
P-Tree: A B-Tree Index for Lists

Ke Wang
Beng Chin Ooi
Sam Yuan Sung

School of Computing
National University of Singapore

fwangk,ooibc,ssung@comp.nus.edu.sgg

Abstract

The high frequency of applications involving large, or-
dered, nested lists suggests that list is the “next most” nat-
ural data type after set. A list differs from a set through
positioning and nesting elements within the list. Directly
supporting such position-related operations will greatly im-
prove the performance of database systems targeting at the
above applications. Unlike other attributes, the position
will be changed by insertion and deletion within a list and
known methods are not appropriate for indexing the posi-
tion. We present an indexing structure, called the P-tree
(where P for position), to index a set of lists. The P-tree
generalizes the B-tree by dealing with a set of lists rather
than a set of records, while preserving all the properties of
the B-tree.

1. Introduction

Recently, there has been a great deal of interest in data
models and access supports for “bulk” data types. Per-
haps the most common such construct is the ordered, nested
list (see [1, 3, 9, 11, 13] for example). The need of
such lists arises from applications that store ordered re-
lations [12], time-series data, meteorological and astro-
nomical data streams, runs of experimental data, multi-
dimensional arrays, textual information, DNA sequences,
voices/sound/images/ video, etc. The ability of nesting and
positioning elements within a list is the first nature of such
data. A typical application would be where data can be di-
vided into sequenced groups, and members within a group
may be further subdivided into sequenced subgroups recur-
sively. Such sequencing and nesting can go on up to an
arbitrary depth. Queries and updates may be posed based
on the group position, subgroup position, and so on. The
position information can be specified either in the search
predicate or in the search result.

For example, the X chromosome in Figure 1 (as visual-
ized by the geneticist or biochemist) is divided into p and
q parts, each part is subdivided into regions called bands,
which are further subdivided, and so on, up to the resolution
of 4 levels. Therefore, each of p and q parts is a nested list of
depth 4. The numbers such as p11.23 along the “tube” are
called locus numbers and specify the nested position infor-
mation of bands on the genome. By using locus numbers,
for example, the biochemist can search all the genes that lie
within/overlap the region starting from 20q21.1 and ending
at 20q22.3, or split the band 20q21.1 into two refined bands
20q21.1.1 and 20q21.1.2, where the number 20 is the id of
the chromosome involved.

To summarize, the above types of applications require
the following access supports. (a) Insertion and deletion are
allowed to be performed at any position and nesting level
within a list, and the position and nesting should be cor-
rectly maintained after update. (b) The primary mode of
data processing is a list of oids at a time, not an oid or
a set of oids at a time, as in the case of the set data. (c)
The nesting depth of lists is dynamic, non-uniform, and not
necessarily known in advance. A practical index structure
should maintain the position and nesting of elements within
a list after update, support the sequential processing as a
first-class citizen operation, allow the nesting depth of lists
to dynamically grow and shrink without imposing a maxi-
mum depth.

Related work. The first possible approach to indexing
list data is to treat positions at each nesting level as one
attribute and apply multi-dimensional indexing methods to
such attributes, such as the R-tree [4], grid file [7], Buddy-
tree [10], the z-ordering [8]. However, this does not work
for the following reasons. First, none of these indexings
addresses the change of position and nesting within a list
caused by insertion or deletion. Second, these indexes as-
sume a fixed number of attributes being indexed, thus can-
not handle unbounded nesting depth. Third, they do not
support inserting and deleting one list at a time, nor list-

Figure 1. An ideogram of the human X chro-
mosome, from http:// wwwgdb.gdb.org/

specific operations such as length function of lists, delete or
insert a prefix or suffix, etc.

The second possible approach is applying the ordered B-
tree for a single flat list [2, 6] to each sublist at each nesting
level. The result is the repeated use of the ordered B-tree at
every layer of the multi-dimensional B-tree proposed in [5],
one layer for each nesting level. At the top layer, a B-tree
is built on list ids, which directs the search to respective or-
dered B-trees for level-1 lists, based on given list ids; these
ordered B-trees then direct the search, based on the given
position of level 1, to respective ordered B-trees of level-2
lists, which direct the search to ordered B-trees of level-3
lists, and so on. For lists that are deeply nested and have
skewed length, the whole index will become very unbal-
anced and the size of the database is no longer exponential
in the height of the index.

Main results. We propose a B-tree like indexing struc-
ture, called the P-tree (P for Position), to support list opera-
tions. The P-tree allows

� to search or update lists at any position and nesting
level, both directly and sequentially.

� to find the first leaf page of interest in logbN I/O page
accesses, where N is the total number of elements in
all lists and b is the branch factor of the P-tree.

� to restrict the change of the index to one root-to-leaf

path for search and two such paths for update of an
arbitrarily large portion of a list.

� nesting of lists to an arbitrary depth.

We will formally define the P-tree and its operations in the
subsequent sections. Essentially, the P-tree preserves all
the properties of the B-tree while providing the additional
capability for handling lists. We focus on search, insert
and delete operations. Other lists operations such as length
function, inserting and deleting a prefix or suffix, etc. can
be supported easily by the P-tree index.

2. The P-tree

2.1 The representation of lists

A list over some set O of oids is defined recursively as
follows:

� each oid in O is a list, called a terminal list;

� if l�� ���� ln are lists, �l�� ���� ln� is a list.

A list database is a collection of lists fl�� � � � � lng. Each li
in the list database is also called a level-0 list. Each level-0
list is uniquely identified by a list id of the form #i. Each list
li is a child of list �l�� � � � � ln�, or �l�� � � � � ln� is the parent of
li. The position of li in �l�� � � � � ln� is i. A level-i list is a
child of a level-(i-1) list. The transitivity of the parent/child
relationship induces the ancestor/descendant relationship in
the usual way. The nesting level of a level-i list is i. Note
that only level-0 lists are identified by ids; any descendant
list of a level-0 list is identified by the position of its an-
cestor lists (within their respective parent lists) plus the id
of the level-0 list. The nesting depth of a level-0 list is the
maximum nesting level of all descendant lists of the list.
The length of a list refers to the number of child lists in
the list. The size of a list refers to the total number of oids
nested at all levels in the list.

Suppose that a single letter denotes an oid. The level-0
list l � ��klmn���op��qr���stuv�� contains three level-1 lists
[klmn],[[op],[qr]],[stuv]; oids k,l,m,n are four level-2 lists;
[op] and [qr] are two level-2 lists; oids o,p,q,r are four level-
3 lists, and so on. The nesting depth of l is 3. The length of
l is 3 because it has three child lists. The size of l is 12.

2.2. The P -tree

An entry in an internal node of the P-tree has the form
� K�Pr �, where K is an entry key and Pr is the pointer
to a child of the node. An entry key K of length l�� �� has
the format of �i�c��c� � � � cl, where #i is the id of a level-0
list in the list database and ci �� �� is the position offset of
a level-i list, explained below. T �Pr� denotes the subtree

2

under branch Pr. Entry keys can have different length l so
that nesting depth of lists can grow and shrink dynamically
anywhere in a list.

Convention. In leaf nodes, we use list ids #i to mark the
beginning of level-0 lists and delimiters $i to mark the end
of level-i lists. We say that some number of $i's are followed
by some number of $j's if all these $i's end before any of
these $j's begin. When two entry keys K � �i�c �� � � �cl
and K� � �i��c��� � � � c

�

l� are tested for relationships ���
������� �� relationships, they are treated as a �l���-tuple
and a �l����-tuple ordered by the usual lexicographic order:
for two tuples �s�� � � � � sp� and �t�� � � � � tq�, �s�� � � � � sp� �
�t�� � � � � tq� when either:

� there exists an integer j such that sj � tj and for all
i � j, si � ti, or

� p � q and si � ti for � � i � p.

The P-tree. In the P-tree of degree �m�M �, the follow-
ing invariants hold for an internal node v with p entries �
K�� P r� �� � � � � � Kp� P rp �, where Ki � �i�ci� � � � c

i
li

:

P1 In the leaf level of subtree T �Pri�, where � � i �
p, exactly ci� $1's delimiters of list #i are followed
by exactly ci� $2's of list #i, which are followed by
exactly ci� $3's delimiters of list #i, and so on.

P2 �� � �	 � � � � � �p. (Note that entry keys Ki 's are
not necessarily in sorted order.)

P3 For all list ids #j in the subtree T �Pri�, if i � �, ��i�
�� � �j � �i; otherwise, �j � �i.

P4 If v is the root, p � 	; otherwise, m � p �M . Usually,
m is less than or equal to M�	.

P5 All leaf nodes are at the same level of the tree.

Intuitively, P1 implies that the nesting and position in-
formation below a node is maintained in the node; P2 and
P3 imply that id's of level-0 lists are indexed; P4 ensures
the utilization of storage space; and P5 ensures the balance
of tree height. All leaf nodes of the P-tree are chained to
facilitate forward and backward sequential scans.

Example 2.1 Consider two lists

l � ��abc��def ��ghij��, with id ��

and

l� � ��klmn���op��qr���stuv��, with id �	,

where each single letter represents an oid. l contains three
level-1 lists �abc�� �def �� �ghij�; �abc� contains three level-2
lists a� b� c, which are oids; and so on. By our convention at
the beginning of this subsection, l will be stored as

#1a$2b$2c$2$1d$2e$2f$2$1g$2h$2i$2j$2$1

in the leaf level of the P-tree.
To save space, we follow another convention: the first

oid in a leaf node is always ended by a delimiter; subse-
quently, an oid in the same leaf is ended by a delimiter only
if the delimiter is different from the latest stored delimiter
in the same leaf. However, this optimization is not visible to
search and update operations on the P-tree. Figure 2 shows
a P-tree of degree �	�
� for lists l and l�. In leaf node H,
only oid a is ended by $2 delimiter; the delimiters for b and
c can be inferred from a's. In leaf node J, f is the first oid
and is ended by its $2 delimiter; g is ended by $2 because
its delimiter is different from the latest $1.

We can verify that properties P1 through P5 are satisfied
by this tree. For example, K� � �	���	 in node C because
in the subtree under the first branch of node C, there is ex-
actly 1 $1 delimiter of list #2, followed by 2 $2 delimiters
of list #2, in that order; K� � �	���	 in node E because in
the leaf L there is 0 $1 delimiter (of list #2), followed by 2
$2 delimiter, 1 for k and 1 for l; K� � �	���	 in node G
because in the leaf P there is 1 $1 delimiter of list #1, fol-
lowed by 2 $2 delimiter, 1 for s and 1 for t. Note that in
node A the two entry keys of list #2 have different length,
i.e., 2 and 1. Similarly, in nodes C, F, G. �

3. Operators on entry keys

Before proceeding to search and update operations, we
define two operators � and � on entry keys. First, let us
discuss the representation of nested positions.

Position paths. The starting position of a search is spec-
ified by a position path of the form �i�s� � � � sn, where
si � � and n � �. The position path refers to the snth
level-n list within the sn��th level-(n-1) list within the sn��
level-(n-2) list, � � �, within the s�th level-1 list of level-0 list
with id #i. For example, the position path �i�
���	 refers
to the second level-3 list within the sixth level-2 list within
the fourth level-1 list in the list �i. We often use the entry
key format of this position path. For example, the entry key
format of position path �i�
���	 is �i�����, which is read
as: the search (or update) starts after the first level-3 list that
follows the fifth level-2 list that follows the third level-1 of
list #i. �i����� is called the search key of position path
�i�
���	, whose general definition is given below.

Search keys. The search key of a position path
�i�s� � � � sn is

�i��s� � �� � � � �sn�� � ����sn � ��.

To determine the current position within a list while
searching or updating the P-tree, we need two operators �
and ominus on entry keys or search keys K � �i�c� � � � cl
and K� � �i�c�� � � � c

�

l� .

3

A

B C

D E F G

H I J K L M N O P Q

#2.0.2 #2.3

#1.2.1 #2.0.2 #2.1.2 #2.2

#1.0.3 #1.1.2 #1.1.1 #1.0.3 #2.0.2 #2.1 #2.0.1 #2.0.1 #2.1#2.1.2

#1a$2bc $1d$2e f$2$1g$2 h$2ij $1#2k$2l m$2n$1 o$3p$2 q$3r$2 $1s$2t u$2v$1

Figure 2. The P-tree structure for list [[abc] [def] [ghij]] and list [[klmn] [[op] [qr]] [stuv]]

3.1. � operator

If l � l�, append 0's at the right end of K so that K has
length l�. We define

K �K� � �i�c� � � � cj����cj � c�j��c
�

j��� � � � c
�

l� ,

where c�j is the left-most non-zero position offset in K �.
That is, K � K� is the usual vector sum on position off-
sets but ignores all c's in K after the jth position offset.
The reason for ignoring such c's is due to the semantics of
an entry key stated in property P1: only the number of $i's
that follow the last $(i-1) of the same list id is recorded as
position offset ci. Note that K �K � has the same length as
K� and that � degenerates to ordinary + if lists are flat.

For example, �������	������ � ���
��, where 2 in
#1.1.0.2 is ignored because ����� is non-zero at nesting
level 1. The justification for this computation is shown in
Figure 3 (all $i delimiters refer to those of #1): if in sub-
tree T1 1 $1 delimiter is followed by 0 $2 delimiter which
is followed by 2 $3 delimiters, and if in subtree T2 3 $1
delimiters are followed by 1 $2 delimiter, then in the tree
formed by left subtree T1 and right subtree T2, 4 $1 de-
limiters are followed by 1 $2 delimiter. In this case, the $3
delimiters are ignored due to the convention in subsection
2.2.

By using operator�, we can accumulate position offsets
(or nesting information) on the left side of a path traversed.
To see this, let Ki � �i�ci�� � � � �c

i
li

, where � � i � p, be all
entry keys in an internal node v. We define K�

i as

K�

i � Ki, if i � � or ��i� �� �� �i,
K�

i � K�

i�� �Ki, otherwise.

T1 T2

$1 $3 $3 $1 ... $1 ... $1 ... $2

Figure 3. An illustration of �������	������ �
���
��

Intuitively, if K �

i � �i�a�� � � �aq, in the forest formed by
subtrees T �Pr��� � � � � T �Pri�, there are exactly a� $1 de-
limiters of list #i, followed by exactly a� $2 delimiters of
list #i, � � �, followed by exactly aq $d delimiters. In partic-
ular, the right-most K�

p gives such numbers for the whole
subtree with the root v. This gives rise to the following
computation of entry keys, which forms the basis for updat-
ing entry keys when performing insertion and deletion on
the P-tree. Let v be an internal node and vi be the ith child
of v. Let v�Ki denote the ith entry key in v. We define

� K�vi� � �i�c� � � � cl, if vi is a leaf node in which �i
is the last list id and if there are exactly c� $1 delim-
iters of list #i, followed by exactly c� $2 delimiters of
list #i, followed by exactly c� $3 delimiters of list #i,
� � �, followed by exactly cl $l delimiters of list #i.

� K�vi� � vi�K
�

p , if vi is an internal node and if Kp is
the last entry key in vi.

4

Example 3.1 Consider the tree in Figure 2. In node D,
K�

� � ����� and the leaf node H contains 0 $1 and ex-
actly 3 $2 delimiters of list #1 (2 $2's not shown); K �

� �
�����	 and node I contains exactly 1 $1 delimiter of list
#1 followed by exactly 2 $2 delimiters of list #1 (1 $2 not
shown); K�

� � ������ and node J contains exactly 1 $1
delimiter followed by exactly 1 $2 delimiter of list #1. In
node E, K�

� � ����� and K�

� � �	���	. In node B,
K�

� � ���	��, so in the subtree rooted at node D there are
2 $1 delimiters of list #1 followed by 1 $2 delimiters of list
#1; K�

� � �	���	, so in the subtree rooted at node E there
are 0 $1 delimiter of list #2, followed by 2 $2 delimiters of
list #2 (1 $2 not shown), and so on. The reader can verify
that all K�

i give correct numbers and orders of $ delimiters
in subtrees under their branches. �

3.2. The � operator

We now define operator � on entry keys or search keys
K � �i�c� � � � cl and K� � �i�c�� � � � c

�

l� . If l� � l, append
0's to the right end of K � so thatK � has length l. Let cj�c�j
be the first negative difference from the left; j � � if all
differences are non-negative. We define

K �K� � �i��c� � c��� � � � �cj�� � c�j����cj� � � � cl.

In other words, K � K � is the usual vector minus on po-
sition offsets but ignores those of K � starting from the first
negative difference. The reason for ignoring such position
offsets is the same as for �. K � K� has the same length
as K and degenerates to the ordinary � for flat lists. In
Figure 3 we have seen that �������	� ����� � ���
��.
Interestingly, ���
����������	 � �����. In general, we
have

Theorem 3.1 For entry keys or search keys K��K� of the
same list, �K� �K���K� � K�.

By Theorem 3.1, we can compute the exact position
within a leaf node for starting a sequential scan: suppose
that we have reached leaf node v and suppose that K� has
accumulated position offsets for list #i on the left side of v
when descending the tree. Let K� give the starting position
of the sequential scan in terms of the position offsets of #i
within v. Then K� � K� is equal to the search key of the
list being searched and thus is known. From Theorem 3.1,
K� is computed by �K� �K���K�.

4. Search

A search request is specified by a position path
�i�s� � � � sn and a positive integer l. This request will
search for the list specified by

�i�s� � � � sn���sn,
�i�s� � � � sn����sn � ��,

� � �,
�i�s� � � � sn����sn � l � ��,

in that order, where searching a list implies returning all
its descendent oids that are properly nested. Let len�P �
denote the length, i.e., the number of child lists, of the list
specified by a position path P . For the above request to
be valid, the following conditions should hold: (a) sn �
l � � � len��i�s� � � � sn���, and (b) for all j � n � �,
sj�� � len��i�s� � � � sj�.

Search(�i�s� � � � sn� l). As the first step, the operation
searches for the oldest ancestor containing list id #i. As-
sume that the node is found (otherwise, stop). Initialize the
variable X to �i��. X will be used to accumulate position
offsets of #i on the left side of the path traversed. The rest
of the search is guided by the search keyK of �i�s�� � � � �sn
and X . Let v��j denote the list id in entry key Kj in node
v. Initially, v is the root. In the following, operators �, �,
and K�

i are defined as in Section 3.
Step 1 (#i is not in internal node v). Visit non-leaf node

v. Let v have entries � K�� P r� �� � � � � � Kp� P rp �. If
#i is larger than the largest list id v��p, the list�i cannot be
found, stop. Assume �i � v��p. If #i is not contained in v,
find k such that v���k��� � �i � v��k, and replace v by
the child node under branch Prk and goto Step 1 (the non-
existing v��� is treated as the minimal). If #i is contained
in v, goto Step 2.

Step 2 (#i is in internal node v). If K � X � K �

p

(note that Kp is the last entry key in v), the list specified by
�i�s� � � � sn cannot be found, stop; otherwise, find k such
that X � v�K�

k�� � K � X � v�K�

k . If v���k � �� � �i,
X � X �K�

k��. Replace v by the child node under branch
Prk. If v is a leaf node, goto Step 3; otherwise, visit node
v and repeat Step 2.

Step 3 (leaf node v). Visit leaf node v. Let K � X �
�i�a� � � �an. To locate the first oid to be searched, scan v
to the right a� $1 delimiter of list �i, then a� $2 delimiters
of list �i, � � �, and an $n delimiters of list �i. If there is
a shortage or lack of these delimiters in v, the list cannot
be found completely, stop. Assume that all these delimiters
are found in v. Then starting from the last delimiter $ found,
scan oids to the right, possible on neighboring leaf nodes,
until l $n delimiters of list�i are found before encountering
any $j delimiter of �i for j � n. If there is a shortage or
lack of these markers, the list cannot be found completely.

Example 4.1 ConsiderSearch��	�	�	��� 	� against the P-
tree in Figure 2, which searches for the lists specified by
#2.2.2.1 and #2.2.2.2, namely q and r. The search key of
#2.2.2.1 isK � �	������ and X � �	��. At the root A, #2
is found, X �K�

� � K� � �	���	, and X �K�

� � �	�.
Since X � K�

� � K � X � K�

� , node C is visited and

5

X is changed to #2.0.2. At node C, X � K�

� � �	���	,
so node F is visited and X remains unchanged. At node
F, X � K�

� � �	��, X � K�

� � �	����, so leaf node
N is visited and X � �	��. This value of X tells that
1 $1 of #2 is indexed on the left side of node N. Finally,
K�X � �	������means that the scan starts at the first oid
after the first $2 in node N. Since l � 	, we scan to the right
2 level-3 lists, which requires to access node O. This gives
exactly the oids we want, namely, q and r. �

5. Insertion

5.1. Insert into an existing list

An inser-
tion request is specified by Insertion(�i�s� � � � sn� IN). It
inserts a list contained in IN right before the list specified
by �i�s� � � � sn. �i must be a list id existing in the tree. IN
is a sequence of oids such that level-j lists in IN are ended
by $(n+j-1). The insertion can be made at any nesting level
and may increase the nesting depth of list #i.

Example 5.1 Let us insert the list �X�Y �Z�W �� imme-
diately before oid l in ��klmn���op��qr���stuv�� in Fig-
ure 2. The user expects the resulting list to be
��kX�Y �Z�W �lmn���op��qr���stuv��. The insertion is done
by Insertion��	���	� IN �, where IN should contain
X�	Y ��	Z�	W��	. The operation first searches for the
insertion position using the search key K � �	����. It will
follow the path A,B,E,L. On visiting node L, X � �	��, so
K�X � �	����. Then X�	Y ��	Z�	W��	 is inserted
after the first oid k of list #2. To maintain property P1, K�

in nodes E,B and K� in node A should be changed to #2.0.6
(note that there is an omitted $2 following l), provided that
no overflow occurs in node L. �

An important point to note is that only one root-to-leaf
path will be affected by insertion of a list, which is the path
that leads to the insertion point, such as path A,B,E,L in the
above example.

An insertion may cause a leaf node to overflow. If so,
new leaf nodes are created and oids are redistributed among
the overflowing node and new nodes. Entries for new nodes
are then inserted into the parent of the overflowing node,
which may cause the parent to overflow, and so on. An in-
sertion therefore may propagate upwards until at some level
no overflow occurs. To be precise, for a P-tree of degree
�m�M �, insertion into an internal node causes an overflow
if the number of entries in the node after insertion is more
than M . Usually, a degree �m�M � such that m � M�	
is used. In the following, we consider only the propagation
phase because the search phase is the same as in Section 4.

Assume that, for each branch Prk of node v that is fol-
lowed during the search phase, the tuple � v� k � has

been pushed onto a global stack S. Let u be the node that
overflows, initially being a leaf node, and let v�� � � � � vp be
new nodes created. Let p � � if u does not overflow.
To maintain P4, each new internal node, except the root,
should be filled up by some specified number of entries
between m and M , where �m�M � is the degree of the P-
tree. Propagate add�u� v�� � � � � vp� below inserts entries
for new nodes v�� � � � � vp into the parent of u and propa-
gates insertion upwards.

Propagate add�u� v�� � � � � vp�:
Case 1: p � �, the insertion into u does not cause an

overflow. � v� k �� pop�S�. Note that u is the kth child
of v. If K�u� (as defined in Section 3), is changed by the
insertion into u, update the kth entry of v by K�u�. Propa-
gate repeatedly such changes to higher levels until it reaches
some node v that is either the root or K�v� is not changed.

Case 2: p � �, the insertion into u causes an over-
flow. � v� k �� pop�S�. Update the kth entry of v by
K�u�. Assume that new nodes v�� � � � � vp have addresses
Pr�� � � � � P rp. Insert new entries � K�v��� P r� �� � � � � �
K�vp�� P rp � into node v right after the kth entry of v. Let
new nodes u�� � � � � uq be created at the level of v, possibly
none. Call Propagate add�v� u�� � � � � uq�.

The height of the tree increases when an insertion into
the root causes to pop the empty global stack S. In this case,
� new root� � � is first pushed onto S before popping the
stack, where new root is the new root with only one pointer
pointing to the current root of the tree. The rest is handled
as usual. This may happen a few times, in which case the
height of the tree increases a few levels. On the contrast, an
insertion in B-tree index can increase the height of the tree
by at most 1.

5.2. Insert a fresh list

Inserting a list whose id is not in the tree is fairly simi-
lar to inserting child lists into an existing list, with the fol-
lowing constraints and differences. (a) In the position path
�i�s� � � � sn, si � � for � � i � n, and #i must not be
found in the search phase. In particular, in the search phase,
if K � X � K�

p , where Kp is the last entry key in a vis-
ited node, the branch Prp will be followed, rather than stop
like in the search. (b) In the leaf node visited the new list
is inserted between the two lists whose ids are closest to #i.
The detail is omitted since it is similar to the insertion into
an existing list.

6. Deletion

6.1. Delete child lists from a list

A deletion request is specified by
Deletion(�i�s�� � � � sn� l). It deletes all lists specified by

6

<v,k> on left path

The left limit of deletion The right limit of deletion

<v’,k’> on right path

Figure 4. An illustration of deletion

�i�s�� � � � sk���sn,
�i�s�� � � � sk����sn � ��,

�i�s�� � � � sk����sn � l � ��.

To avoid a sequential scan of the nodes to be deleted
at each level of the tree, the left and right limits of the
deletion are searched by descending along two root-to-leaf
paths. Let K and K� be the search keys for position paths
�i�s�� � � � sn���sn and �i�s�� � � � sn����sn�l�. The search
along the left path is guided by K, and the search along
the right path by K�. At each level, if branches v�Prk and
v��P rk� are followed, the tuple � v� v�� k� k� � is pushed
onto the global stack S. Intuitively,� v� k � and� v �� k� �
encloses all entries (for internal nodes) or oids (for leaf
nodes) that will be deleted at this level, shown by the darked
band in Figure 4.

Example 6.1 In Figure 2, consider Deletion��	��� 	� to
delete the first and second level-1 lists in list #2. The left
limit is specified by position path �	�� and the right limit
by position path �	�. The corresponding search keys are
K � �	�� and K� � �	�	. At the root A, due to K � K�

�

and K� � K�

� , the left path leads to B and the right path
leads to C. X � �	��,X � � �	���	, and � A�A� �� 	 � is
pushed onto the global stack S. In node B, K � K�

� , so the
left path leads to node E andX remains unchanged; in node
C,X ��K�

� � K� � X ��K�

� , so the right path leads to node
G andX � changes to �	���	. � B�C� 	� 	� is pushed onto
the global stack S. Then nodes E and G are visited. BothX
and X � are unchanged and � E�G� 	� � � is pushed onto
the global stack S. NowK�X � �	����	�� � �	�� and
K��X � � �	�	��	���	 � �	��. Therefore, in leaf L the
first oid following 0 $1 and 0 $2 of #2, i.e., k, is the left limit
of the deletion; in leaf P, the first oid following 1 $1 and 0
$2 of #2, i.e., s, is the right limit of the deletion. All oids
from the left limit up to the oid proceeding the right limit,
that is, klmn��op�	qr�	��, are deleted. An underflow of
leaf nodes will cause deletion of nodes from higher levels
of the tree. �

Given a deletion request Deletion��i�s� � � � sn� l�,
let K and K� be the search keys for position path
�i�s� � � � sn���sn and position path�i�s� � � � sn����sn�l�.
Let X � X � � �i�� and let S be the empty global stack.
The deletion has two phases.

Search phase. Traverse down the tree to the left and right
limits of the deletion, guided respectively by K and K �, as
in the search operation. At each level, if branches v�Prk
and v��P rk� are followed, push � v� v�� k� k� � onto the
global stack S. Assume that eventually leaf nodes v� v�, not
necessarily different, are reached. Let k be the position of
the oid proceeding the last $ located by K � X in v, and ,
let k� be the position of the oid proceeding the last $ located
byK��X � in v�. The deletion enters the propagation phase
by call Propagate del�v� v�� k� k� � ��.

Propagation phase. Propagate del�v� v�� i� i�� will
delete from the ith entry or oid of v to and including the i �th
entry or oid of v�, as shown by the darked band in Figure 4,
and propagate deletion upward. However, the deletion does
not need to access all nodes deleted. In Figure 4 the nodes
in the darked band are deleted by making the left and right
ends of the band two consecutive children of a parent node,
without actually accessing nodes within the band. Let K�v�
be defined as in Section 3.

Propagate del�v� v�� i� i��: First, we assume that v and
v� are distinct nodes. v� � v and v� � v�. �
v� v�� i� i� �� pop�S�. Note that v and v� are parents of
v� and v� respectively. Delete all entries or oids starting
from and including the ith entry or oid in v, and delete all
entries or oids up to and including the i �th entry or oid in v �.
Let us consider the following three cases of v� and v�.

Case 1: Neither v� nor v� underflows. No merging or
redistribution is needed. Modify the entry key v�Ki by
K�v�� and modify the entry key v��Ki� by K�v��. Call
Propagate del�v� v�� i� �� i� � ��, where i � � and i� � �
are chosen so that the ith entry in v and the i�th entry in v�

are not deleted. The same applies to other cases below.
Case 2: Some of v� and v� underflows but their merging

does not. If the merging of v� and v� does not overflow,
merge v� into v�, modify the entry key v�Ki by K�v��, and
callPropagate del�v� v�� i��� i��. If the merging of v� and
v� overflows, redistribute entries in v� and v� evenly, mod-
ify the entry key v�Ki by K�v�� and modify the entry key
v��Ki� by K�v��, and call Propagate del�v� v�� i� �� i� �
��.

Case 3: The merging of v� and v� underflows. This case
may occur because oids or entries may be deleted from both
v� and v�. Merge or redistribute v� and v� with one of their
neighbor nodes. We omit the detail since there is no imple-
mentation difficulty here.

Now let us consider the case that v and v� are identi-
cal in the call Propagate del�v� v�� i� i��. Within the call,
v� � v�. Delete the ith entry or oid up to and includ-

7

ing the i�th entry or oid of v�. If v� does not underflow,
� v� v�� i� i� �� pop�S� (note that v � v� and i � i�)
and propagate the change of K�v�� upward as in Case 1 of
insertion operation. If v� underflows, merge or redistribute
v� with one of its neighbor nodes as in Case 3 above. If v�
has no such a neighbor, v� is returned as the root of the new
tree.

6.2. Delete a level-0 list

We treat deleting a level-0 list as the case of deleting
all child lists from the list, provided that the list id #i for
an empty list is always deleted. This requires to know the
length of the list beforehand.

7. B-tree as a special P-tree

It is very interesting to note that the P-tree is in fact a gen-
eralization of the traditional B-tree. A record in a relational
database can be considered as a flat list of length 1 with the
record id being the list id. In this special case, a node en-
try of the P-tree has the form � �i��� P r �, where id #i
is a record id. Property P1 states that a record is indexed
within the subtree rooted by a node containing the record's
id, which holds trivially for the B-tree. Properties P1 and P2
become �� � �	 � � � � � �p and ��i� �� � �j � �i,
exactly the requirement of the B-tree on entry keys.

Since a record id appears in at most one entry in an in-
ternal node, for the search operation in Section 4, K�

i � Ki

for every entry key Ki, and X is never changed because
v���k � �� � �i is never true in Step 2. Therefore,
X�v�K�

k�� � K � X�v�K�

k in Step 2 can be replaced by
v�Kk�� � K � v�Kk, andK�X in Step 3 can be replaced
byK. Then it is not difficult to see that the search operation
for the P-tree becomes exactly the search operation for the
B-tree. The insertion and deletion in the B-tree are special
cases of inserting a new length-1 list and deleting a whole
length-1 list in the P-tree. This has shown that the P-tree
is a natural generalization of the B-tree for handling nested
lists.

8. Conclusion

We proposed an index scheme, the P-tree, to support ef-
ficient processing of position-related queries and updates on
list data. The P-tree index naturally generalizes the conven-
tional B-tree that index flat and length-1 lists, i.e., records,
to index nested and variable length lists, i.e., arrays of dy-
namic cardinality and dynamic dimensions. An alternative
view is that while the B-tree provides an index on the inter-
object relationship, the P-tree provides an index on both the
inter-object relationship (sorted by id's of level-0 lists) the
intra-object relationship (sorted by position of level-i lists).

Acknowledgements. We thank Limsoon Wong for help-
ful discussions on list data and its applications.

References

[1] F. Bancilhon, S. Cluet, C. Delobel. A query language
for the O2 object-oriented database system. DBPL 1989

[2] M.J. Carey, D.J. DeWitt, J.E. Richardson, E.J. Shekita.
Object and file management in the EXODUS extensible
database system. VLDB 1986, pp. 91-100

[3] M.J. Carey, D.J. DeWitt, S.L. Vandengerg. A data
model and query language for EXODUS. SIGMOD 1988

[4] A. Guttman. R-trees: a dynamic index structure for spa-
tial searching. SIGMOD 1984, pp. 47-57

[5] H-P. Kriegel. Performance comparison of index struc-
tures for multi-key retrieval. SIGMOD 1984, pp. 186-196

[6] D.E. Knuth. The art of computer programming. Volume
3/Sorting and searching, 1973, Addison-Wesley publish-
ing company

[7] J. Nievergelt, H. Hinterherger, K.C. Sevcik. The grid
file: an adaptable, symmetric multi-key file structure.
ACM Trans. on Database Systems, Vol. 9, No. 1, 38-71,
1984

[8] J. Orenstein. Spatial query processing in an object-
oriented data system. SIGMOD 1986, 326-336

[9] J. Richardson. Supporting lists in a data model. VLDB
1992, pp. 127-138

[10] B. Seeger and H-P. Kriegel. The buddy-tree: an ef-
ficient and robust access method for spatial data base
systems. VLDB 1990, pp. 59 0-601.

[11] P. Seshadri, M. Livny, R. Ramakrishnan. Sequence
query processing. SIGMOD 1994, pp. 430-441

[12] M. Stonebraker, H. Stettner, N. Lynn, J. Kalash,
and A. Guttman. Document processing in a relational
database system. ACM Tr ans. Office Info. Sys., 1, 2,
April 1983

[13] B. Subramanian, S.B. Zdonik, T. W. Leung, and S.
L. Vandenberg. Ordered types in the AQUA data model.
DBPL, New York, August 1993, pp. 115-135

8

