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Abstract

Direct marketing is a modern business activity with an aim to maximize the profit generated from market-

ing to a selected group of customers. A key to direct marketing is to select a right subset of customers so as

to maximize the profit return while minimizing the cost. Achieving this goal is difficult due to the extremely

imbalanced data and the inverse correlation between the probability that a customer responds and the dollar

amount generated by a response. We present a solution to this problem based on a creative use of associa-

tion rules. Association rule mining searches forall rules above an interestingness threshold, as opposed to

somerules in a heuristic-based search. Promising association rules are then selected based on the observed

value of the customers they summarize. Selected association rules are used to build a model for predicting

the value of a future customer. On the challenging KDD-CUP-98 dataset, this approach generates 41%

more profit than the KDD-CUP winner and 35% more profit than the best result published thereafter, with

57.7% recall on responders and 78.0% recall on non-responders. The average profit per mail is 3.3 times

that of the KDD-CUP winner.

∗Research was supported in part by research grants from the Natural Science and Engineering Research Council of Canada
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1 Introduction

Direct marketing makes it possible to offer goods or services or transmit messages to a specific, targeted

segment of the population by mail, telephone, email or other direct means1. Direct marketing is one of

the most effective and measurable methods of marketing available. For example, retail industries need

to identify buyers of certain products; banks and insurance companies need to promote loan insurance

products to customers; and fundraising organizations need to identify potential donors. Direct marketing

campaigns are only as successful as the mailing list used. A good mailing list will target only the consumers

that are potential or valuable customers. Typically, direct marketing models select addresses by predicting

future response behavior. In management and marketing science, Stochastic models are used to describe the

response behavior of customers, including binary choice models (Bult and Wansbeek, 1995), latent class

models (Desarbo and Ramaswamy, 1994), neural networks (Levin and Zahavi, 1996, Potharst et al., 2002)

and Markov chains (Bitran and Mondschein, 1996).

In this paper, we propose a data mining method for determining the mailing list. Available is ahis-

torical database containing information about previous mailing campaigns, including whether a customer

responded and the dollar amount collected if responded. The task is to build a model to predictcurrent

customers who are likely to respond. The goal is to maximize the sum of net profit,Σ(dollar amount −
mailing cost), over the contacted customers. We choose the KDD-CUP-98 dataset (KDD98, 1998a) as the

case study. This dataset was collected from the result of the 1997 Paralyzed Veterans of America fundrais-

ing mailing campaign (more details in Section 2) and only 5% of records are responders. Thus, simply

classifying all customers into non-responders would give 95% accuracy, but this does not generate profit.

A principled method is ranking customers by the estimated probability to respond and selecting some top

portion of the ranked list (Ling and Li, 1998, Masand and Shapiro, 1996). For example, if the top 5% of

the ranked list contains 30% of all responders, the lift model gives the lift of30/5 = 6 (Ling and Li, 1998,

Masand and Shapiro, 1996). A significant drawback of this approach is that the actual customer value,

e.g., the donation amount in the example of fundraising, is ignored in the ranking, or it requires a uniform

customer value for all customers. As pointed out in (KDD98, 1998b) for the KDD-CUP-98 task, there is

an inverse correlation between the likelihood to buy (or donate) and the dollar amount to spend (or donate).
1http://www.commerce-database.com/directmarketing.htm
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This inverse correlation reflects the general trend that the more dollar amount is involved, the more cautious

the buyer (or donor) is in making a purchase (or donation) decision. As a result, a probability based ranking

tends to rank down, rather than rank up, valuable customers.

The realization that a cost-sensitive treatment is required in applications like direct marketing has led to a

substantial amount of research. (Domingos, 1999) proposed the MetaCost framework for adapting accuracy-

based classification to cost-sensitive learning by incorporating acost matrixC(i, j) for misclassifying true

classj into classi. (Zadrozny and Elkan, 2001) examined the more general case where thebenefitB(i, j, x)

depends not only on the classes involved but also on the individual customersx. For a given customerx, the

“optimal prediction” is the classi that leads to the minimum expected cost

ΣjP (j|x)C(i, j)

or the maximum expected benefit

ΣjP (j|x)B(i, j, x).

Both methods require to estimate the conditional class probabilityP (j|x). In this phase, since only the

frequency information aboutx, not the customer value ofx, is examined, valuable customers, who tend to

be infrequent because of the “inverse correlation”, are likely to be ignored. The customer value is factored

only at the end via the factorB(i, j, x).

In this paper, we propose a novel approach to address the above issues. First, we exploit association

rules (Agrawal et al., 1993, Agrawal and Srikant, 1994) of the formX → respond to extract features for

responders, whereX is a set of items that is correlated with the “respond” class. Unlike traditional rule

induction (Michalski, 1969, Quinlan, 1983, Clark and Niblett, 1989) that examinesone variable at a time,

association rules evaluatea combination of variables (i.e.,X) at a time, therefore, better represent correlated

features. We select a small subset of association rules to identify potential customers in the current campaign.

We address two key issues, namely, push the customer value in selecting association rules, and maximize

profitability over the customers (instead of historical ones). On the challenging KDD-CUP-98 task, which

has 5% responders and 95% non-responders, this method generated 41% more profit than the winner of the

competition and 35% more profit than the best known result after the competition, and the average profit

per mail is 3.3 times that of the winner. This method identifies correctly 57.7% of responders and 78% of

non-responders, thus, also provides a competitive solution to the cost-sensitive classification.

The motivation of association rules in the market basket analysis has led to several attempts to extend

and apply such rules in business environments. (Savasere et al., 1998) considers negative association rules

that tell what items a customer will not likely buy given that he/she buys a certain set of other items. (Tan
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et al., 2000) considers indirect association rules where the association of two items is conditioned on the

presence of some set of other items. Such associations are purely count or occurrence based and have no

direct relationships with the “inverse correlation” considered here that addresses profit. We focus onusing

association rules based on customer value, whereas these works focus onfindingassociation rules based on

count information. This distinction is substantial because association rules themselves do not tell how to

maximize an objective function, especially in the presence of the “inverse correlation”. Our work differs

from the product recommendation in (Wang et al., 2002) and item selection in (Brijs et al., 1999, Wang and

Su, 2002) in that we identify valuable customers instead of items or products.

The rest of this paper is organized as follows. In Section 2, we examine the challenges in the KDD-

CUP-98 dataset and outline our approach. In Section 3, we present the detailed algorithm. We evaluate our

method using the KDD-CUP-98 task in Section 4. Finally, we conclude the paper.

2 Challenges and Our Proposals

The KDD-CUP-98 dataset (KDD98, 1998a) contains 191,779 records about individuals contacted in the

1997 mailing campaign. Each record is described by 479 non-target variables and two target variables

indicating the “respond”/“notrespond” classes and the actual donation in dollars. About 5% of records

are “respond” records and the rest are “notrespond” records. The dataset has been pre-split into 50%

for learning and 50% for validation. The validation set is reserved for evaluation and is held out from

the learning phase. The competition task is to build a prediction model of the donation amount using the

learning set. The participants are contested onΣ(actual donation−$0.68) over the validation records with

predicted donation greater than the mailing cost $0.68.

We chose this fundraising task because it shares several key requirements with direct marketing. Both

activities are only as successful as the mailing list used, and require identifying a subset of ”valuable”

individuals to maximize some objective function (e.g., sales, customer services, donation amount). The

fundraising dataset contains offerings and responses in previous campaigns, similar to those kept in a typ-

ical direct marketing campaign. The target variable “actual donation” corresponds to the sales value on a

contacted customer, and $0.68 corresponds to the cost associated with contacting a customer. In fact, this

problem is more general than the direct marketing considered in (Ling and Li, 1998) in that it allows to

model a different profitability for different customers, just as a different sale could yield a different sales

profit due to the difference in products, quantity and promotion. However, this generalization raises some

new issues as explained below.
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2.1 The challenges

This real life dataset presents two challenges.

Challenge 1. Quoted from (KDD98, 1998b), “there is often an inverse correlation between the likelihood

to respond and the dollar amount of the gift”. This inverse correlation could exist in the offerings to the

same customer or different customers. For the same customer, a standard handling is avoiding multiple

offerings with a certain time period. For different customers, it means that there are many “small customers”

making small purchases and few “big customers” making big purchases. We focus on this type of inverse

correlation. A pure probability based ranking tends to favor “small customers” because of higher likelihood

to respond, and ignore “big customers”. Previous researches addressed this issue in two steps: obtain the

probability estimation from a standard classification model such as decision tree (Ling and Li, 1998, Masand

and Shapiro, 1996), bagging (Domingos, 1999) and smoothing (Zadrozny and Elkan, 2001), and re-rank the

probability based ranking by taking into account the customer value (Masand and Shapiro, 1996, Zadrozny

and Elkan, 2001). The disadvantage of this approach is that the customer value is ignored in the first step.

Challenge 2. The high dimensionality and the scare target population present a significant challenge for

extracting the features of the “respond” class. The dataset is very high in dimensionality, i.e., 481 variables,

and very scare in the “respond” class population, only 5% of the dataset. Since any subset of variables can

be a feature for distinguishing the “respond” class from “notrespond” class, searching for such features is

similar to searching for a needle from a haystack. The “one attribute at a time” gain criterion (Quinlan, 1993)

does not search for correlated variables as features. Though, the independence assumption of the Naive

Bayesian classifier is quite robust to classification, which only depends on the maximum class probability

(Domingos and Pazzani, 1996), it suffers from distortion if used for probability estimation where non-

maximum class probabilities are also used for ranking customers. Our study on the KDD-CUP-98 dataset

shows that taking into account this correlation yields a significantly higher profit.

2.2 The proposed approach

We address these challenges in two steps.

In the first step, we propose the notion offocused association rulesto focus on the features that are typical

of the “respond” class and not typical of the “notrespond” class. A focused association rule has the form

X → respond, whereX is a set of items for non-target variables, such thatX occursfrequentlyin the

“respond” class and each item inX occursinfrequentlyin the “not respond” class. A formal definition will

be given in Section 3.1. A focused association rule makes use of only items that have higher frequency
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and correlation in the “respond” class. The search space is determined by “respond” records and items that

occur infrequently in the “notrespond”. This prunes all “notrespond” records (to deal with the scarcity

of the target class) and all items that occur frequently in the “notrespond” class (to deal with the high

dimensionality).

In the second step, we convert focused association rules into a model for predicting the donation amount

for a given customer. This involves determining how to cover customers using rules, pruning over-fitting

rules that do not generalize to the whole population, and estimating the donation amount for rules, therefore,

for customers. In the presence of Challenge 1, innovative solutions are needed because statistically insignif-

icant rules could generate a significant profit. Our approach is to push the customer value into the model

building/pruning so that the estimated profit over the whole population is maximized.

In the rest of the paper, the following terms are interchangeable: customer and record, responder and

“respond” record, non-responder and “notrespond” record.

3 Algorithm

Historical records are stored in a relational table ofm non-target variablesA1, . . . , Am and two target

variablesClass andV . Class takes one of the “respond”/“notrespond” classes as the value.V represents

a continuous donation amount. Given a set of records of this format, our task is to build a model for

predicting the donation profit over current customers represented by the validation set in the KDD-CUP-98

dataset. Precisely, we want to maximizeΣ(V −$0.68) over the current customers who are predicted to have

a donation greater than the mailing cost $0.68. An implicit assumption is that current customers follow the

same class and donation distribution as that of historical records. Since the donation amountV for a current

customer is not known until the customer responds, the algorithm is evaluated using a holdout subset from

the historical data, i.e., the validation set.

Algorithm 1 outlines the algorithm for building the model. There are three main steps:Rule Generating,

Model Building, andModel Pruning. The Rule Generating step finds a set of good rules that capture features

of responders. The Model Building step combines such rules into a prediction model for donation amount.

The Model Pruning step prunes over-fitting rules that do not generalize to the whole population. We discuss

these steps in detail.
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Algorithm 1 The overall algorithm
Input : The learning set, minimum support and maximum support

Output : A model for predicting the donation amount

1: Rule Generating;

2: Model Building;

3: Model Pruning;

3.1 Step 1: Rule Generating

We discretize continuous non-target variables using the utility at http://www.sgi.com/tech/mlc before

generating rules. After discretization, each valueaij is either a categorical value or an interval. We are

interested in “respond” rules of the form

Ai1 = ai1 , . . . , Aik = aik → respond

that are potentially useful for discriminating responders from non-responders. The generality of a rule is

defined by the percentage of the records that contain all the equalities on the left-hand side of the rule,

calledsupport. Despite many efficient algorithms for mining association rules (see (Agrawal et al., 1993,

1996, Agrawal and Srikant, 1994), for example), we encountered a significant difficulty in this step: to

find “respond” rules, we have to set the minimum support well below 5%, i.e., the percentage of “respond”

records in the dataset; however, with 481 variables and 95% records in the “notrespond” class, the number

of “not respond” rules satisfying the minimum support is so large that finding “respond” rules is similar to

searching a needle from a haystack. Sampling techniques cannot reduce the “width” of records that is the

real curse behind the long running time. This situation of extremely high dimensionality and extremely low

target proportion also occurs in computational biology (Rigoutsos and Floratos, 1998), network intrusion

detection and fraud detection (Joshi et al., 2001). We consider a simple but efficient solution to this problem

by focusing on items thatoccur frequently in “respond” records but occur infrequently in “notrespond”

records. Let Dr be the set of “respond” records and letDn be the set of “notrespond” records.

Definition 3.1 (Focused association rules)Thesupportof itemAi = ai in Dr or Dn is the percentage of

the records inDr or Dn that containAi = ai. Thesupportof a rule inDr or Dn is the percentage of the

records inDr or Dn that contain all the items in the rule. Given a minimum support forDr and a maximum

support forDn, an itemAi = ai is focusedif its support inDn is not more than the maximum support and

its support inDr is not less than the minimum support. A “respond” rule is afocused association rule (FAR)

if it contains only focused items and its support inDr is not less than the minimum support.
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Algorithm 2 Rule Generating
Input : Dr, Dn, the minimum support forDr and the maximum support forDn

Output : FARs

1: /* compute the support inDn for items inDr */

2: for all tuplet in Dr do

3: for all item in t do

4: create a counter for the item if not yet created;

5: end for;

6: end for;

7: for all tuplet in Dn do

8: for all item in t do

9: increment the counter for the item if found;

10: end for;

11: end for;

12: /* remove the items fromDr whose support inDn exceeds the maximum support */

13: for all tuplet in Dr do

14: remove the items fromt whose support inDn exceeds the maximum support;

15: end for;

16: /* find frequent “respond” rules inDr */

17: find “respond” rules above the minimum support inDr such as in (Agrawal et al., 1993);

In words, a FAR occurs frequently inDr (as per the minimum support) but none of its items occurs

frequently inDn (as per the maximum support). Notice that FARs exclude the “respond” rules that as

a whole do not occur frequently inDn but some of its items does. This “incompleteness” trades for the

data reduction achieved by pruning all non-focused items. For the KDD-CUP-98 dataset, this prunes all

“not respond” records, which accounts for 95% of the dataset, and all items that occur frequently inDn,

which accounts for 40%-60% of all items. In fact, for our purpose, the completeness of rules is not a concern,

but finding some rules that can influence the final profit is. Our experiments show that the notion of FARs

works exactly towards this goal.

Algorithm 2 finds FARs for given minimum support inDr and maximum support inDn. First, it com-

putes the support inDn for the items inDr (line 1-11) and removes those items fromDr for which this

support exceeds the maximum support (line 12-15). Then, it applies any association rule mining algorithm
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Table 1. (a) Before applying maximum support. (b) After applying maximum support

Dr

TID A B C V

p1 a1 b1 c3 $30.68

p2 a1 b2 c3 $50.68

p3 a1 b2 c1 $40.68

p4 a2 b2 c2 $20.68

p5 a2 b1 c3 $20.68

Dn

TID A B C V

n1 a1 b1 c1 $0.00

n2 a2 b1 c3 $0.00

n3 a2 b2 c1 $0.00

n4 a2 b1 c3 $0.00

n5 a3 b2 c1 $0.00
(a)

Dr

TID A B C V

p1 a1 / c3 $30.68

p2 a1 b2 c3 $50.68

p3 a1 b2 / $40.68

p4 / b2 c2 $20.68

p5 / / c3 $20.68

Count of items

Item Count inDn Count inDr

a1 1 3

a∗2 3 2

b∗1 3 2

b2 2 3

c∗1 3 1

c2 0 1

c3 2 3
(b)

such as (Agrawal et al., 1993) to the updatedDr to find “respond” rules above the minimum support (line

16-17). This association rule mining is expensive, but is applied to only “respond” records and only items

whose support inDn is not more than the maximum support. After finding the FARs, we add to the rule set

the (only) “not respond” rule of the form

∅ → not respond.

This rule, called thedefault rule, is used only if a customer matches no FAR.

Example 3.1 Consider the database in Table 1(a). There are 10 records (tuples), 5 inDr and 5 inDn. Each

record has 3 attributesA, B,C and donationV . Suppose that both minimum support forDr and maximum

support forDn are40%. The lower table in Table 1(b) shows the support count for each item inDr. The

items exceeding the maximum support inDn (i.e., occur in more than 2 records inDn) are marked with
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Table 2. The FARs generated with minimum support and maximum support of 40%.

RID Rules Support inDr

r1 ∅ → not respond 5/5 = 100%

r2 A = a1 → respond 3/5 = 60%

r3 B = b2 → respond 3/5 = 60%

r4 C = c3 → respond 3/5 = 60%

r5 A = a1, B = b2 → respond 2/5 = 40%

r6 A = a1, C = c3 → respond 2/5 = 40%

Table 3. Two models of profit(r, t) (V is the donation amount in t)

Ruler Recordt Reward/Penalty model Profit model

Case 1 “respond” rule “respond” record V − 0.68 (earned) V − 0.68

Case 2 default rule “respond” record −(V − 0.68) (not earned) 0

Case 3 “respond” rule “not respond” record −0.68 (wasted) −0.68

Case 4 default rule “not respond” record 0.68 (saved) 0

“*”. The upper table of Table 1(b) showsDr with such items removed. Table 2 shows the FARs found from

Dr, plus the default rule.

In the rest of the paper, a “rule” refers to either a FAR or the default rule,Supp(r) denotes the support of

ruler in Dr ∪Dn, i.e., the percentage of all records containing both sides of the rule,lhs(r) denotes the set

of items on the left-hand side of ruler, |lhs(r)| denotes the number of items inlhs(r). We say that a ruler

matchesa recordt, or vice versa, ift contains all the items inlhs(r). We say that a ruler is more general

thana ruler′ if lhs(r) ⊆ lhs(r′).

3.2 Step 2: Model Building

Given a customer, we need to choose one rule to predict the donation amount on the customer. To

maximize the profit generated, we prefer the rule that matches the customer and has the largest observed

profit on the learning set. The observed profit of a ruler is the average profit generated on the learning

records that match the rule. Letprofit(r, t) denote the profit generated by the prediction ofr on a learning

recordt. The observed profit ofr is defined as:

O avg(r) = Σtprofit(r, t)/M ,
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wheret is a learning record that matchesr andM is the number of such records. A largeO avg(r) means

that the customers (in the learning set) matched byr make a large donation on average.

Table 3 gives two models for definingprofit(r, t). TheReward/Penaltymodel rewards each dollar saved

or earned and penalizes each dollar wasted or not earned. TheProfit model simply measures the net profit

generated. Let us explain each case in Table 3.

• Case 1: a respondert is predicted as a responder. Both models reward this decision by the net profit

earned, i.e.,V − 0.68.

• Case 2: a respondert is predicted as a non-responder. The Reward/Penalty model penalizes this

decision by the loss of the supposedly earned dollars, i.e.,−(V − 0.68), and the Profit model does it

by the zero profit generated.

• Case 3: a non-respondert is predicted as a responder. Both models penalizes this decision by the

mailing cost wasted, i.e.,−0.68.

• Case 4: a non-respondert is predicted as a non-responder. The Reward/Penalty model rewards this

decision by the mailing cost saved, i.e.,0.68, and the Profit model does it by the zero profit generated

(i.e., no mailing cost wasted).

The difference between the two models is that, for each non-responder prediction (i.e., Case 2 ad 4), there

is zero profit generated in the Profit model, but there is the mailing cost saved (if the prediction is correct)

or the customer value lost (if the prediction is wrong) in the Reward/Penalty model.

To maximize the profit on a current customer, we prefer the matching rule of the largest possibleO avg.

The effect is predicting the profit using the most profitable customer group that matches a current customer.

We formalize this preference below.

Definition 3.2 (Covering rules) For any two rulesr andr′, r is ranked higher thanr′

• (Average profit) ifO avg(r) > O avg(r′), or

• (Generality) ifO avg(r) = O avg(r′), butSupp(r) > Supp(r′), or

• (Simplicity) if Supp(r) = Supp(r′), but |lhs(r)| < |lhs(r′)|, or

• (Totality of order) if|lhs(r)| = |lhs(r′)|, butr is generated beforer′,

in that order. Given a recordt, a ruler is thecovering ruleof t, or r coverst, if r matchest and has the

highest possible rank.
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Table 4. Coverage and rank of rules

RID Records matched Records covered O avg Ranking

r5 p2, p3 p2, p3 $45.00 1st

r6 p1, p2 p1 $40.00 2nd

r2 p1, p2, p3, n1 n1 $29.83 3rd

r3 p2, p3, p4, n3, n5 p4, n3, n5 $21.73 4th

r4 p1, p2, p5, n2, n4 p5, n2, n4 $19.73 5th

r1 p1-p5, n1-n5 ∅ $0.00 6th

Given a current customer, we use the covering rule of the customer to estimate the profit. We will discuss

the profit estimation shortly. Though possibly matched by more than one rule, each record is covered

by exactly one rule (i.e., the covering rule). To find the covering rule of a given record, we store rules

of size k in a hash tree of depthk (Agrawal et al., 1993). Associated with each rule is the quadruple

< O avg, Supp, |lhs|, generation time > that determines the rank of the rule. Given a recordt, we find

the covering rule oft by finding all matching rules using the hash trees of depth smaller than the size oft.

The covering rule oft is the matching rule of the highest possible rank.

A rule is useless if it matches a record, some rule of a higher rank also matches the record. Therefore, a

useless rule has no chance to cover any record and can be removed without affecting prediction. Precisely,

a rule isuselessif some other rule is more general and ranked higher.

Example 3.2 Continue with Example 3.1. Rules are ranked byO avg in Table 4, where the Profit model

for profit(r, t) is used. For example,r2 matches 4 recordsp1, p2, p3, andn1. O avg(r2) =
∑

t profit(r2, t)/4 =

($30 + $50 + $40− $0.68)/4 = $29.83. O avg for other rules is similarly computed.p2 is matched by all

6 rules and is covered byr5, the matching rule of highest rank. Similarly, the covering rules of other records

can be determined.

3.3 Step 3: Model Pruning

The above rule ranking favors specific rules that match a small number of customers of a high profit. In

the classic classification problem, such rules are pruned due to statistical insignificance. In the presence

of inverse correlation between the likelihood to respond and the dollar amount generated by a response,

extra care should be taken because valuable customers do not show up very often and pruning their rules

could lead to the loss of significant profit. To address this issue, we propose pruning ruleson the basis of
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increasing the estimated profit over the whole population. Below, we describe this new pruning method.

First, we explain how to estimate the profit of a ruler over the whole population; then, we give a method

for pruning rules based on this estimation. The profit ofr (over the whole population) can be estimated in

two steps. First, we estimate the “hits” ofr over the whole population. Second, we compute the profit of

the estimated hits using the observations in the learning set. We borrow thepessimistic estimation(Clopper

and Pearson, 1934, Quinlan, 1993) for estimating the “hits” ofr.

Definition 3.3 Let Cover(r) denote the set of learning records covered byr. LetM denote the number of

records inCover(r), E of which do not match the class inr.

E/M is the observed error rate ofr on the learning sample. To estimate the error rate ofr over the

whole population, we regard theseE errors as observingE events inM trials, assuming that such events

follow the binomial distribution. Given a confidence levelCF , the probability that the real error rate ofr in

the whole population exceeds the upper limitUCF (M, E) is no more thanCF/2.The exact computation of

UCF (M,E) is less important and can be found in the C4.5 code (Quinlan, 1993), and a theoretical account

can be found in (Clopper and Pearson, 1934). The idea is that a smaller sample sizeM is penalized by a

larger upper limitUCF (M,E) to guarantee the specified confidence levelCF . The default value ofCF in

C4.5 is 25%. If we user to classifyM customers randomly chosen from the whole population, we have

1 − CF/2 confidence that the number of “hits” is at leastM × (1 − UCF (M,E)), and the number of

“misses” is at mostM × UCF (M, E)

Consider a “respond” ruler. The average profit per hit inCover(r) is

avgh(r) = Σt(V − 0.68)/(M −E)

for the “respond” recordst in Cover(r), whereV is the donation amount int. The average profit per miss

in Cover(r) is the cost of mailing to a non-responder, i.e., 0.68. We extend these averages to the above

estimated hits and misses.

Definition 3.4 (Estimated profit) Assume thatr coversM learning records,E incorrectly. Theestimated

profit of r is

Estimate(r) =





M × (1− UCF (M, E))× avgh(r)−M × UCF (M,E)× 0.68 if r is a “respond” rule

0 if r is the default rule

Theestimated average profitof r, denotedE avg(r), isEstimated(r)/M . Theestimated profitof a model

isΣrEstimated(r) over all rulesr (for |Dr|+|Dn| customers randomly chosen from the whole population).

13



Algorithm 3 Model Pruning
Input : A set of rules

Output : The pruned covering tree

1: build the covering tree;

2: for all noder in the bottom-up orderdo

3: computeEstimated(r);

4: if r is a non-leaf node andE tree(r) ≤ E leaf(r) then

5: prune the subtree atr;

6: end if;

7: end for;

8: return the unpruned rules;

Notice the difference betweenO avg(r) andE avg(r). O avg(r) is the average profitobservedfor the

learning records that arematchedby r. The matching rule of largestO avg(r) is the covering rule of a given

record. E avg(r) is the average profitestimatedfor the records in the whole population that arecovered

by r. We useE avg(r) to estimate the profit generated by each prediction ofr over the whole population.

E avg(r) depends onO avg(r) to define the notion of covering rules.

Now we return to the main topic of pruning over-fitting rules to maximizeΣrEstimated(r) over un-

pruned rulesr. If a specific rule is pruned, we choose the general rule of highest rank to cover the records

that were covered by the pruned rule. This specific/general rule relationship is defined by the covering tree

below.

Definition 3.5 (Covering tree) In thecovering tree, a ruler′ is theparentof a ruler if r′ is more general

thanr and has the highest possible rank. If a ruler is pruned, the parent ofr replacesr as the covering rule

of the records previously covered byr.

A child rule always has a higher rank than its parent; otherwise, the parent rule will cover all records

matched by the child rule and the child rule is useless, which contradicts the fact that all useless rules have

been removed. The most general default rule is the root of the covering tree. As we walk down the tree,

rules are increasingly more specific and ranked higher.

Algorithm 3 shows the algorithm for pruning rules in a bottom-up order of the covering tree. It first builds

the covering tree (line 1). This can be done as follows. Assume that rules of sizek are stored in a hash tree

of depthk. We examine rules of larger size before examining rules of smaller size. For each ruler of size

k, we find all general rules by searching the hash trees of depth smaller thank. If the general rule of highest
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Table 5. Estimated(r) before and after pruning

Before pruning at the rule After pruning at the rule

RID Cover(r) (M, E), Estimated(r) Cover(r) (M,E), Estimated(r)

r5 p2, p3 (2, 0), $44.32

r6 p1 (1, 0), $6.99

r2 n1 (1, 1), -$0.68 p1, p2, p3, n1 (4, 1), $70.50

r3 p4, n3, n5 (3, 2), $2.10

r4 p5, n2, n4 (3, 2), $2.10

r1 ∅ (0, 0), $0.00 ∅ (0, 0), $0.00 (pruning not performed)

possible rank has a lower rank thanr, we make it the parent rule ofr; otherwise, we discardr because it is

useless. In this step, we also computeM andE for every ruler in the covering tree. For this, we scan every

recordt in Dr ∪ Dn, find the covering ruler of t using the hash trees, and incrementM for r. If t andr

does not match in class, we also incrementE for r.

After building the covering tree, the algorithm examines the nodes in the bottom-up order. At a leaf

noder, it computesEstimated(r). At a non-leaf noder, it computes the estimated profit for the subtree

at r, denoted byE tree(r), and the estimated profit ofr after pruning the subtree, denoted byE leaf(r).

E tree(r) isΣEstimated(u) over all nodesu within the subtree atr. E leaf(r) is the same asEstimated(r),

except thatr now covers all the learning records covered by the subtree atr. If E tree(r) ≤ E leaf(r), it

prunes the subtree atr by makingr a new leaf node in the covering tree and removing the rules in the subtree

from the hash trees. IfE tree(r) > E leaf(r), it does nothing atr. The nodes outside the subtree atr are

not considered because their estimated profit remains unchanged. Essentially, the bottom-up pruning has the

effect of cutting off some lower portion of the covering tree to maximizeΣrEstimated(r) over remaining

rulesr.

Example 3.3 Let us build the covering tree for Example 3.2. Consider ruler5 for example.r1, r2 andr3

are more general thanr5, butr2 has the highest rank among them. So,r2 is the parent ofr5. In this way, we

build the covering tree on the left of Figure 1.

Table 5 showsEstimated(r) before and after the pruning atr. For example,r5 covers correctlyp2 and

p3, soM = 2 andE = 0. The estimated number of misses is2 × UCF (2, 0) = 2 × 0.50 = 1.00, and the

estimated number of hits is2× (1−UCF (2, 0)) = 2×0.50 = 1.00. avgh(r5) = [(50.68−0.68)+(40.68−
0.68)]/(2−0) = $45.00. From Definition 3.4,Estimated(r5) = 1.00×avgh(r5)−1.00×0.68 = $44.32.
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Figure 1. Left: the covering tree before pruning. Right: the covering tree after pruning.

After examining nodesr5 andr6, the bottom-up pruning examines the noder2. E tree(r2) = Estimated(r2)+

Estimated(r5) + Estimated(r6) = −0.68 + 44.32 + 6.99 = $50.63. Pruning the subtree atr2 makes

r2 cover p1, p2, p3 and n1, andM = 4 and E = 1. In this case, the estimated number of misses is

4×UCF (4, 1) = 4× 0.55 = 2.20, the estimated number of hits is4× (1−UCF (4, 1)) = 4× 0.45 = 1.80,

andavgh(r2) = [(50.68−0.68)+(40.68−0.68)+(30.68−0.68)]/(4−1) = $40.00. Following Definition

3.4,

E leaf(r2) = Estimated(r2) = 1.80× 40.00− 0.68× 2.20 = $70.50.

SinceE tree(r2) ≤ E leaf(r2), the subtree atr2 is pruned.

After examining nodesr2, r3, r4, the bottom-up pruning examines the rootr1. We have

E tree(r1) =
∑4

i=1 Estimated(ri) = 0.00 + 70.50 + 2.10 + 2.10 = $74.70.

If the subtree atr1 is pruned,r1 would cover all records inDr ∪ Dn. Sincer1 is a “not respond” rule,

Estimated(r1) = 0 (Definition 3.4), andE leaf(r1) = 0. We haveE tree(r1) > E leaf(r1). So, no

pruning is done atr1. The final pruned covering tree is shown on the right of Figure 1.

We can prove the following optimality of the above bottom-up pruning. Acut of a tree contains exactly

one node on each root-to-leaf path in the tree. A cut generates a tree by making the nodes in the cut as the

leaf nodes.

Theorem 3.1 The pruned covering tree has the maximumΣrEstimated(r) among all pruned covering

trees generated by a cut of the given covering tree.

Proof: It essentially follows from the fact that the pruning decision at a sibling node is independent of the

decisions at other sibling nodes. This implies that, if the pruning at a sibling node increases estimated profit,

so does it in any “optimal cut” because it does not affect the pruning at other sibling nodes. Therefore, the
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pruning should be done in any “optimal cut”.

The cost of Model Pruning consists of building the covering tree and pruning the tree. Pruning the

covering tree takes only one scan of the nodes in the tree. The cost of building the covering tree involves

finding all general rules for each rule and finding the covering rule for every learning record. These costs are

comparable to the cost of counting the support of candidates for itemsets in the Apriori algorithm (Agrawal

and Srikant, 1994).

3.4 Choosing threshold values

A remaining issue is how to choose the minimum support (forDr) and the maximum support (forDn).

Our method is less sensitive to specific rules because of its own pruning step, i.e., Step 3. For this reason,

a smaller minimum support is preferred to avoid losing profitable rules. The choice of maximum support

is dictated by how much resource we can afford for mining “respond” rules. The rule of thumb is that, for

a smaller minimum support, the Rule Generating step becomes more time/space-consuming, and a smaller

maximum support should be used to exclude more items.

We suggest the following procedure for choosing the minimum support and maximum support as follows.

We split the learning set intobuilding setand testing set, and run Algorithm 1 on the building set. Some

initial minimum support, usually 1%, and initial maximum support, which is usually the percentage of

“respond” records in the learning set, are used. After building the model, we compute thesum of actual

profit, as defined in Section 4, on the testing set. If the current run results in an increase in the sum of actual

profit, we rerun the algorithm with a reduced minimum support and, if necessary, a reduced maximum

support to allow efficient rule generating. This procedure is repeated several times until the sum of actual

profit cannot be increased “significantly”. The model built in the last run is returned. We shall experimentally

study this procedure in Section 4. The testing set serves to tune parameters in our method, therefore, should

not be confused with the validation set.

3.5 Making prediction

The prediction model is given by the set of unpruned rules returned in the last run. To make prediction

on a customert, we use the hash trees to find the covering ruler of t. The decision on the customer is

“contact the customer” if and only ifr is a “respond” rule and the predicted profitE avg(r) (Definition 3.4)

is positive.
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4 Validation

In this section, we validate the proposed method using the standard split of the KDD98-learning-set

(95,412 records) and KDD98-validation-set (96,367 records) used by the KDD competition (KDD98, 1998a).

The KDD98-learning-set is used for learning a model. In our method, we split the KDD98-learning-set ran-

domly into 70% for the building set (66,788 records, 3,390 “respond” records) and 30% for the testing set

(28,624 records, 1,453 “respond” records), as described in Section 3.4. The testing set is used for tuning the

minimum and maximum support in our method, not for evaluation purpose. The evaluation is performed

using the standard KDD98-validation-set, which is held out from the learning phase of all algorithms. The

competition criterion is thesum of actual profiton the KDD98-validation-set, defined asΣt(V − 0.68) for

all validation recordst predicted to have a positive profit, whereV is the donation amount int. We report

our results based on the Profit model in Table 3. No significant difference is found on the Reward/Penalty

model.
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Figure 3. The distribution of donation below $50
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Table 6. Comparison with published results

Category Algorithm Sum of Actual Profit # Mailed Average Profit

Our Algorithm $20,693 23,437 $0.88
KDD-CUP-98 Resultsin GainSmarts (The winner) $14,712.24 56,330 $0.26
(KDD98, 1998b) SAS/Enterprise Miner (#2) $14,662.43 55,838 $0.26

Quadstone/Decisionhouse (#3)$13,954.47 57,836 $0.24
ARIAI/CARRL (#4) $13,824.77 55,650 $0.25
Amdocs/KDD Suite (#5) $13,794.24 51,906 $0.27

MetaCostin Smoothed C4.5 (sm) $12,835
(Domingos, 1999) and C4.5 with curtailment (cur) $11,283
(Zadrozny and Elkan, 2001) Binned naive Bayes (binb) $14,113

Average (sm, cur) $13,284
Average (sm, cur, binb) $13,515

Direct Cost-Sensitivein Smoothed C4.5 (sm) $14,321
(Zadrozny and Elkan, 2001) C4.5 with curtailment (cur) $14,161

Binned naive Bayes (binb) $15,094
Average (sm, cur) $14,879
Average (sm, cur, binb) $15,329

Maximum possible profit $72,776 4,873 $14.93
Mail to Everyone $10,548 96,367 $0.11

We compare our method with three categories of published results. The first includes the top five results

from the KDD-CUP-98 competition. As pointed out by (KDD98, 1998b)), these contestants used state-

of-the-arts techniques such as2-stage, multiple strategies, combined boosting and bagging. The second

category includes the results produced by the MetaCost technique (Domingos, 1999). The third category

includes the results produced by the direct cost-sensitive decision-making (Zadrozny and Elkan, 2001).

The results from the latter two categories are taken from (Zadrozny and Elkan, 2001), which implemented

MetaCost and direct cost-sensitive decision-making using advanced techniques for probability estimation

and donation estimation, includingmultiple linear regression, C4.5, naive Bayes, smoothing, curtailment,

binning, averaging, andHeckmanprocedure. Interested readers are referred to (Zadrozny and Elkan, 2001)

for more details.

The evaluation results in Sections 4.1-4.4 are based on the KDD98-validation-set, which has 96,367

records and 4,873 “respond” records. Figure 2 and Figure 3 show the distribution of donation amount for

“respond” records. There is a clear inverse correlation between the probability that a customer responds and

the dollar amount generated by a response.
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4.1 Sum of actual profit

The summary of comparison is shown in Table 6 based on the KDD98-validation-set. The first row (in

bold face) is our result. Next come the three categories of published results: the top five contestants of the

KDD-CUP-98 as reported in (KDD98, 1998b), five algorithms of MetaCost and five algorithms of direct

cost-sensitive decision making as reported in (Zadrozny and Elkan, 2001).

Our method generated the sum of actual profit of $20,693. This is 41% more than the KDD-CUP-98

winner ($14,712.24), 47% more than the best profit of MetaCost ($14,113), and 35% more than the best

profit of direct cost-sensitive decision making ($15,329). According to the analysis in (Zadrozny and Elkan,

2001), a minimum difference of $1,090 is required to be statistically significant. Our performance gain far

exceeds this requirement. Our average profit per mail is $0.88. This is 3.38 times that of the KDD-CUP-

98 winner, and 8 times that of the Mail to Everyone Solution. Compared to the KDD-CUP winner, we

generated 41% more profit by predicting less than an half number of contacts. (Zadrozny and Elkan, 2001)

did not report the number of mailed, so we cannot compute their average profit. These higher total profit

and average profit suggest that the proposed method is highly successful in focusing on valuable customers.

This success is credited to the novel feature extraction based on the global search of association rule mining,

and the profit estimation that pushes the customer value as the first class information.

4.2 Profit lift

We extend the concept of “lift” in the literature (Ling and Li, 1998, Masand and Shapiro, 1996) to evaluate

the “profit lift” of our result. In thecumulative lift curve(Ling and Li, 1998, Masand and Shapiro, 1996),

validation records are ranked by the estimated probability of belonging to the “respond” class, and each

point (x, y) on the curve represents that the topx percent of the ranked list containsy percent of all actual

responders. In thecumulative profit lift curve, each point(x, y) represents that the topx percent of the

ranked list generatesy percent of the total profit. Thus, the cumulative lift curve is a special case of the

cumulative profit lift curve when every responder generates the same profit. Figure 4 shows the cumulative

profit lift curve of our result. For example, the top 20% of the ranked list generates 42% of the total actual

profit, giving the profit lift of 2.1. The bend toward the upper-left corner suggests that our method ranks

valuable customers toward the top of the list.
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Figure 4. The accumulative profit lift curve

4.3 Classification

Table 7 shows the confusion matrix for the KDD98-validation-set. 2,813 of the 4,873 responders are

predicted as responders (i.e., contacted), and 71,389 of the 91,494 non-responders are predicted as non-

responders (i.e., not contacted), giving the “hit rate” of 57.7% on responders and 78.0% on non-responders.

In other words, the hit rate for responders is more than 10 times the percentage of responders in the data

(i.e., 5%). This strongly suggests that our method has achieved the goal of identifying valuable customers.

This is further confirmed by the striking similarity between the number of identified responders in Figure 5

and the number of actual responders in Figure 3.

Table 7. The confusion matrix

not contacted contacted

non-responder 71, 389 20, 105

responder 2, 060 2, 813

4.4 The top 10 rules

Figure 6 shows the 10 “respond” rules in terms of the profit generated on the KDD98-validation-set. The

top portion describes the involved variables, copied from the data source. Each rule is listed in the following

format:

Rule# : Profit Supp Conf Ai1 = ai1 , . . . , Aik = aik

whereProfit is the total profit generated on validation records by the rule,Supp andConf are the support

(in number of records) and confidence of the rule.Aij is a non-target variable andai1 is either a single value
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Table 8. Choosing maximum support/minimum support
Max sup. Min sup. #Rules #Rules Aft. Prune Time (second) #Mailed Sum of Act. Prof.
5% (40% remain) 3% 956 714 825 5470 $3757

2% 31850 1117 1019 6270 $4566
1.5% 46348 1363 2227 8559 $4690

3% (25% remain) 1% 1819 973 716 6785 $5722
0.8% 2510 1064 754 6898 $5640
0.5% 6530 1303 913 7796 $6733
0.3% 16446 1522 1067 7812 $6760
0.2% 47665 1863 2178 8739 $7382
0.15% 71626 2317 2841 8383 $7103

1% (8% remain) 0.1% 4451 793 1001 5802 $4757
0.05% 13871 1173 975 6017 $5128

or a range of the form[a, b]. We have omitted the right-hand siderespond from all rules.

Examining these rules reveals some interesting points. First, neither the most general rule 8 (with the

largest support) nor the most confident rule 9 is the most profitable rule, i.e., rule 1. Second, the support of

rules is very small. Recall that the learning set,Dn ∪Dr, has 66,788 records, 3,390 of which are “respond”

records,Dr. The smallest support of 7 here corresponds to 0.01% ofDn ∪ Dr and 0.2% ofDr. With

481 variables, mining the whole learning set with the minimum support of 0.01% is infeasible according

to our experience. However, by mining FARs fromDr only, we can set the minimum support to 0.2%, in

which case the mining task is feasible. Third, these rules are explicit in terms of customer demographic

information, thus, are potentially useful for devising campaign strategies.

4.5 Choosing threshold values

Now we report how the maximum support/minimum support were selected in our algorithm. At first, we

included all items by setting maximum support at 100%. The rule generating (i.e., association rule mining)
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Variables Meanings
---------------------------------------------------------------------------------
AGE904 Average Age of Population
CHIL2 Percent Children Age 7 - 13
DMA DMA Code
EIC16 Percent Employed in Public Administration
EIC4 Percent Employed in Manufacturing
ETH1 Percent White
ETH13 Percent Mexican
ETHC4 Percent Black < Age 15
HC6 Percent Owner Occupied Structures Built Since 1970
HHD1 Percent Households w/ Related Children
HU3 Percent Occupied Housing Units
HUPA1 Percent Housing Units w/ 2 thru 9 Units at the Address
HVP5 Percent Home Value >= $50,000
NUMCHLD NUMBER OF CHILDREN
POP903 Number of Households
RAMNT_22 Dollar amount of the gift for 95XK
RFA_11 Donor’s RFA status as of 96X1 promotion date
RFA_14 Donor’s RFA status as of 95NK promotion date
RFA_23 Donor’s RFA status as of 94FS promotion date
RHP2 Average Number of Rooms per Housing Unit
TPE11 Mean Travel Time to Work in minutes
WEALTH2 Wealth Rating

Rule Profit Supp Conf Rule
---------------------------------------------------------------------------------
1 $81.11 13 0.11 ETHC4=[2.5,4.5], ETH1=[22.84,29.76], HC6=[60.91,68.53]
2 $61.73 8 0.17 RFA_14=f1d, ETH1=[29.76,36.69]
3 $47.07 12 0.12 HHD1=[24.33,28.91], EIC4=[33.72,37.36]
4 $40.82 16 0.12 RFA_23=s2g, ETH13=[27.34,31.23]
5 $35.17 11 0.16 EIC16=[11.25,13.12], CHIL2=[33,35.33], HC6=[45.69,53.30]
6 $28.71 7 0.16 RHP2=[36.72,40.45], AGE904=[42.2,44.9]
7 $24.32 10 0.14 HVP5=[56.07,63.23], ETH13=[31.23,35.61],

RAMNT_22=[7.90,10.36]
8 $19.32 31 0.08 NUMCHLD=[2.5,3.25], HU3=[66.27,70.36]
9 $17.59 8 0.25 RFA_11=f1g, DMA=[743,766.8], POP903=[4088.208,4391.917],

WEALTH2=[6.428571,7.714286]
10 $9.46 9 0.23 HUPA1=[41.81+,], TPE11=[27,64,31.58]
---------------------------------------------------------------------------------

Figure 6. The top 10 “respond" rules found
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took significantly long time for any minimum support small enough to produce sufficient “respond” rules; or

to finish the rule generating within a reasonable amount of time, we had to use a high minimum support that

generated very few “respond” rules, therefore, very low profit. Therefore, we have to exclude unpromising

items using a lower maximum support. Our algorithm iteratively adjusted the maximum support and mini-

mum support based on the feedback on the testing set. The last column in Table 8 shows the sum of actual

profit on the testing set for several settings of maximum support/minimum support. Recall that the testing

set is a 30% random sample of the KDD98-learning-set.

In general, reducing maximum support/minimum support increases the sum of actual profit. Reducing the

minimum support increases the number of rules, and reducing the maximum support allows more efficient

mining. After reaching 3% for maximum support and 0.2% for minimum support, i.e., the row in bold face,

further reducing these thresholds will decrease the sum of actual profit, due to the excessive over-fitting of

specific rules. Therefore, our algorithm chooses 3% and 0.2% for maximum support and minimum support.
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Figure 7. The effectiveness of maximum support

This study reveals the effectiveness of maximum support in reducing the number of items. The first

column of Table 8 gives the remaining file size in percentage after applying the maximum support. A large

portion of items was removed by using maximum support, which is extremely important for scaling up the

association rule mining. A question is whether such dimension reduction will reduce the profitability of

the final model. To answer this question, Figure 7 compares the models built at varied maximum support

of 15%, 10% and 5%, with minimum support fixed at 3%. A smaller maximum support sharply reduces

the number of rules, but not the sum of actual profit (on the testing set). In fact, many rules pruned by the

maximum support are ranked lower than some general rules. Such rules are never used according to our

ranking of rules.

Table 8 also shows the number of rules before and after the model pruning in Step 3 (i.e., columns 3 and
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4). The pruning effect is dramatic, especially when the initial model is large. For example, at the maximum

support of 3% and the minimum support of 0.2%, the model has 47,665 rules before the pruning and only

1,863 rules after the pruning.

5 Conclusion

Direct marketing becomes increasingly important in retail, banking, insurance and fundraising industries.

In a recent KDnuggets poll on the question “where do you plan to use data mining in 2002”, direct market-

ing/fundraising was the second most voted among 15 application areas (KDnuggets, 2001). A challenge to

the prediction problem in direct marketing is the inverse correlation between the likelihood to buy and the

dollar amount to spend, which implies that the class probability based ranking will rank valuable customers

low rather than high! Previous approaches are “after the fact” in that they re-rank the probability based rank-

ing using the customer value in the second step. Another challenge is the extremely high dimensionality and

extremely low proportion of the target class. In such cases, finding rules to distinguish the target class from

non-target classes is similar to finding a needle from a haystack.

In this paper, we push the customer value as the first class information. Our approach is to estimate

directly the profit generated on a customer without estimating the class probability. This methodology opens

up new possibilities for profit estimation. In particular, we use association rules to summarize customer

groups and to build a model for profit prediction. The advantage of the association rule approach is its

scalability of finding correlated features that may never be found in a local search. The evaluation on the

well known, large, and challenging KDD-CUP-98 task shows a breakthrough result.
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