 partitions for
building the model. The average result of the 5 runs is reported. We define the
gain of a recommender as the ratio of generated profit over the recorded profit
in the validating transactions in the held-back partition:

Σtp(r, t)/Σt the recorded profit in t

where p(r, t) (defined in Section 2) is the generated profit of the recommendation
rule r on a validating transaction t. The higher the gain, the more profitable
the recommender. For saving MOA and buying MOA, the maximum gain is
1 because the spending is never increased under a favorable promotion code.
Unless otherwise stated, saving MOA is the default. (The gain for buying MOA
will be higher if all target items have non-negative profit.)

PROF+MOA represents the cut-optimal recommender, emphasizing that both
profit and MOA are used in building the recommender. We compare PROF+MOA
with:

– PROF–MOA: the cut-optimal recommender without MOA. This comparison
will reveal the effectiveness of MOA.

– CONF+MOA: the cut-optimal recommender using the binary profit: p(r, t) =
1 if the recommendation is a hit; otherwise, p(r, t) = 0. Thus, the model
building ignores the profit and relies on the hit rate (i.e., confidence) for
ranking and pruning rules. This comparison will reveal the effectiveness of
profit-based model building.

– CONF–MOA: CONF+MOA without MOA.
– kNN: the k-nearest neighbor classifier [YP97]. Given a set of non-target sales,

kNN selects k transactions (the k nearest neighbors), for some fixed integer
k, that are most similar to the given non-target sales and recommends the
pair of target item and promotion code most “voted” by these transactions.
We used the kNN that is tailored to sparse data, as in [YP97] for classifying
text documents, and we applied MOA to tell whether a recommendation is
a hit. These modifications substantially increase the hit rate and profit.

– MPI: the most profitable item approach, which simply recommends the pair
of target item and promotion code that has generated most profit in past
transactions.

5.2 Datasets

The synthetic datasets were generated by the IBM synthetic data generator 1,
but modified to have price and cost for each item in a transaction. First, we
apply the IBM generator to generate a set of transactions, with the number of
transactions |T | = 100K and the number of items |I| = 1000, and default settings
for other parameters. Items are numbered from 1 to |I|. For simplicity, each item
has a single cost and a single packing for all promotion codes. In this case, we
use “price” for “promotion code”. The cost of item i is denoted by Cost(i). For

1 http://www.almaden.ibm.com/cs/quest/syndata.html#assocSynData

item i, we generate the cost Cost(i) = c/i, where c is the maximum cost of a
single item, and m prices Pj = (1 + j × δ)Cost(i), j = 1, . . . ,m. We use m = 4
and δ = 10%. Thus, the profit of item i at its price Pj is j × δ × Cost(i). Each
item in a transaction is mapped to a non-target sale by randomly selecting one
price from the m prices of the item. For simplicity, all sales have unit quantity.

We consider two distributions for generating the target sale in each transac-
tion. In dataset I, we consider two target items with cost of $2 and $10 respec-
tively. Many important decision makings such as direct marketing [MS96] are
in the form of two-target recommendation. We model the sales distribution of
the two target items using the Zipf law 2: the target item of cost $2 occurs five
times as frequently in the dataset as the target item of cost $10. Therefore, the
higher the cost, the fewer the sales. The price generation and selection for target
items are similar to those for non-target items. In dataset II, there are 10 target
items, numbered from 1 to 10. The cost of target item i is Cost(i) = 10 × i.
Unlike dataset I, the frequency of target items follows the normal distribution 3:
most customers buy target items with the cost around the mean. Figure 3(e) and
Figure 4(e) show the profit distribution of target sales in dataset I and dataset
II.

5.3 Results

Figure 3 shows that the result on dataset I. Figure 3(a) shows the gain of the six
recommenders (for kNN, k = 5 gives the best result) with two obvious trends:
PROF+MOA performs significantly better than other recommenders, and the
recommenders with MOA perform significantly better than their counterparts
without MOA. This clearly demonstrates the effectiveness of incorporating profit
and MOA into the search of recommenders. PROF+MOA achieves 76% gain
at minimum support 0.1%. This gain is encouraging because the saving MOA
adopted is conservative in profit estimation. Interestingly, the curve for PROF–
MOA shows that profit-based mining is not effective without MOA, and the
curves for CONF+MOA shows that MOA is not effective either without profit-
based mining.

To model that a customer buys and spends more at a more favorable price,
for each validating transaction, we compare the recommended price Pp with
the recorded price Pq of the target item. Recall that Pj = (1 + j × δ)Cost(i),
j = 1, . . . , 4, for item i. If q− p = 1 or q− p = 2, that is, the recommended price
Pp is 1 or 2 step lower than the recorded price Pq, we assume that the customer
doubles the purchase quantity in the transaction with the probability of 30%. We
denote this setting by (x = 2, y = 30%). If q−p = 3 or q−p = 4, we assume that
the customer triples the purchase quantity in the transaction with the probability
of 40%. We denote this setting by (x = 3, y = 40%). Figure 3(b) shows the
gain of all recommenders using MOA with the purchase quantity determined

2 http://alexia.lis.uiuc.edu/ standrfr/zipf.html
3 see http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm, for ex-

ample

by (x = 2, y = 30%) and (x = 3, y = 40%). With this more realistic shopping
behavior, the gain for all recommenders increases. PROF+MOA with the setting
(x = 3, y = 40%), denoted PROF(x=3,y=40%), achieves the encouraging gain
of 2.23 (at minimum support of 0.1%)!

Figure 3(c), which uses the legend in Figure 3(a), shows the hit rate of recom-
menders. PROF+MOA and CONF+MOA achieve the hit rate of 95%. For mini-
mum support of 0.08%, Figure 3(d) shows the hit rate at different profit ranges.
“Low”, “Medium”, and “High” represent the lower, middle, and higher 1/3 of
the maximum profit of a single recommendation. The legend from top to bottom
corresponds to left to right in the bar chart. For example, kNN has nearly 100%
hit rate at the “Low” range, but less than 10% at the “High” range. CONF+MOA
and CONF–MOA also have a similar trend. In contrast, PROF+MOA is “profit
smart” in maintaining a high hit rate in a high profit range. Though MPI picks
up the hit rate in a high profit range, the hit rate is still too low compared to
PROF+MOA. PROF–MOA is unstable for this dataset.

Figure 3(f), which uses the legend in Figure 3(a), shows the number of rules
in recommenders. kNN and MPI have no model, so no curve is shown. The num-
ber of rules prior to the cut-optimal phase (not shown here) is typically several
hundreds times the final number. This shows that the pruning method proposed
effectively improves the interpretability of recommenders. MOA generally in-
creases the size due to additional rules for alternative prices. Not surprisingly,
the minimum support has a major impact of the size. The execution time is
dominated by the step of generating association rules. In our experiments, we
adopted the multi-level association rules mining whose performance has been
studied elsewhere [SA95,HF95]. The time for constructing the covering tree from
generated association rules and for the bottom-up traversal is insignificant.

Figure 4 shows the result on dataset II. This dataset has 40 item/price pairs
for recommendation because each target item has 4 prices. Therefore, the random
hit rate is 1/40, which is more challenging than dataset I. Despite the difference
in cost distribution and a lower hit rate, the result is consistent with that of
dataset I, that is, supports the effectiveness of profit-based mining and MOA.

We also modified kNN to recommend the item/price of the most profit in
the k nearest neighbors. This is a post-processing approach because the profit is
considered only after the k nearest neighbors are determined. For dataset I, the
gain increases by about 2%, and for dataset II, the gain decreases by about 5%
(not shown in the figure). Thus, the post-processing does not improve much.

In summary, the experiments confirm our goals set at the beginning of the
section.

6 Related work

[MS96] considers the customer value while training a neural network. As dis-
cussed in Introduction, neural network does not scale up for sparse data and
large databases, does not easily incorporate domain knowledge, and does not
produce an understandable model. [BSVW99] considered the problem of stock-

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

G
a
in

MinSupp

PROF+MOA
CONF+MOA
PROF-MOA
CONF-MOA

KNN=5
MPI

(a)

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

G
a
in

MinSupp

PROF(x=3,y=40%)
CONF(x=3,y=40%)

KNN=5(x=3,y=40%)
MPI(x=3,y=40%)

PROF(x=2,y=30%)
CONF(x=2,y=30%)

KNN=5(x=2,y=30%)
MPI(x=2,y=30%)

(b)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H
it
 R

a
te

MinSupp

(c)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Low Median High

Hit Rate

PROF+MOA

CONF+MOA

PROF-MOA

CONF-MOA

KNN=5

MPI

(d)

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 0.5 1 1.5 2 2.5 3 3.5 4

T
ra

n
s
a
c
ti
o
n

Profit

(e)

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
in

a
l
S

iz
e

MinSupp

(f)

Fig. 3. The result for dataset I

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

G
a
in

MinSupp

PROF+MOA
CONF+MOA
PROF-MOA
CONF-MOA

KNN=5
MPI

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

G
a
in

MinSupp

PROF(x=3,y=40%)
CONF(x=3,y=40%)

KNN=5(x=3,y=40%)
MPI(x=3,y=40%)

PROF(x=2,y=30%)
CONF(x=2,y=30%)

KNN=5(x=2,y=30%)
MPI(x=2,y=30%)

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H
it
 R

a
te

MinSupp

(c)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Low Median High

Hit Rate

PROF+MOA

CONF+MOA

PROF-MOA

CONF-MOA

KNN=5

MPI

(d)

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30 35 40

T
ra

n
s
a
c
ti
o
n

Profit

(e)

0

500

1000

1500

2000

2500

3000

3500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
in

a
l
S

iz
e

MinSupp

(f)

Fig. 4. The result for dataset II

ing a profitable set of items in supermarket environments. In profit mining, we
recommend items and promotion codes on a per-customer basis, not on a per-
problem basis like in the stocking problem. Indeed, a solution to the stocking
problem does not give a clue on how to make such recommendations.

Our work is similar in motivation to the actionability of patterns [ST96] - the
ability of the pattern to suggest concrete and profitable action by the decision-
makers. Recently, Kleinberg el at presented the microeconomic view of data
mining [KPR98]. The microeconomic view approach is to maxx∈DΣi∈Cg(x, yi),
where g(x, yi) is the “utility” of a decision x on a given customer i. In profit
mining, we are to maxx∈Dg(x,C), where g is the total profit (a kind of utility) of
a recommender x on future customers, given the data about current customers C
which is a sample of the entire population. In the latter case, the model building
has to tell whether a pattern is too specific for the entire population.

Our work benefits from the scalability of mining (generalized) association
rules for large databases [AIS93,AS94,SA95,HF95]. However, association rules
neither address the economic value of transactions nor produce a global action
plan for decision making.

The cost-sensitive classification [P99] assumes an error metric of misclassifica-
tion and minimizes the error on new cases. No such error metric is given in profit
mining. Rather, we assume that customers spend some money on recommended
items at recommended prices, and we maximize the profit by recommending
right items and prices. It does not work to map each item/price recommenda-
tion to a class because the sales quantity, which obviously affects the profit,
is not factored. More fundamentally, the cost-sensitive classification follows the
trend of the (historical) data as correctly as possible (with respect to the given
error metric), whereas profit mining may depart from the trend, if necessary, to
increase the profit, as explained in Introduction.

Collaborative filtering [RV97] makes recommendation to a customer by ag-
gregating the “opinions” (such as rating about movies) of a few “advisors” who
share the same taste with the customer. The goal is to maximize the hit rate
of recommendation. For items of varied profit, maximizing profit is quite differ-
ent from maximizing hit rate. Collaborative filtering relies on carefully selected
“item endorsements” for similarity computation, and a good set of “advisors” to
offer opinions. Such data are not easy to obtain. The ability of recommending
prices, in addition to items, is another major difference between profit mining
and other recommender systems.

7 Conclusion

We presented a profit-based data mining called profit mining. The goal of profit
mining is to construct a recommender that recommends target items and pro-
motion codes on the basis of maximizing the profit of target sales on future
customers. We presented a scalable construction of recommenders to address
several important requirements in profit mining: pruning specific rules on a
profit-sensitive basis, dealing with the behavior of shopping on unavailability,

dealing with sparse and explosive search space, ensuring optimality and inter-
pretability of recommenders. Experiments on a wide range of data characteristics
show very encouraging results. The novelty of this research is extracting patterns
on a profit-sensitive basis and combining them into a global actionable plan for
decision making. This economic orientation and actionability will contribute to
wider and faster deployment of data mining technologies in real life applications.

References

[AIS93] R. Agrawal, T. Imilienski, and A. Swami. Mining association rules between
sets of items in large datasets. SIGMOD 1993, 207-216

[AMSTV96] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, A.I. Verkamo. Fast
discovery of association rules. Advances in knowledge discovery and data mining,
307-328, AAAI/MIT Press, 1996

[AS94] R. Agrawal and R. Srikant. Fast algorithm for mining association rules. VLDB
1994, 487-499

[BSVW99] T. Brijs, G. Swinnen, K. Vanhoof, and G. Wets. Using association rules for
product assortment decisions: a case study. KDD 1999, 254-260

[CP34] C.J. Clopper and E.S. Pearson. The use of confidence or Fiducial limits il-
lustrated in the case of the binomial. Biometrika, 26:4, Dec. 1934, 404-413. Also
available from http://www.jstor.org/journals/bio.html

[HF95] J. Han and Y. Fu. Discovery of multiple-level association rules from large data-
bases. VLDB 1995, 420-431

[KPR98] J. Kleinberg, C. Papadimitriou, and P. Raghavan. A microeconomic view of
data mining. Journal of Knowledge Discovery and Data Mining, 1998, vol.2, 311-324
(also http://www.cs.berkeley.edu/ christos/dm1.ps)

[MS96] B. Masand and G. P. Shapiro. A comparison of approaches for maximizing
business payoff of prediction models. KDD 1996, 195-201

[P99] P. Domingos. MetaCost: a general method for making classifiers cost-sensitive.
KDD 1999, 155-164

[Q93] J.R. Quinlan, C4.5: programs for machine learning, Morgan Kaufmann, 1993
[RV97] P. Resnick and H.R. Varian, Eds. CACM special issue on recommender systems.

Communications of the ACM, Vol. 40, No. 3, 56-58, 1997
[SA95] R. Srikant and R. Agrawal. Mining generalized association rules. VLDB 1995,

407- 419
[ST96] A. Silberschatz and A. Tuzhilin. What makes patterns interresting in knowledge

discovery systems. IEEE Transactions on Knowledge and Data Engineering, Vol. 8,
No. 6, 1996

[YP97] Y. Yang and J.O. Pederson. A comparative study on feature selection in text
categorization. International Conference on Machine Learning 1997

